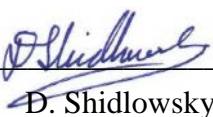


DATE: 17 September 2019

I.T.L. (PRODUCT TESTING) LTD.
FCC Radio Test Report
For

Pal Electronics Systems

Equipment under test:


Smart Gate

SG334GA

Tested by:

M. Zohar

Approved by:

D. Shidlowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Pal Electronics Systems

Smart Gate

SG334GA

FCC ID: 2AUD3-SG334G

This report concerns:

Original Grant:

Class I Change:

Class II Change:

Equipment type:

DSS Part 15 Spread Spectrum Transmitter

Limits used:

47CFR15 Section 15.247

Measurement procedures used are KDB 558074 D01 v05r02, ANSI C63.10: 2013

Application for Certification
prepared by:

R. Pinchuck

ITL (Product Testing) Ltd.

1 Bat Sheva Street

Lod 7116002

Israel

e-mail Rpinchuck@itlglobal.org

Applicant for this device:
(different from "prepared by")

Arie Litbak

Pal electronics systems

Hata'asiya 25 Street, P.O. Box 4365413

Ra'anana, 4365413,

Israel

Tel: +972-52-317-9977

Email: litbak@pal-es.com

TABLE OF CONTENTS

1. GENERAL INFORMATION -----	5
1.1 Administrative Information.....	5
1.2 List of Accreditations	6
1.3 Product Description	7
1.4 Test Methodology.....	7
1.5 Test Facility	7
1.6 Measurement Uncertainty	7
2. SYSTEM TEST CONFIGURATION-----	8
2.1 Justification.....	8
2.2 EUT Exercise Software	9
2.3 Special Accessories	9
2.4 Equipment Modifications	9
2.5 Configuration of Tested System.....	9
3. CONDUCTED & RADIATED MEASUREMENT TEST SET-UP PHOTOS -----	10
4. 20DB MINIMUM BANDWIDTH -----	13
4.1 Test Specification	13
4.2 Test Procedure	13
4.3 Test Limit.....	13
4.4 Test Results.....	13
4.5 Test Equipment Used, 20 dB Minimum Bandwidth.....	15
5. OCCUPIED BANDWIDTH -----	16
5.1 Test Specification	16
5.2 Test Procedure	16
5.3 Test Limit.....	16
5.4 Test Results.....	16
5.5 Test Equipment Used, Occupied Bandwidth.....	18
6. NUMBER OF HOPPING FREQUENCIES -----	19
6.1 Test Specification	19
6.2 Test Procedure	19
6.3 Test Limit.....	19
6.4 Test Results.....	19
6.5 Test Equipment Used, Number of Hopping Frequencies	20
7. CHANNEL FREQUENCY SEPARATION-----	21
7.1 Test Specification	21
7.2 Test Procedure	21
7.3 Test Limit.....	21
7.4 Test Results.....	21
7.5 Test Equipment Used, Channel Frequency Separation.....	22
8. PEAK OUTPUT POWER -----	23
8.1 Test Specification	23
8.2 Test Procedure	23
8.3 Test Limit.....	23
8.4 Test Results.....	23
8.5 Test Equipment Used, Peak Output Power	25
9. DWELL TIME ON EACH CHANNEL -----	26
9.1 Test Specification	26
9.2 Test Procedure	26
9.3 Test Limit.....	26
9.4 Test Results.....	26
9.5 Test Equipment Used, Dwell Time on Each Channel	28

10. BAND EDGE -----	29
10.1 Test Specification	29
10.2 Test Procedure	29
10.3 Test Limit.....	29
10.4 Test Results.....	29
10.5 Test Equipment Used, Band Edge	32
11. EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS-----	33
11.1 Test Specification	33
11.2 Test Procedure	33
11.3 Test Limit.....	33
11.4 Test Results.....	33
11.5 Test Equipment Used, Emissions in Non-Restricted Frequency Bands	35
12. EMISSIONS IN RESTRICTED FREQUENCY BANDS -----	36
12.1 Test Specification	36
12.2 Test Procedure	36
12.3 Test Limit.....	37
12.4 Test Results.....	37
12.5 Test Equipment Used, Emissions in Restricted Frequency Bands	39
13. AVG. FACTOR CALCULATION-----	40
13.1 Test Equipment Used, Average Factor	41
14. ANTENNA GAIN/INFORMATION-----	42
15. R.F EXPOSURE/SAFETY-----	43
16. APPENDIX A - CORRECTION FACTORS -----	44
16.1 Correction factors for RF OATS Cable 35m.....	44
16.2 Correction Factors for RF Cable for Anechoic Chamber	45
16.3 Correction Factors for Active Loop Antenna	46
16.4 Correction Factors for Biconical Antenna.....	47
16.5 Correction Factors for Log Periodic Antenna	48
16.6 Correction Factors for Double – Ridged Waveguide Horn Antenna - 3m range	49

1. General Information

1.1 Administrative Information

Manufacturer: Pal Electronics Systems

Manufacturer's Address: Hata'asiya 25 Street
Ra'anana, 4365413
Israel
Tel: +972-52-317-9977

Manufacturer's Representative: Arie Litbak

Equipment Under Test (E.U.T.): Smart Gate

Model: SG334GA

Equipment Serial No.: RD300100275

Date of Receipt of E.U.T.: September 02, 2019

Start of Test: September 02, 2019

End of Test: September 03, 2019

Test Laboratory Location: I.T.L (Product Testing) Ltd.
1 Batsheva St.,
Lod
ISRAEL 7120101

Test Specifications: FCC, Part 15, Subpart C, Section 15.247

1.2 *List of Accreditations*

The EMC laboratory of I.T.L. is accredited by the following bodies:

1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation No. IL1005.
3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
4. Department of Innovation, Science and Economic Development (ISED) Canada, CAB identifier: IL1002

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

SG334GA is a new long-range RFID reader featuring compact dimension. This innovative integrated reader is an all-in-one device that operates at a frequency range of 902-928 MHz and is an ideal solution for applications such as intelligent parking management and access control.

Working voltage	12VDC
Mode of operation	Transceiver
Modulation	ASK
Assigned Frequency Range	902-928MHz
Operating Frequency Range	902.75-927.25MHz
Transmit power(conducted)	~25.0dBm
Antenna Gain	8.57 dBi max gain
Modulation BW	~ 100kHz

1.4 Test Methodology

Radiated testing was performed according to the procedures in KDB 558074 D01 v05r02 and ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

Emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

1.6 Measurement Uncertainty

Conducted Emission

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) 0.15 – 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

± 3.6 dB

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site:

30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):

± 4.96 dB

1 GHz to 6 GHz

Expanded Uncertainty (95% Confidence, K=2):

± 5.19 dB

>6 GHz

Expanded Uncertainty (95% Confidence, K=2):

± 5.51 dB

2. System Test Configuration

2.1 Justification

1. The E.U.T contains a sub 1GHz transceiver.
2. The unit was evaluated while transmitting at the low channel (902.75MHz), the mid channel (915.25MHz) and the high channel (927.25MHz).
3. Final radiated emission test was performed after exploratory emission testing that was performed on the E.U.T in 3 orthogonal polarities to determine the “worst case” radiation (antenna polarity was in fixed position as defined by the customer)
4. According to the below results the “worst case” was the Z axis

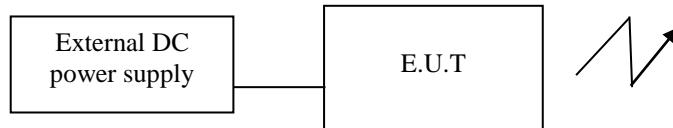
Orientation	Frequency (MHz)	2 nd Harmonic (dBuV/m)	3 rd Harmonic (dBuV/m)	Band Edge (dBuV/m)
X axis	902.75	52.5	54.2	52.2
	915.25	52.5	54.4	-
	927.25	52.3	54.1	52.6
Y axis	902.75	53.4	55.0	52.4
	915.25	53.8	55.9	-
	927.25	53.6	55.2	52.7
Z axis	902.75	54.0	58.0	52.4
	915.25	54.1	60.3	-
	927.25	54.7	62.5	53.0

Figure 1. Screening Results

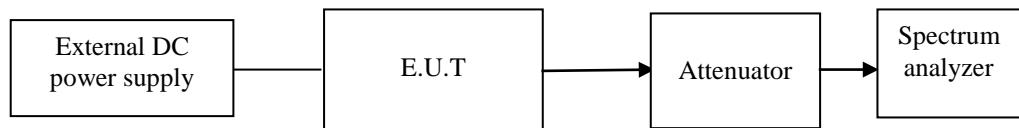
5. Conducted emission tests were performed with the E.U.T. antenna terminal connected by a RF cable to the Spectrum Analyzer through a 30dB external attenuator.

2.2 **EUT Exercise Software**

No special exercise software was used.


2.3 **Special Accessories**

No special accessories were needed in order to achieve compliance.


2.4 **Equipment Modifications**

No modifications were needed in order to achieve compliance.

2.5 **Configuration of Tested System**

Figure 2. Configuration of Tested System – Radiated

Figure 3. Configuration of Tested System – Conducted

3. Conducted & Radiated Measurement Test Set-Up Photos

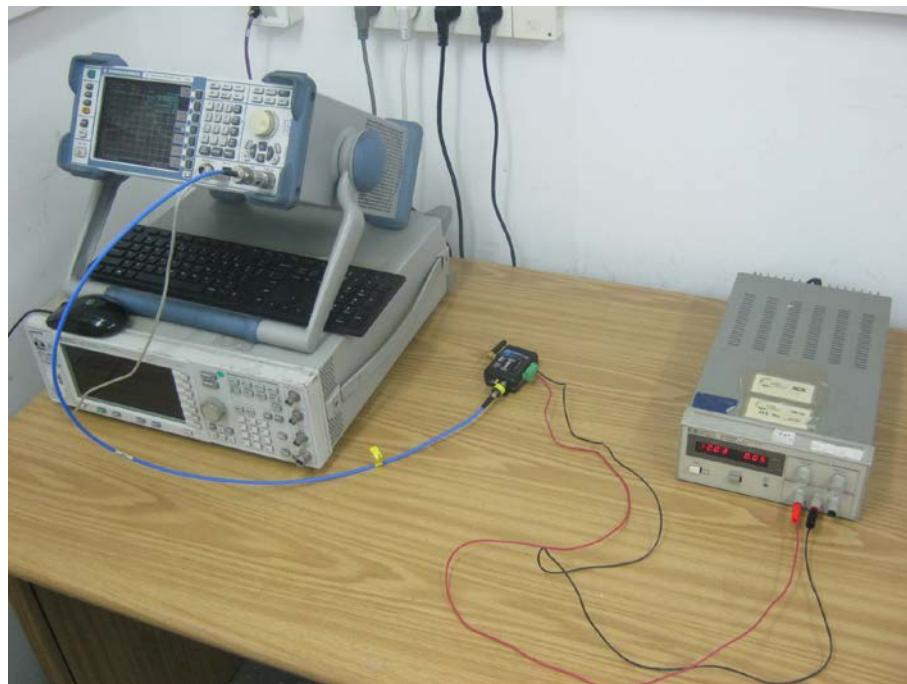



Figure 4. Conducted Emission from Antenna Port

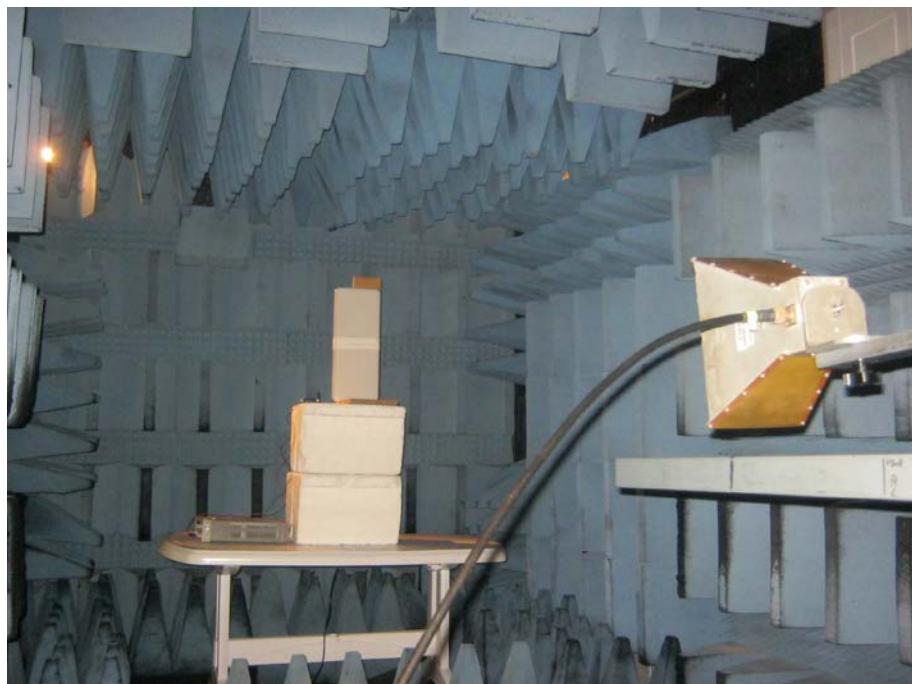

Figure 5. Radiated Emission Test, 0.009-30MHz

Figure 6. Radiated Emission Test, 30-200MHz

Figure 7. Radiated Emission Test, 200-1000MHz

Figure 8. Radiated Emission Test, 1-10GHz

4. 20dB Minimum Bandwidth

4.1 Test Specification

FCC, Part 15, Subpart C, Section 15.247(a)(1)

4.2 Test Procedure

(Temperature (20°C)/ Humidity (59%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable. The transmitter unit operated with normal modulation.

The spectrum analyzer was set to the following parameters:

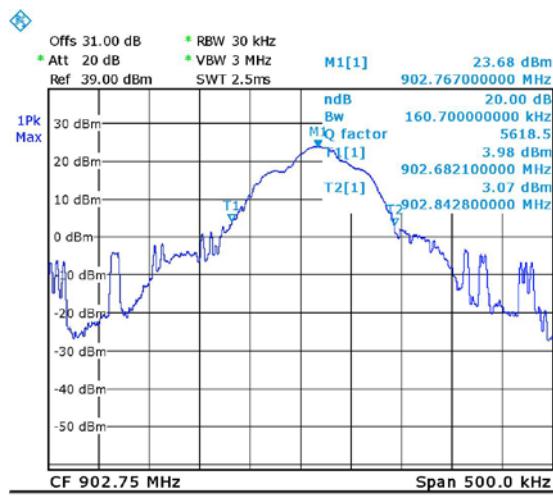
Span = ~ 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq 1% of the 20 dB bandwidth

Detector Function: Peak, Trace: Maximum Hold.

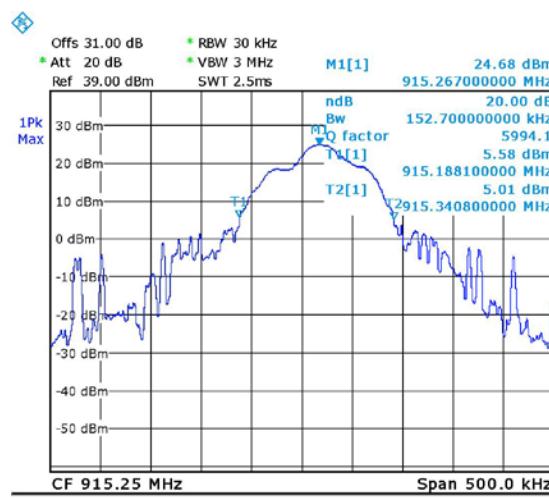
4.3 Test Limit

N/A


4.4 Test Results

Modulation	Operation Frequency	Bandwidth Reading
	(MHz)	(kHz)
ASK	902.75	160.7
	915.25	152.7
	927.25	156.7

Figure 9 Test Results


JUDGEMENT: Passed

For additional information see *Figure 10* to *Figure 12*.

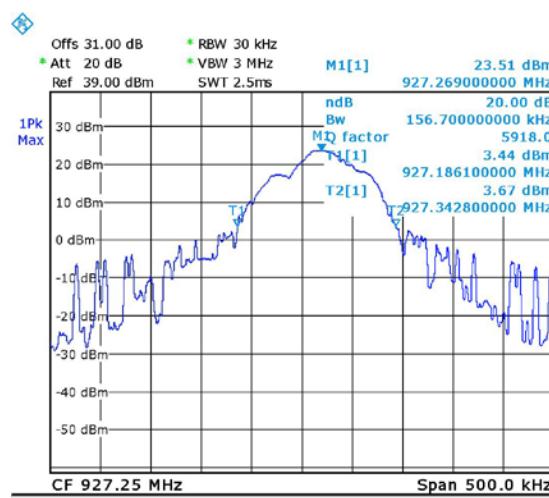

Date: 2.SEP.2019 09:27:50

Figure 10. 902.75MHz,

Date: 2.SEP.2019 09:37:40

Figure 11. 915.25MHz,

Date: 2.SEP.2019 09:47:20

Figure 12. 927.25MHz

4.5 **Test Equipment Used, 20 dB Minimum Bandwidth**

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSL6	100194	March 24, 2019	March 31, 2020
30dB Attenuator	MCL	BW-S30W5	533	December 24, 2018	December 31, 2019
RF Cable	EIM	705A009301EIM	-	December 24, 2018	December 31, 2019

Figure 13 Test Equipment Used

5. Occupied Bandwidth

5.1 Test Specification

FCC, Part 15, Subpart C, Section 2.1048

5.2 Test Procedure

(Temperature (20°C)/ Humidity (60%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable. The transmitter unit operated with normal modulation.

The spectrum analyzer was set to the following parameters:

Span = ~ 3 times the OBW, centered on a hopping channel

RBW = 1-5% of the OBW

99% occupied bandwidth function was set on.

5.3 Test Limit

N/A

5.4 Test Results

Modulation	Operation Frequency	Bandwidth Reading
	(MHz)	(kHz)
ASK	902.75	109.5
	915.25	106.0
	927.25	105.4

Figure 14 Test Results

JUDGEMENT: Passed

For additional information see *Figure 15* to *Figure 17*.

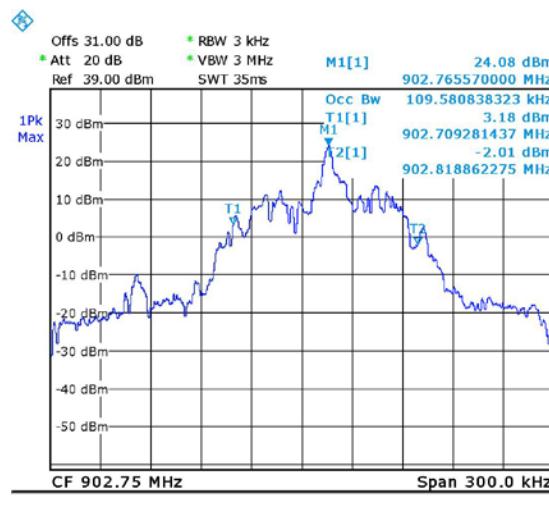


Figure 15. 902.75MHz,

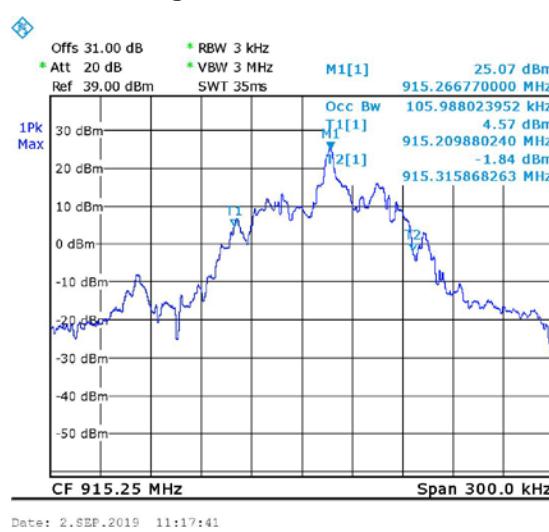


Figure 16. 915.25MHz,

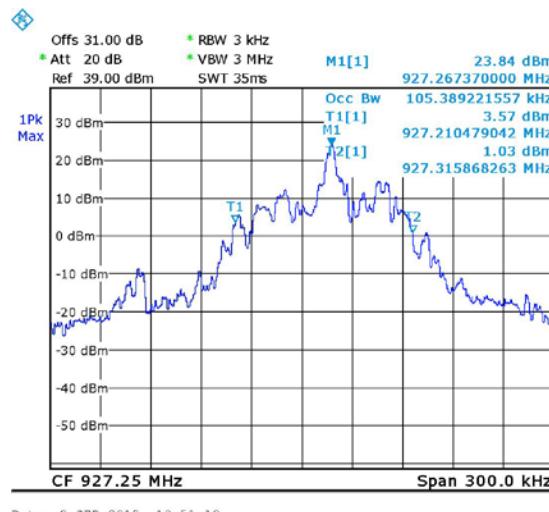


Figure 17. 927.25MHz

5.5 *Test Equipment Used, Occupied Bandwidth*

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSL6	100194	March 24, 2019	March 31, 2020
30dB Attenuator	MCL	BW-S30W5	533	December 24, 2018	December 31, 2019
RF Cable	EIM	705A009301EIM	-	December 24, 2018	December 31, 2019

Figure 18 Test Equipment Used

6. Number of Hopping Frequencies

6.1 Test Specification

FCC, Part 15, Subpart C Section 15.247(a)(1)(iii)

6.2 Test Procedure

(Temperature (20°C)/ Humidity (60%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable.

The E.U.T. was set to hopping mode.

The spectrum analyzer was set to the following parameters:

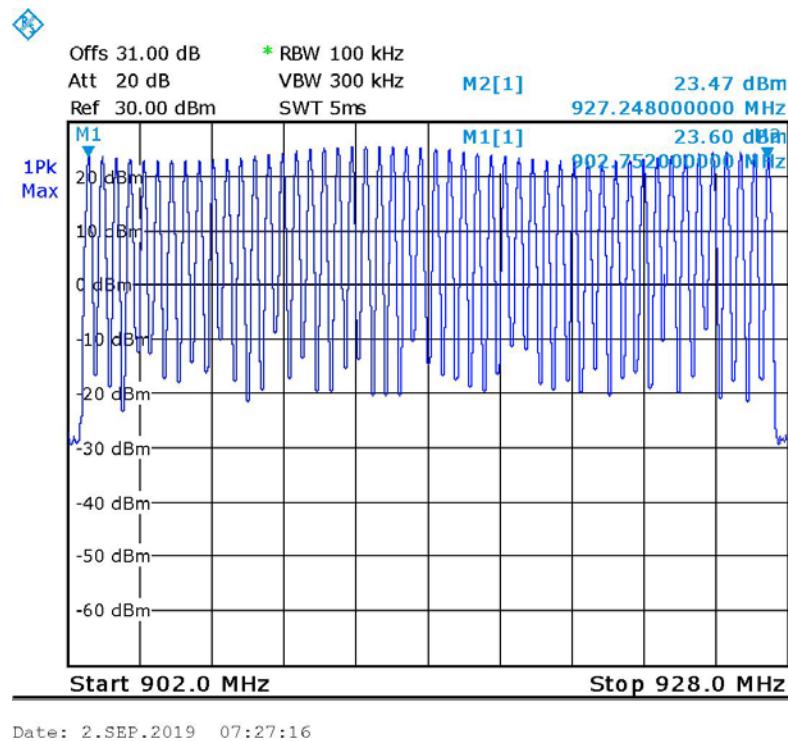
Band of operation: 902M-928 MHz

RBW: 100 kHz

Detector Function: Peak, Trace: Maximum Hold

6.3 Test Limit

Frequency hopping systems in the 902.0928-.0 MHz band shall use at least 50 Channels.


6.4 Test Results

Modulation	Number of Hopping Frequencies	Limit
ASK	50	≥50

Figure 19 Test Results

JUDGEMENT: Passed

For additional information see *Figure 20*.

Date: 2.SEP.2019 07:27:16

Figure 20. Number of Channels

6.5 *Test Equipment Used, Number of Hopping Frequencies*

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSL6	100194	March 24, 2019	March 31, 2020
30dB Attenuator	MCL	BW-S30W5	533	December 24, 2018	December 31, 2019
RF Cable	EIM	705A009301EIM	-	December 24, 2018	December 31, 2019

Figure 21 Test Equipment Used

7. Channel Frequency Separation

7.1 Test Specification

FCC Part 15, Subpart C, 15.247(a) (1)

7.2 Test Procedure

(Temperature (21°C)/ Humidity (60% RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable.

The E.U.T. was set to hopping mode.

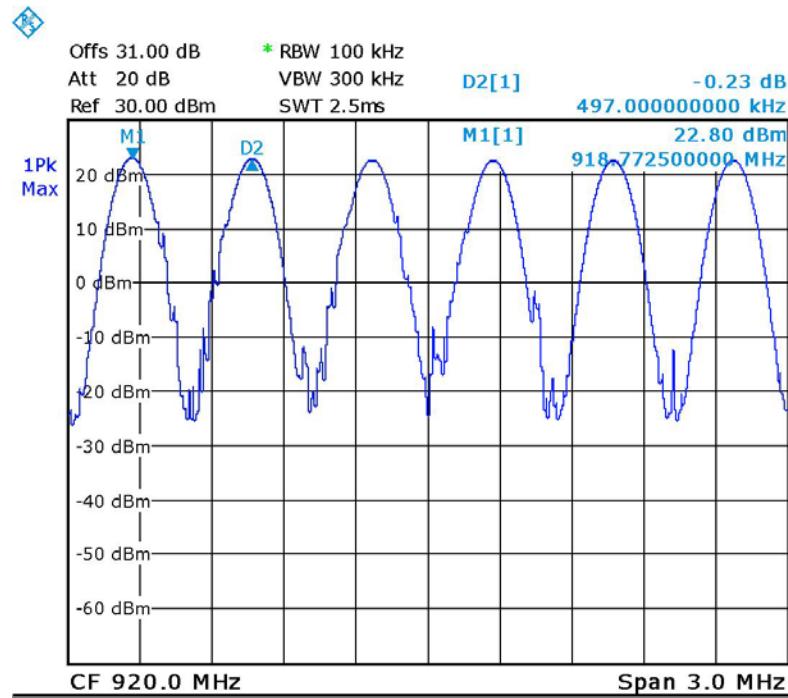
The spectrum analyzer was set to the following parameters:

Span = wide enough to capture two adjacent channels RBW=100kHz

Detector Function: Peak, Trace: Maximum Hold.

7.3 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.


7.4 Test Results

Modulation	Channel	Limit
	Frequency Separation (kHz)	(kHz)
ASK	497.0	≥160.7

Figure 22 Test Results

JUDGEMENT: Passed by 336.3 kHz

For additional information see *Figure 23*.

Date: 2.SEP.2019 08:13:38

Figure 23. Channel Frequency Separation

7.5 *Test Equipment Used, Channel Frequency Separation*

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSL6	100194	March 24, 2019	March 31, 2020
30dB Attenuator	MCL	BW-S30W5	533	December 24, 2018	December 31, 2019
RF Cable	EIM	705A009301EIM	-	December 24, 2018	December 31, 2019

Figure 24 Test Equipment Used

8. Peak Output Power

8.1 Test Specification

FCC Part 15, Subpart C: section 15.247(b)(1)

8.2 Test Procedure

(Temperature (20°C)/ Humidity (60%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (total loss= 31.0dB).

The spectrum analyzer was set to the following parameters:

Span = ~5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq of the 20 dB bandwidth of the emission being measured

Detector Function: Peak, Trace: Maximum Hold.

8.3 Test Limit

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels. (The limits above applies to antenna gain until 6dBi).

8.4 Test Results

Operation Frequency (MHz)	Power (dBm)	Power (mW)	Limit * (mW)	Margin (mW)
902.75	23.7	234.42	640.0	-405.58
915.25	24.7	295.12	640.0	-344.88
927.25	23.5	223.87	640.0	-416.13

Note: from original limit reduced 2dB because the E.U.T antenna gain is 8dBi

Figure 25 Radiated Power Output Test Results

JUDGEMENT: Passed by 344.88 mW

For additional information see *Figure 26* to *Figure 28*.

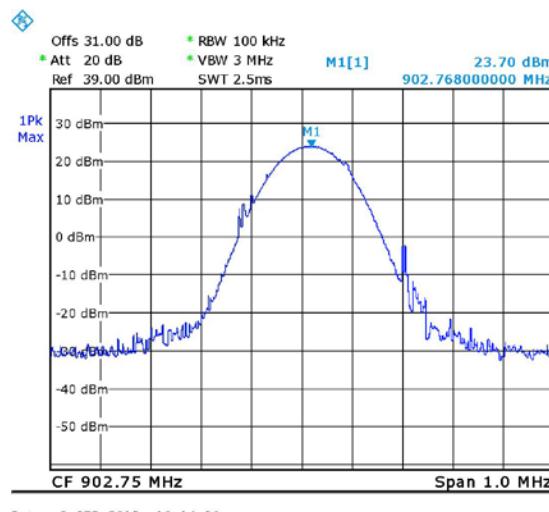


Figure 26. 902.75MHz,

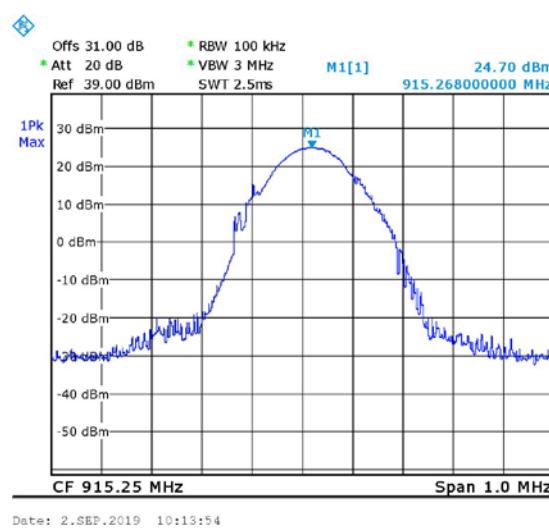


Figure 27. 915.25MHz,

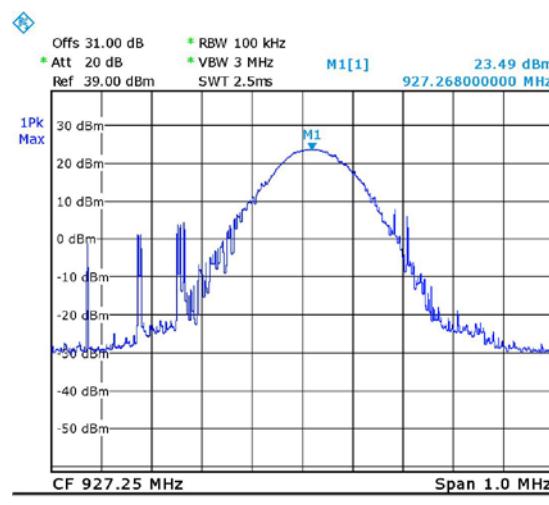


Figure 28. 927.25MHz

8.5 ***Test Equipment Used, Peak Output Power***

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSL6	100194	March 24, 2019	March 31, 2020
30dB Attenuator	MCL	BW-S30W5	533	December 24, 2018	December 31, 2019
RF Cable	EIM	705A009301EIM	-	December 24, 2018	December 31, 2019

Figure 29 Test Equipment Used

9. Dwell Time on Each Channel

9.1 Test Specification

FCC Part 15, Part C, Section 15.247(a)(1)(iii)

9.2 Test Procedure

(Temperature (20°C)/ Humidity (60% RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable.

The E.U.T. was set to hopping mode.

The spectrum analyzer was set to the following parameters:

Span = zero span, centered on a hopping channel

9.3 Test Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

9.4 Test Results

JUDGEMENT: Passed

The E.U.T met the requirements of the FCC Part 15, Section 15.247(d) and RSS, Issue 2, Section 5.1(d)

Additional information of the results is given in *Figure 30* to *Figure 31*.

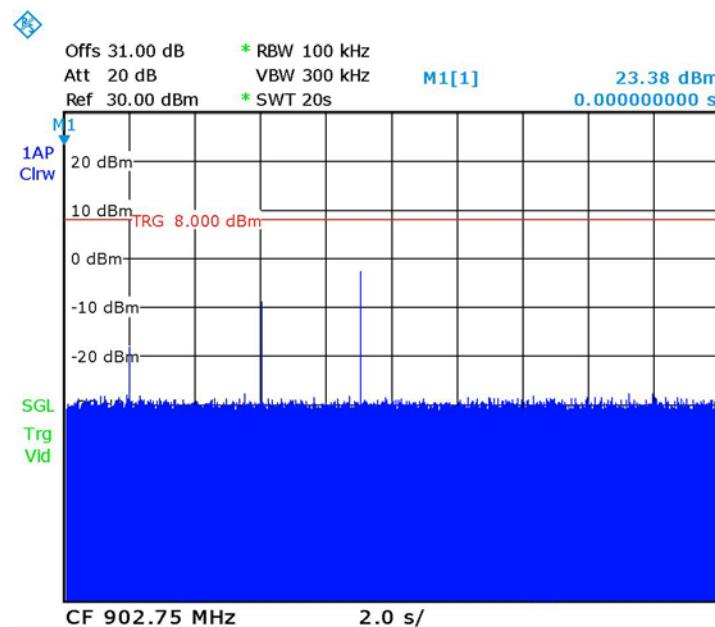


Figure 30 Number of Bursts in 20 sec=1

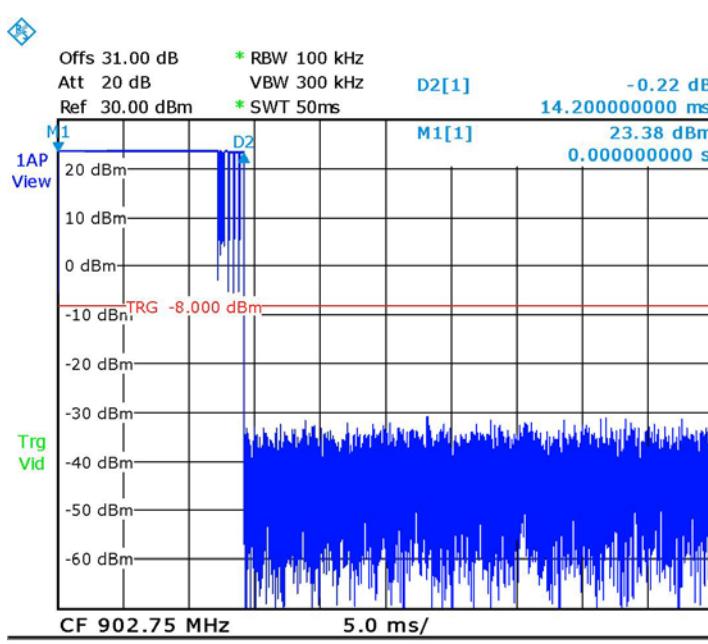


Figure 31 Burst Duration =14.2msec
DWELL TIME = 1*14.2m= 14.2msec<400msec

9.5 *Test Equipment Used, Dwell Time on Each Channel*

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSL6	100194	March 24, 2019	March 31, 2020
30dB Attenuator	MCL	BW-S30W5	533	December 24, 2018	December 31, 2019
RF Cable	EIM	705A009301EIM	-	December 24, 2018	December 31, 2019

Figure 32 Test Equipment Used

10. Band Edge

10.1 Test Specification

FCC Part 15, Section 15.247(d)

10.2 Test Procedure

(Temperature (20°C)/ Humidity (60%RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable.

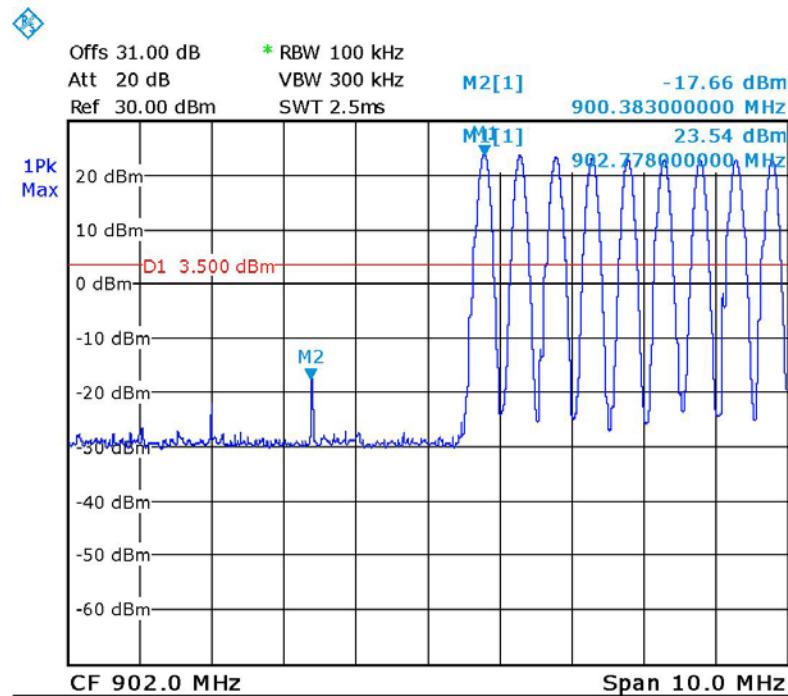
The transmitter unit operated in 2 modes: hopping enabled and hopping disabled.
The RBW was set to 100 kHz.

The EMI receiver was adjusted to the transmission channel at the maximum level.
The display line was set to 20 dBc and the EMC analyzer was set to the band edge frequencies.

The E.U.T. was tested at the lower and the upper channels.

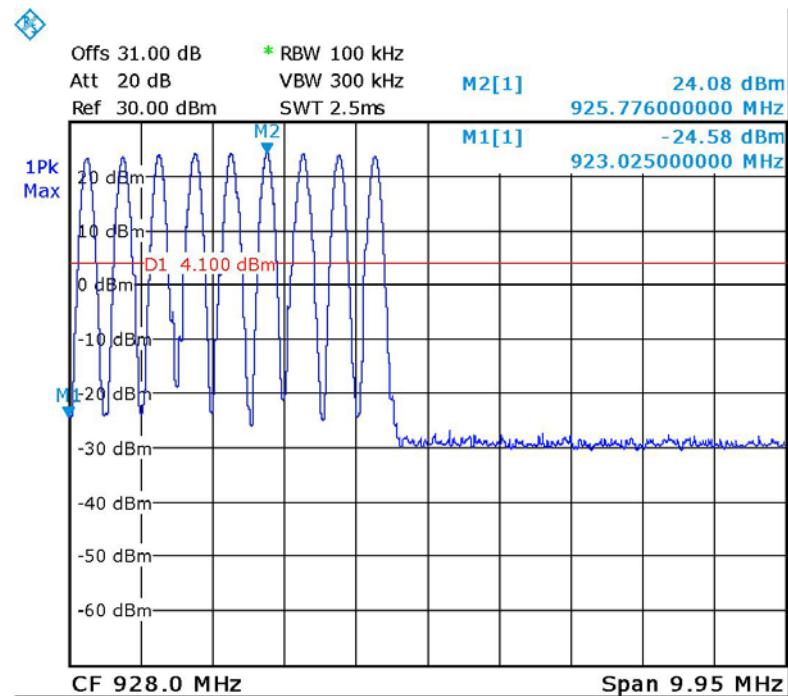
10.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.


10.4 Test Results

Modulation	Mode	Operation Frequency	Band Edge Frequency	Spectrum Level	Limit	Margin
		(MHz)	(MHz)	(dBm)	(dBm)	(dB)
ASK	Hopping	902.75-927.25	902.0	-17.6	3.5	-21.1
			928.0	-28.4	4.1	-32.5
	Non-Hopping	902.75	902.0	-16.3	3.7	-20.0
		927.25	928.0	-14.6	3.5	-18.1

Figure 33 Band Edge Test Results


JUDGEMENT: Passed by 18.1 dB

For additional information see *Figure 34* to *Figure 37*.

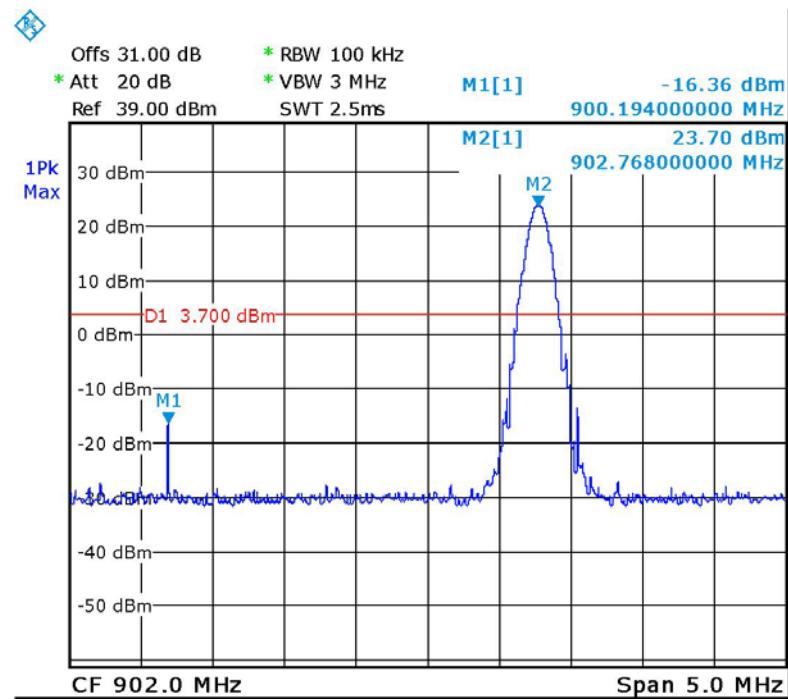

Date: 2.SEP.2019 07:47:02

Figure 34 Hopping, Band Edge - Low

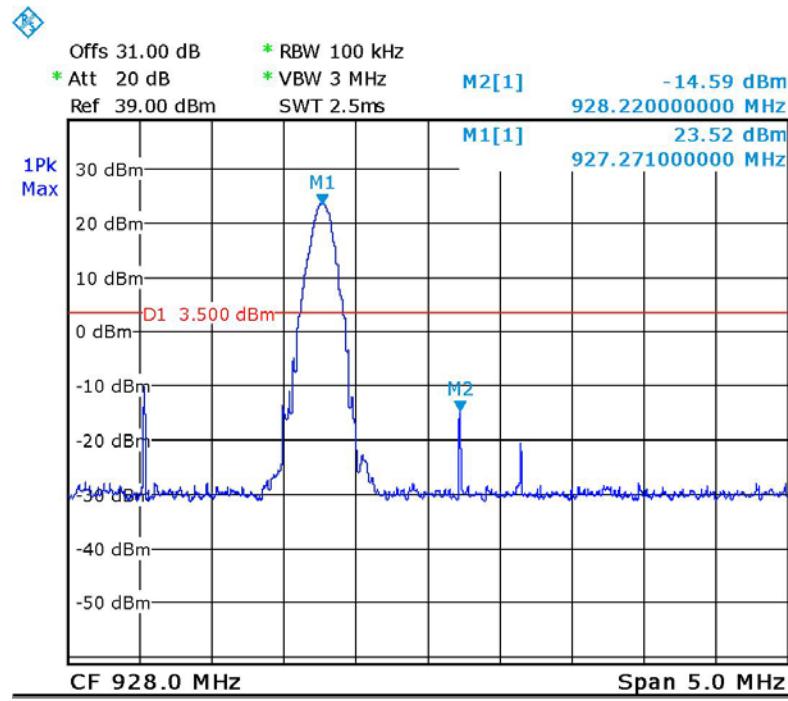

Date: 2.SEP.2019 07:55:56

Figure 35 Hopping, Band Edge - High

Date: 2.SEP.2019 10:16:39

Figure 36 Non-Hopping, Band Edge - Low

Date: 2.SEP.2019 10:18:04

Figure 37 Non-Hopping, Band Edge - High

10.5 **Test Equipment Used, Band Edge**

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSL6	100194	March 24, 2019	March 31, 2020
30dB Attenuator	MCL	BW-S30W5	533	December 24, 2018	December 31, 2019
RF Cable	EIM	705A009301EIM	-	December 24, 2018	December 31, 2019

Figure 38 Test Equipment Used

11. Emissions in Non-Restricted Frequency Bands

11.1 Test Specification

FCC, Part 15, Subpart C, Section 247(d)

11.2 Test Procedure

(Temperature (20°C)/ Humidity (60% RH))

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable.

The frequency range 0.009-10,000.0 MHz was scanned to find other emissions that don't fall in the restricted band.

RBW was set to 100 kHz, detector set to max peak and trace to "max hold". These frequencies were measured using a peak detector.

11.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

11.4 Test Results

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 247 (d) specification.

For additional information see *Figure 39* to *Figure 41*.

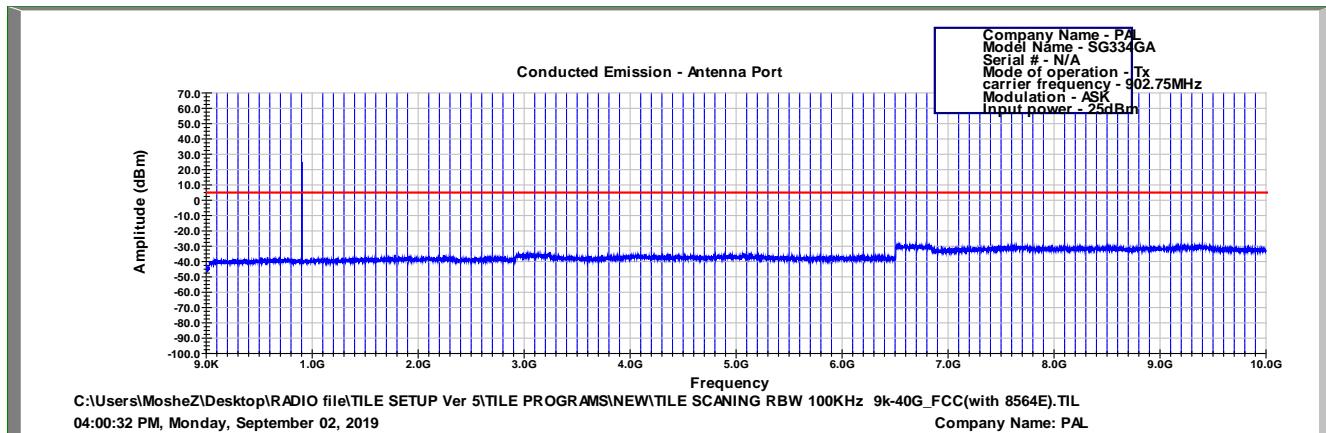


Figure 39 Conducted Spurious Emission – 902.75MHz

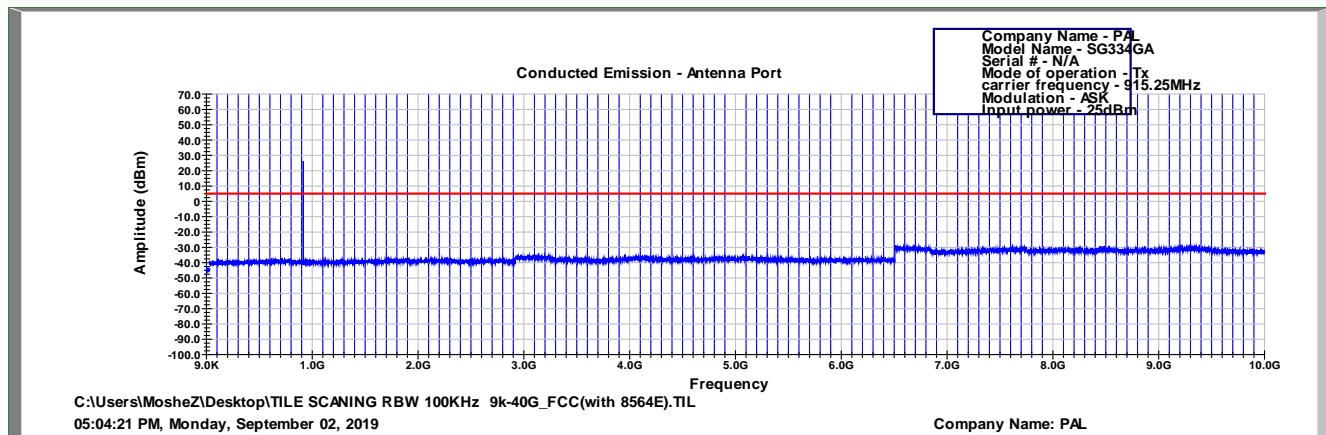


Figure 40 Conducted Spurious Emission – 915.25MHz

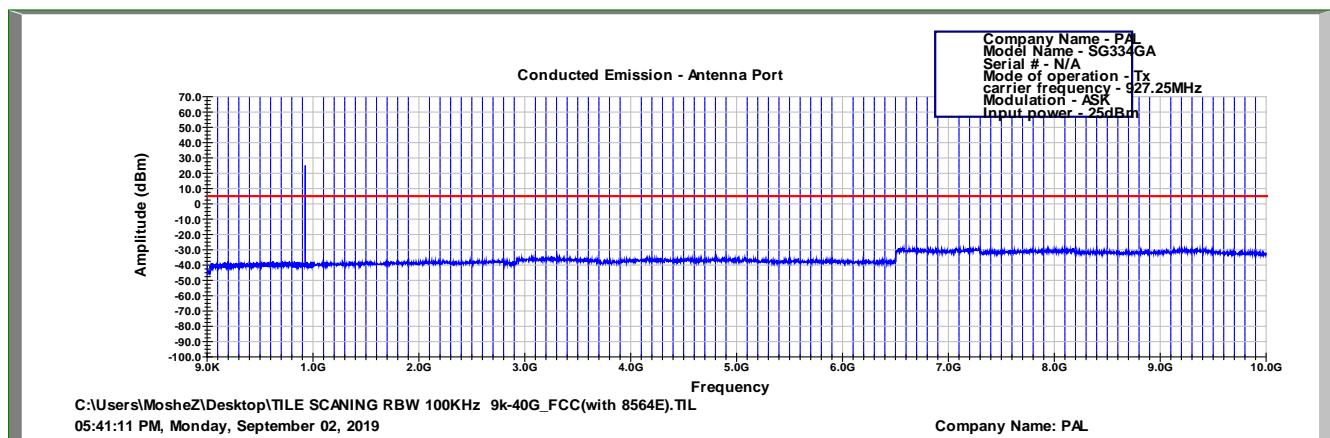


Figure 41 Conducted Spurious Emission – 927.25MHz

11.5 *Test Equipment Used, Emissions in Non-Restricted Frequency Bands*

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
EMC Analyzer	HP	8593 EM	3826A00265	February 26, 2019	February 28, 2020
30dB Attenuator	MCL	BW-S30W5	533	December 24, 2018	December 31, 2019
RF Cable	EIM	705A009301EIM	-	December 24, 2018	December 31, 2019

Figure 42 Test Equipment Used

12. Emissions in Restricted Frequency Bands

12.1 Test Specification

FCC, Part 15, Subpart C, Sections 247(d), 15.205, 15.209

12.2 Test Procedure

(Temperature (20°C)/ Humidity (60%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009MHz-30MHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 0.009MHz-30MHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 30.0MHz-1.0GHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

For measurements between 1.0GHz-10.0GHz:

The E.U.T was tested inside the shielded room at a distance of 3 meters and the E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The frequency range 1.0GHz -10.0GHz was scanned. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The emissions were measured at a distance of 3 meters.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

12.3 Test Limit

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	Field strength* (dB μ V/m)	Field strength* (dB μ V/m)@3m
0.009-0.490	2400/F(kHz)	300	48.5-13.8	128.5-73.8
0.490-1.705	24000/F(kHz)	30	33.8-23.0	73.8-63.0
1.705-30.0	30	30	29.5	69.5
30-88	100	3	40.0	40.0
88-216	150	3	43.5	43.5
216-960	200	3	46.0	46.0
Above 960	500	3	54.0	54.0

*The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

12.4 Test Results

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 209 specification.

For additional information see *Figure 43*.

Radiated Emission

E.U.T Description Smart Gate
Type SG334GA
Serial Number: RD300100275

Specification: FCC, Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d);

Antenna Polarization: Horizontal/Vertical

Frequency Range: 9 kHz to 10.0 GHz

Modulation: ASK

Detector: Peak, Average

Operation Frequency	Freq.	Pol.	Peak Reading	Peak Limit	Peak Margin	Average Reading	Average Limit	Average Margin
(MHz)	(MHz)	(H/V)	(dB μ V/m)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)
902.75	2708.25	V	56.8	74.0	-17.2	39.9	54.0	-14.1
	2708.25	H	57.8	74.0	-16.2	40.9	54.0	-13.1
915.25	2745.75	V	58.0	74.0	-16.0	41.1	54.0	-12.9
	2745.75	H	60.1	74.0	-13.9	43.2	54.0	-10.8
927.25	2781.75	V	59.8	74.0	-14.2	42.9	54.0	-11.1
	2781.75	H	61.9	74.0	-12.1	45.0	54.0	-9.0

Figure 43. Radiated Emission Results

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

“Peak Amp” includes correction factor.

* “Correction Factor” = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

12.5 Test Equipment Used, Emissions in Restricted Frequency Bands

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7	100724	February 27, 2019	February 28, 2019
EMI Receiver	HP	8542E	3906A00276	February 28, 2019	February 28, 2020
RF Filter Section	HP	85420E	3705A00248	February 28, 2019	February 28, 2020
Spectrum Analyzer	HP	8593EM	3536A00120 ADI	February 26, 2019	February 28, 2020
Active Loop Antenna	EMCO	6502	9506-2950	October 19, 2017	October 31, 2019
Biconical Antenna	EMCO	3110B	9912-3337	May 21, 2019	May 31, 2020
Log Periodic Antenna	EMCO	3146	9505-4081	May 31, 2018	May 31, 2020
Horn Antenna	ETS	3115	29845	May 31, 2018	May 31, 2021
MicroWave System Amplifier	HP	83006A	3104A00589	December 24, 2018	December 31, 2019
Low Noise Amplifier 1GHz-18GHz	Miteq	AFSX4-02001800-50-8P	-	December 24, 2018	December 31, 2019
RF Cable Chamber	Commscope ORS	0623 WBC-400	G020132	December 24, 2018	December 31, 2019
RF Cable Oats	EIM	RG214-11N(X2)		May 26, 2019	May 31. 2020
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR
Antenna Mast	ETS	2070-2	9608-1497	NCR	NCR
Turntable	ETS	2087	-	NCR	NCR
Mast & Table Controller	ETS/EMCO	2090	9608-1456	NCR	NCR

Figure 44 Test Equipment Used

13. Avg. Factor Calculation

1. Pulse period = 1 (worst scenario)
2. Pulse duration = 1 (worst scenario)
3. Burst duration = 14.2msec
4. Average Factor = $20 \log \left[\frac{\text{Pulse duration}}{\text{Pulse period}} \times \frac{\text{burst duration}}{100\text{msec}} \times \text{Num of burst within 100msec} \right]$
5. Average factor = -16.9dB

Figure 45. Burst Duration

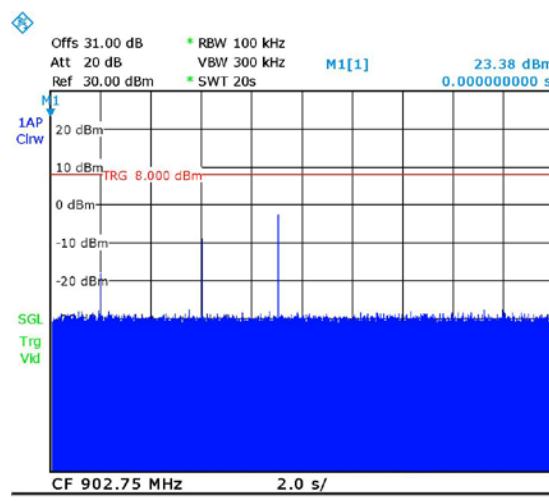


Figure 46. Number of Bursts in 100msec=1

13.1 *Test Equipment Used, Average Factor*

Instrument	Manufacturer	Model	Serial Number	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	Rodhe & Schwarz	FSL6	100194	March 24, 2019	March 31, 2020

Figure 47 Test Equipment Used

14. Antenna Gain/Information

Dual RHCP+LHCP Reader Antenna

Max antenna gain 8.57dBi

15. R.F Exposure/Safety

The typical placement of the E.U.T. is on a parking garage gate. The typical distance between the E.U.T. and the user is at least 20cm.

Calculation of Maximum Permissible Exposure (MPE)

Based on 47CFR1 Section 1.1307(b)(1) Requirements

(a) FCC Limit at 915.25 MHz is: $f/1500 = 0.61 \text{ mW/cm}^2$

Using Table 1 of 47CFR1 Section 1.1310 limit for general population/uncontrolled exposures, the above levels are an average over 30 minutes.

(b) The power density produced by the E.U.T. is:

$$S = \frac{P_t G_t}{4\pi R^2}$$

P_t = Calculated Transmitted Power 24.7dBm = 295.12 mW

G_t = Antenna Gain 8.57Bi = 7.19 numeric

R = Distance From Transmitter 20 cm

(c) The peak power density produced by the E.U.T. is:

$$(295.12 \times 7.19) / (4)(\pi)(20^2) = 0.42 \text{ mW/cm}^2$$

(d) This is below the FCC limit.

16. APPENDIX A - CORRECTION FACTORS

16.1 Correction factors for RF OATS Cable 35m

ITL #1911

Frequency (MHz)	loss (dB)
30.0	1.3
50.0	1.7
100.0	2.6
200.0	3.7
300.0	4.7
400.0	5.5
500.0	6.3
600.0	7.0
700.0	7.6
800.0	8.4
900.0	9.0
1000.0	9.6

16.2 Correction Factors for RF Cable for Anechoic Chamber
ITL #1840

FREQ (MHz)	LOSS (dB)
1000.0	1.5
2000.0	2.1
3000.0	2.7
4000.0	3.1
5000.0	3.5
6000.0	4.1
7000.0	4.6
8000.0	4.9
9000.0	5.7
10000.0	5.7
11000.0	6.1
12000.0	6.1
13000.0	6.2
14000.0	6.7
15000.0	7.4
16000.0	7.5
17000.0	7.9
18000.0	8.1
19000.0	8.8
20000.0	9.1

NOTES:

1. The cable is manufactured by Commscope
2. The cable type is 0623 WBC-400, serial # G020132 and 10m long

16.3 Correction Factors for Active Loop Antenna
ITL # 1075

F(MHz)	AF(dB/m)
0.01	18.4
0.02	14.3
0.03	13.3
0.05	11.7
0.1	11.4
0.2	11.2
0.3	11.2
0.5	11.2
0.7	11.2
1	11.4
2	11.5
3	11.5
4	11.4
5	11.3
6	11.1
7	11.1
8	11.1
9	11
10	11
20	10
30	8

16.4 Correction Factors for Biconical Antenna
ITL #1356, EMCO 3110B 9912-3337

Frequency [MHz]	AF [dB/m]
30	13.00
35	10.89
40	10.59
45	10.63
50	10.12
60	9.26
70	7.74
80	6.63
90	8.23
100	11.12
120	13.16
140	13.07
160	14.80
180	16.95
200	17.17

16.5 Correction Factors for Log Periodic Antenna
ITL # 1349, EMCO 3146 s/n 9505-4081

Frequency [MHz]	AF [dB/m]
200	11.58
250	12.04
300	14.76
400	15.55
500	17.85
600	18.66
700	20.87
800	21.15
900	22.32
1000	24.22

**16.6 Correction Factors for Double – Ridged Waveguide Horn
Antenna - 3m range**

ITL # 1352, ETS 3115 s/n 29845

FREQUENCY (GHz)	AFE (dB/m)	FREQUENCY (GHz)	AFE (dB/m)
0.75	25.0	9.5	38.0
1.0	23.5	10.0	38.5
1.5	26.0	10.5	38.5
2.0	29.0	11.0	38.5
2.5	27.5	11.5	38.5
3.0	30.0	12.0	38.0
3.5	31.5	12.5	38.5
4.0	32.5	13.0	40.0
4.5	32.5	13.5	41.0
5.0	33.0	14.0	40.0
5.5	35.0	14.5	39.0
6.0	36.5	15.0	38.0
6.5	36.5	15.5	37.5
7.0	37.5	16.0	37.5
7.5	37.5	16.5	39.0
8.0	37.5	17.0	40.0
8.5	38.0	17.5	42.0
9.0	37.5	18.0	42.5