

TEST REPORT

Product : Lingolet ONE
Trade mark : Lingolet ONE
Model/Type reference : ONE Mini, Lingolet ONE
Serial Number : N/A
Report Number : EED32L00279902
FCC ID : 2AU91CSYLW1199
Date of Issue : Jan. 03, 2020
Test Standards : 47 CFR Part 15Subpart C
Test result : PASS

Prepared for:

IOL (WUHAN) INFORMATION TECHNOLOGY CO., LTD
Room1302, 13F, Bldg.B2, Future City, No.999 Gaoxin Ave., Wuhan

Prepared by:

Centre Testing International Group Co., Ltd.
Hongwei Industrial Zone, Bao'an 70 District,
Shenzhen, Guangdong, China
TEL: +86-755-3368 3668
FAX: +86-755-3368 3385

Compiled by:

Sunlight Sun

Reviewed by:

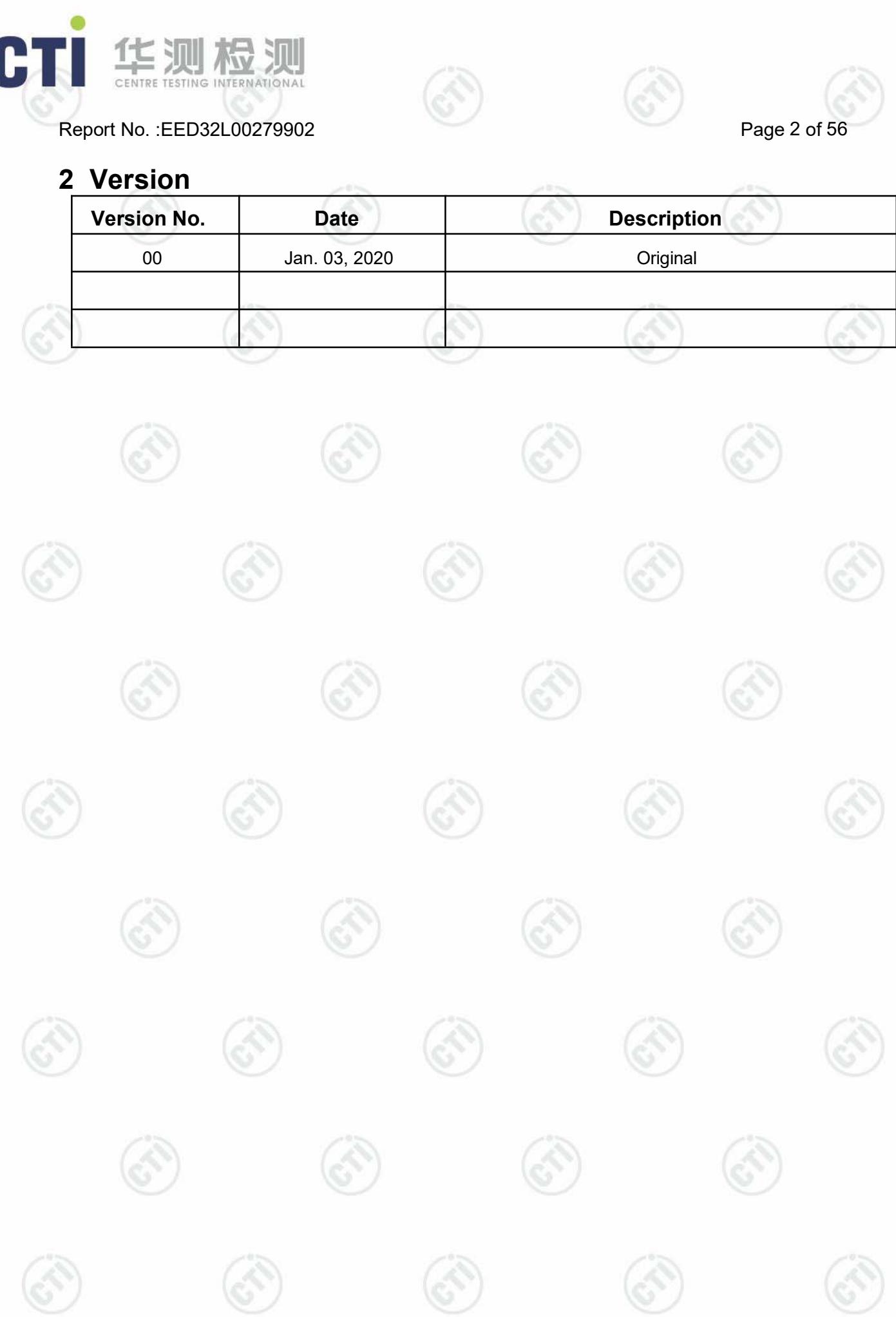
Ware Xin

Approved by:

Sam Chuang

Sam Chuang

Date:


Jan. 03, 2020

Check No.:3096304849

2 Version

Version No.	Date	Description
00	Jan. 03, 2020	Original

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

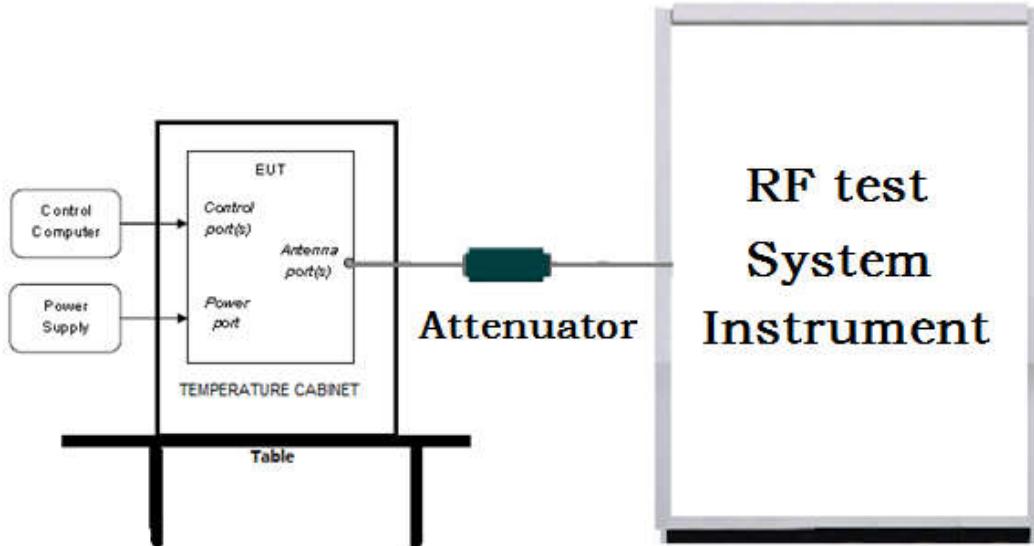
The tested sample(s) and the sample information are provided by the client.

Model No.: ONE Mini, Lingolet ONE

We hereby declare the following products : Lingolet ONE comes in two models

Main test model: ONE Mini, sales region: Europe, South Korea and America, four colors (red, black, silver and green) are the same model, no other differences.

Additional model: Lingolet ONE. Sales region: Europe, Korea and America, four colors (red, black, silver and green) are the same model, the difference between the two models above is only in color, model are differences.


4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	4
5 TEST REQUIREMENT	5
5.1 TEST SETUP.....	5
5.1.1 For Conducted test setup.....	5
5.1.2 For Radiated Emissions test setup.....	5
5.1.3 For Conducted Emissions test setup.....	6
5.2 TEST ENVIRONMENT.....	6
5.3 TEST CONDITION.....	6
6 GENERAL INFORMATION	7
6.1 CLIENT INFORMATION.....	7
6.2 GENERAL DESCRIPTION OF EUT.....	7
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.....	8
6.4 DESCRIPTION OF SUPPORT UNITS.....	9
6.5 TEST LOCATION.....	9
6.6 DEVIATION FROM STANDARDS.....	9
6.7 ABNORMALITIES FROM STANDARD CONDITIONS.....	9
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER.....	9
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).....	10
7 EQUIPMENT LIST	11
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	16
Appendix A): 6dB Occupied Bandwidth.....	18
Appendix B): Conducted Peak Output Power.....	22
Appendix C): Band-edge for RF Conducted Emissions.....	25
Appendix D): RF Conducted Spurious Emissions.....	28
Appendix E): Power Spectral Density.....	33
Appendix F): Antenna Requirement.....	36
Appendix G): AC Power Line Conducted Emission.....	37
Appendix H): Restricted bands around fundamental frequency (Radiated).....	40
Appendix I) Radiated Spurious Emissions.....	49
PHOTOGRAPHS OF TEST SETUP	53
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	56

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

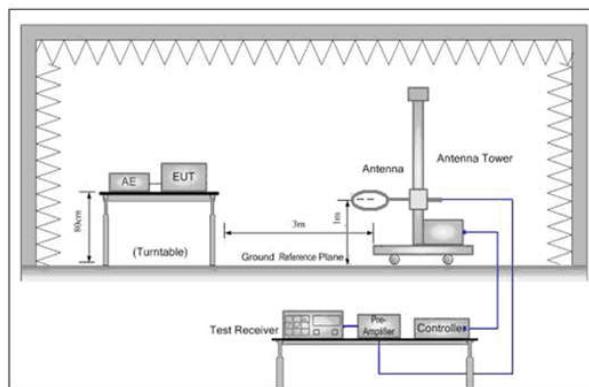


Figure 1. Below 30MHz

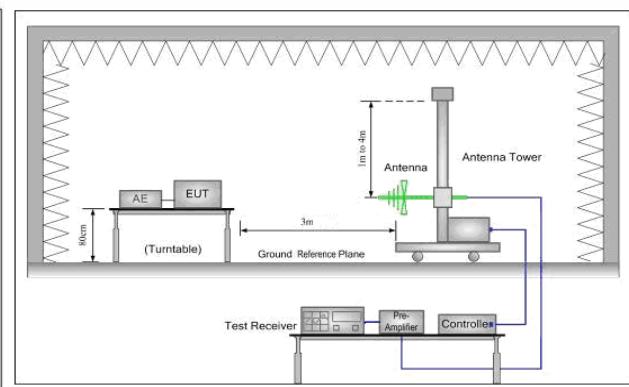


Figure 2. 30MHz to 1GHz

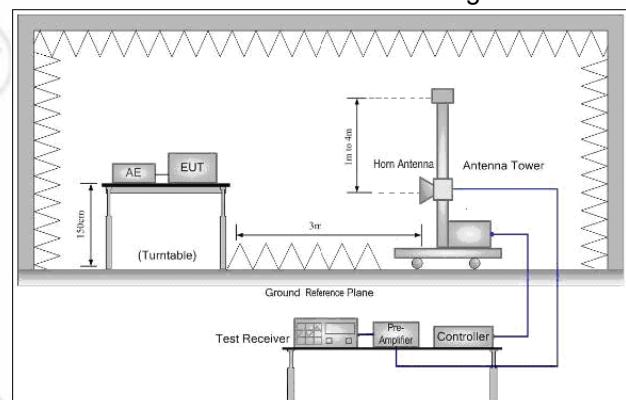
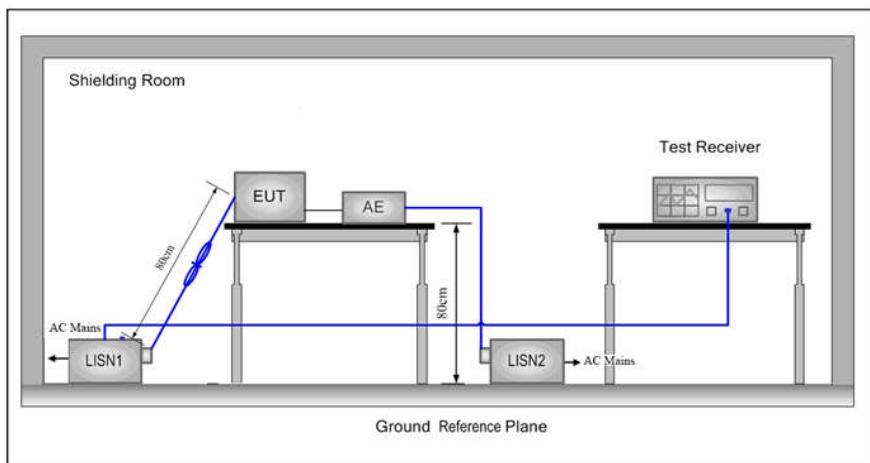



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:

Temperature:	24.0 °C
Humidity:	55% RH
Atmospheric Pressure:	1010mbar

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel		
		Low(L)	Middle(M)	High(H)
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40
		2402MHz	2440MHz	2480MHz
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

6 General Information

6.1 Client Information

Applicant:	IOL (WUHAN) INFORMATION TECHNOLOGY CO., LTD
Address of Applicant:	Room1302,13F, Bldg.B2, Future City, No.999 Gaoxin Ave., Wuhan
Manufacturer:	IOL (WUHAN) INFORMATION TECHNOLOGY CO., LTD
Address of Manufacturer:	Room1302,13F, Bldg.B2, Future City, No.999 Gaoxin Ave., Wuhan
Factory:	IOL (WUHAN) INFORMATION TECHNOLOGY CO., LTD
Address of Factory:	Room1302,13F, Bldg.B2, Future City, No.999 Gaoxin Ave., Wuhan

6.2 General Description of EUT

Product Name:	Lingolet ONE	
Model No.(EUT):	ONE Mini, Lingolet ONE	
Test Model No.:	ONE Mini	
Trade mark:	Lingolet ONE	
EUT Supports Radios application:	BT 5.0 Dual mode, 2402MHz to 2480MHz	
Power Supply:	Battery	XC--351525,3.7V,100mAh
Sample Received Date:	Sep. 29, 2019	
Sample tested Date:	Sep. 29, 2019 to Nov. 18, 2019	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	5.0 (BLE)
Modulation Technique:	DSSS
Modulation Type:	GFSK
Number of Channel:	40
Test Power Grade:	Tx power LCH: 50 MCH: 45 HCH: 45
Test Software of EUT:	Airoha AB152x (verC) LAB TestTool-Version 2.1.0.11688
Antenna Type and Gain:	Ceramic Antenna, 2.64 dbi
Test Voltage:	DC 3.7V

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9×10^{-8}
2	RF power, conducted	0.46dB (30MHz-1GHz)
		0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
		4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
		3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

RF test system					
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-29-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-002	---	01-09-2019	01-08-2020
High-pass filter	MICRO-TRONICS	SPA-F-63029-4	---	01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d	---	03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2	---	03-01-2019	02-29-2020
Temperature/Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020

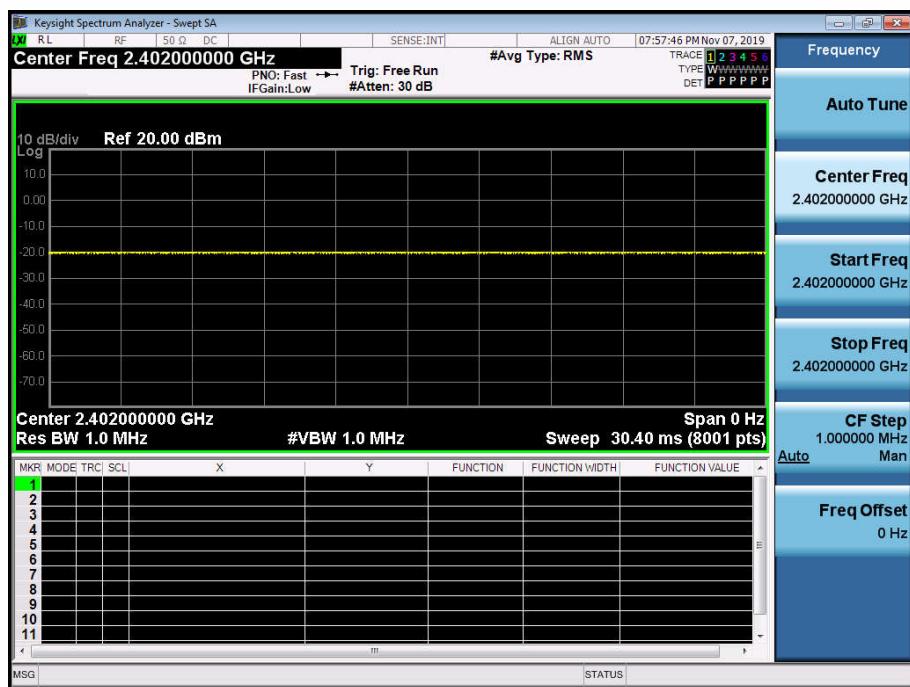
Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020
Temperature/ Humidity Indicator	Defu	TH128	/	06-14-2019	06-13-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2022
Communication test set	R&S	CMW500	152394	03-01-2019	02-29-2020
LISN	R&S	ENV216	100098	05-08-2019	05-07-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-07-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-12-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-19-2020
ISN	TESEQ	ISN T800	30297	01-16-2019	01-15-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020

3M Semi/full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	---	05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-11-2020
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-24-2021
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-04-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 2	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-27-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020
Receiver	R&S	ESCI7	100938-003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	---	01-09-2019	01-08-2020
LISN	Schwarzbeck	NNBM8125	81251547	05-08-2019	05-07-2020
LISN	Schwarzbeck	NNBM8125	81251548	05-08-2019	05-07-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-29-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2022
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12-0398-002	---	01-09-2019	01-08-2020
High-pass filter	MICRO-TRONICS	SPA-F-63029-4	---	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395-001	---	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393-001	---	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396-002	---	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394-001	---	01-09-2019	01-08-2020

3M full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-24-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-24-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-24-2021
Horn Antenna	ETS-LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	Agilent	8449B	3008A02425	07-12-2019	07-11-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-29-2020
Fully Anechoic Chamber	TDK	FAC-3	---	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2019	01-08-2020

3M full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-24-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-24-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-24-2021
Horn Antenna	ETS-LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	Agilent	8449B	3008A02425	07-12-2019	07-11-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-29-2020
Fully Anechoic Chamber	TDK	FAC-3	---	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2019	01-08-2020

8 Radio Technical Requirements Specification


Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Duty Cycle			
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BLE	1.0000	1.0000	100.00%

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

Limit	Shall be at least 500kHz
-------	--------------------------

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 15.247 Meas Guidance v05r02, section 8.2

1. The EUT RF output connected to the spectrum analyzer by RF cable.
2. Setting maximum power transmit of EUT
3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup



Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.7208	1.0666	PASS
BLE	MCH	0.7190	1.0667	PASS
BLE	HCH	0.7162	1.0679	PASS

Test Graphs

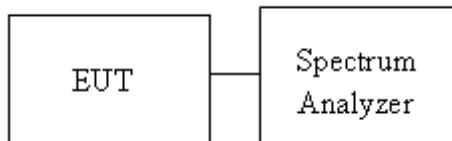
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

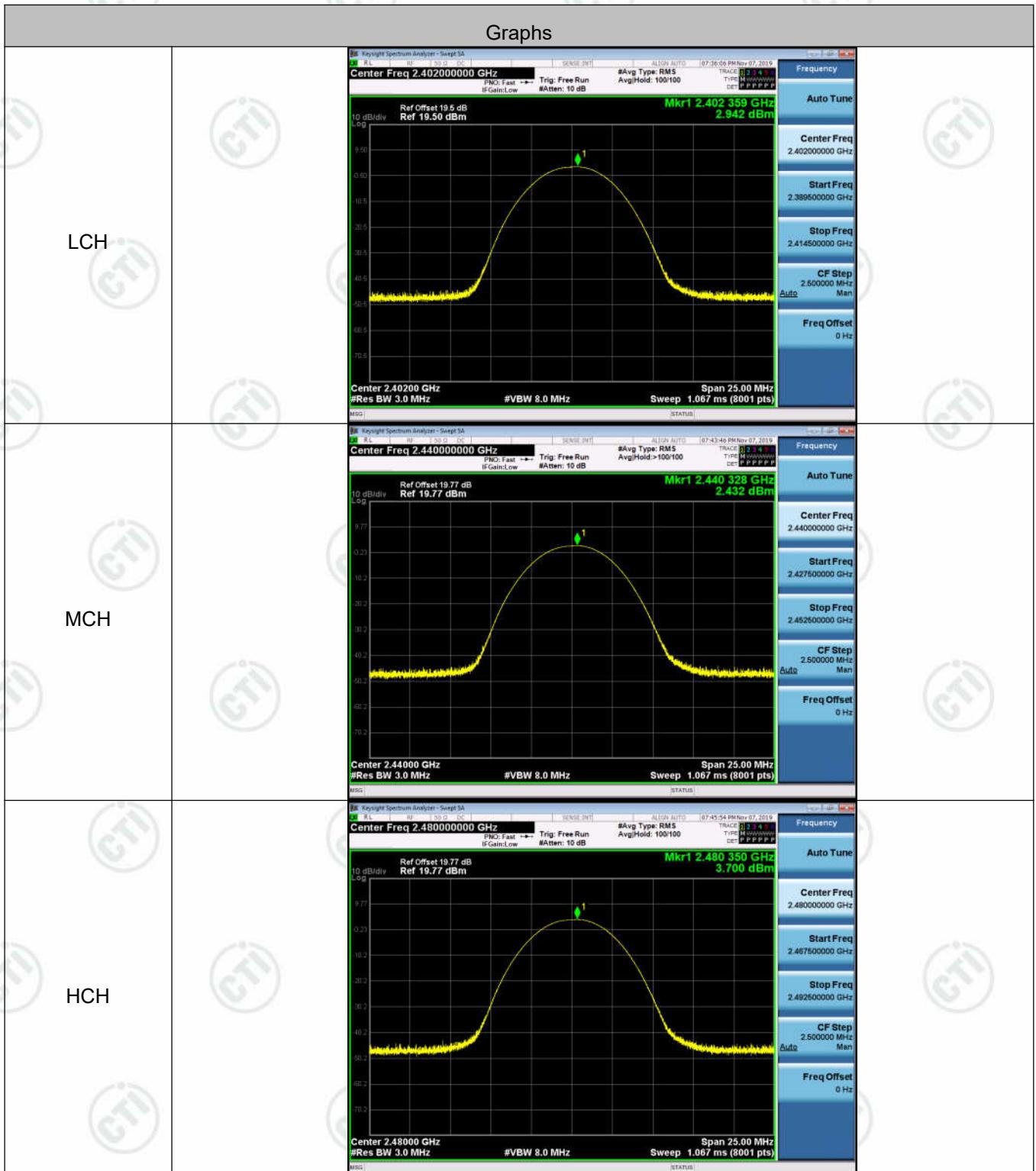
For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt (30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


Limit	<input checked="" type="checkbox"/> Antenna not exceed 6 dBi: 30dBm <input type="checkbox"/> Antenna with DG greater than 6 dBi $[\text{Limit} = 30 - (\text{DG} - 6)]$ <input type="checkbox"/> Point-to-point operation
-------	--

Test Procedure

Test method Refer as KDB 558074 D01 15.247 Meas Guidance v05r02, section 8.3.1.1

1. The EUT RF output connected to the power meter by RF cable.
2. Setting maximum power transmit of EUT.
3. The path loss was compensated to the results for each measurement.
4. Measure and record the result of Peak output power and Average output power in the test report.


Test Setup

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.942	PASS
BLE	MCH	2.432	PASS
BLE	HCH	3.7	PASS

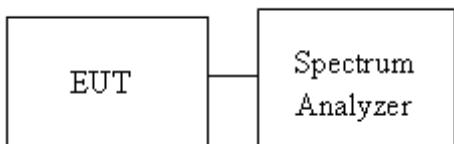
Test Graphs

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,


Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 15.247 Meas Guidance v05r02, Section 8.7.3.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


Test Setup

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	1.879	-60.064	-18.12	PASS
BLE	HCH	2.466	-48.237	-17.53	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

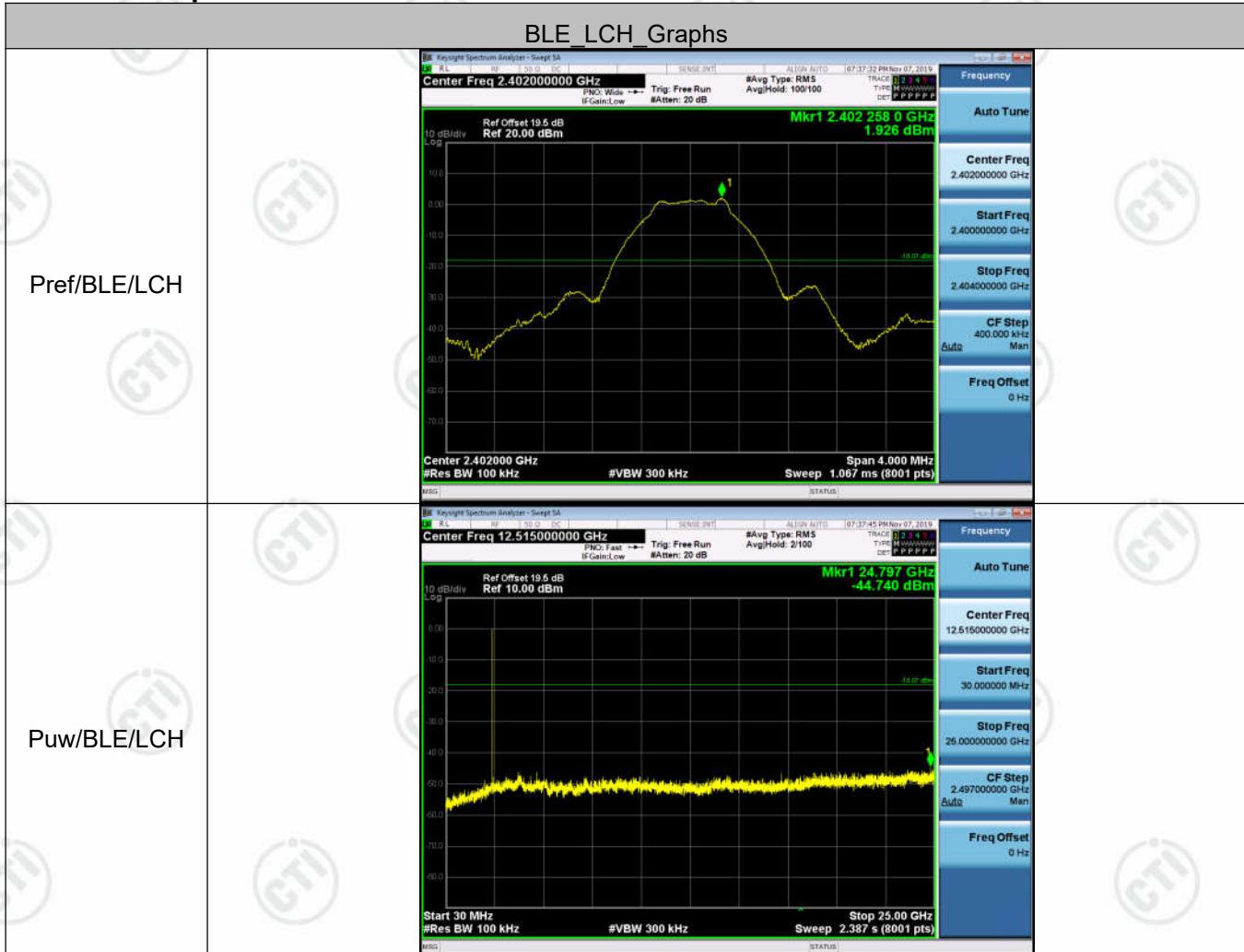
In any 100 kHz bandwidth outside the authorized frequency band,

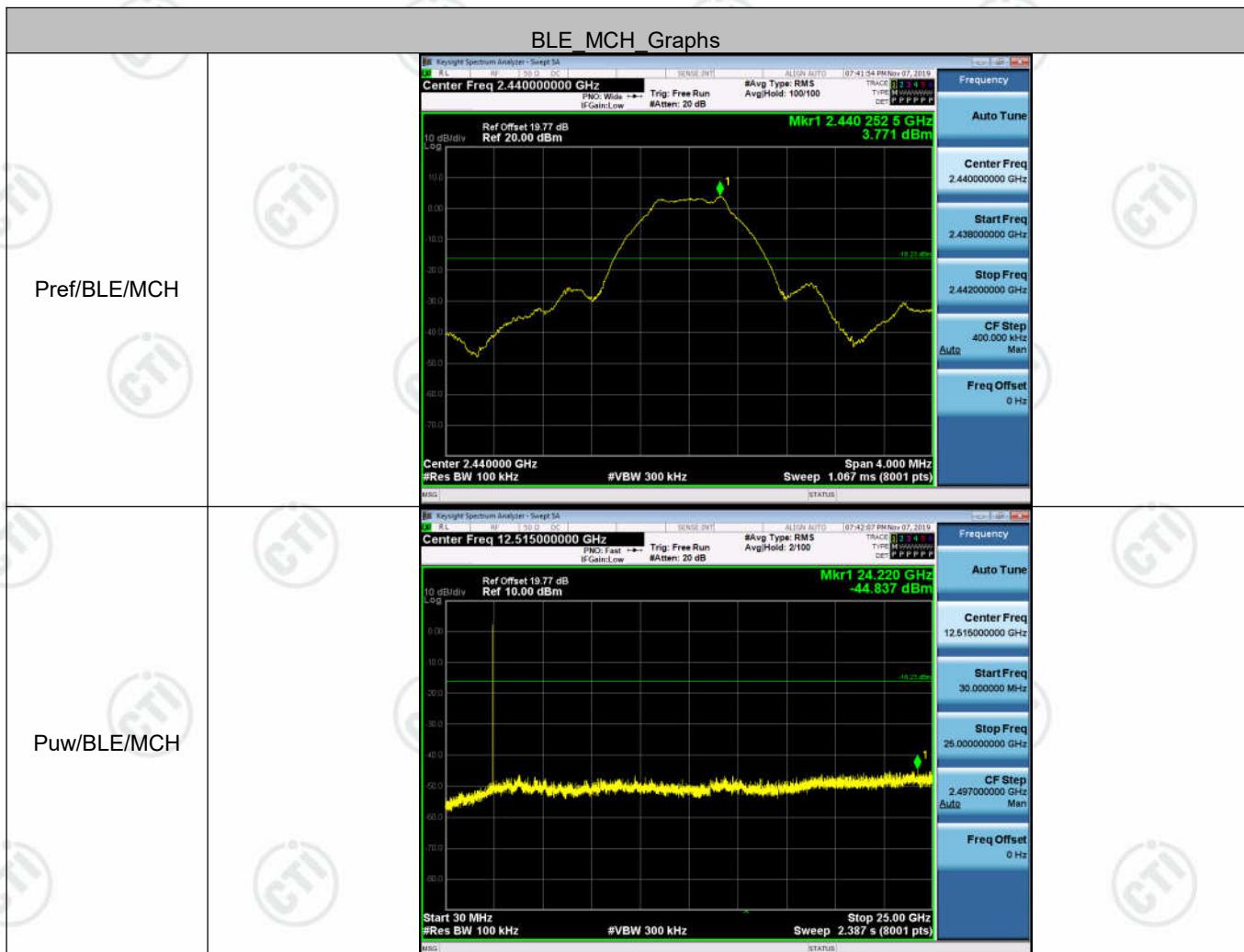
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

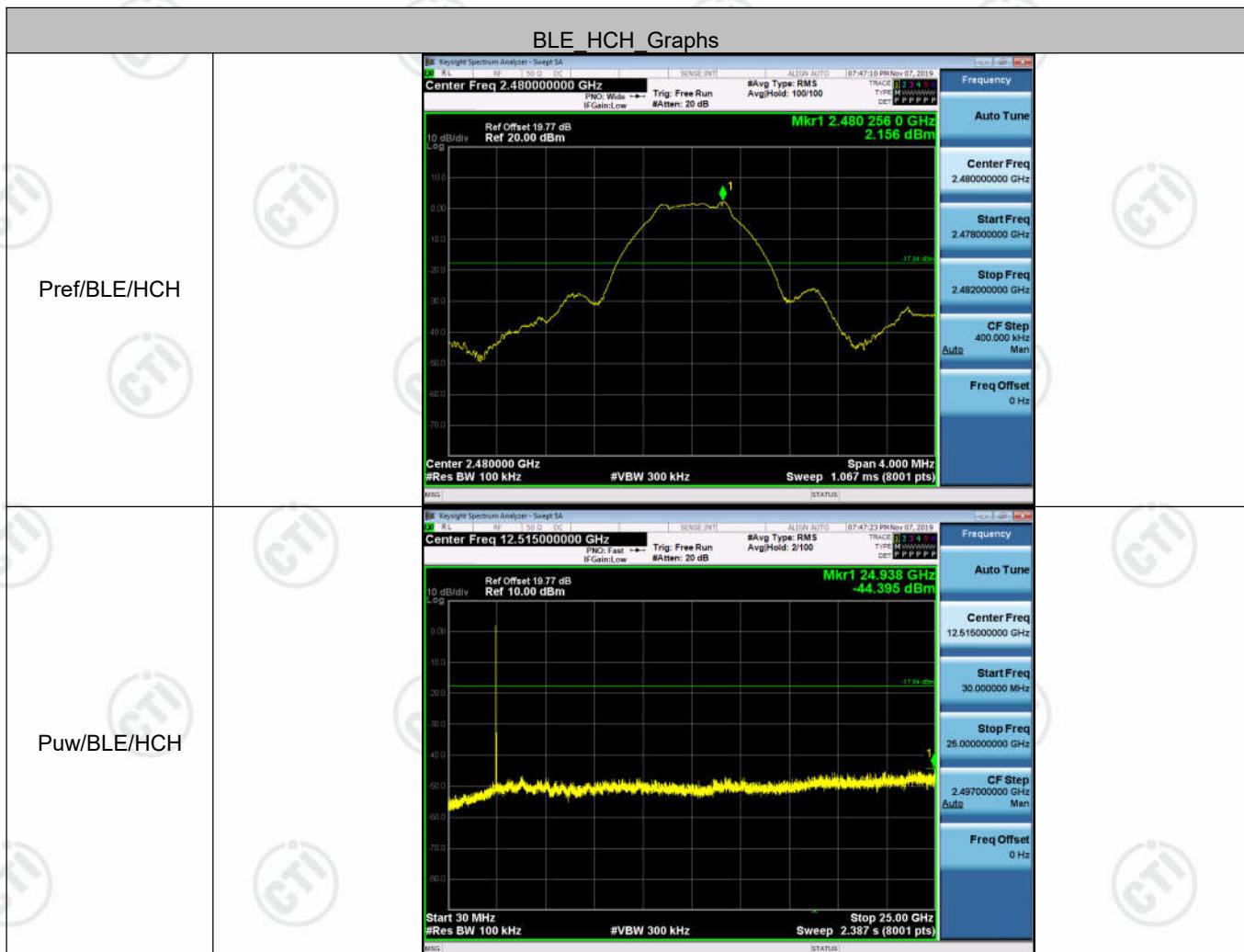
Test Procedure

Test method Refer as KDB 558074 D01 15.247 Meas Guidance v05r02, Section 8.5.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


Test Setup




Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	1.926	<Limit	PASS
BLE	MCH	3.771	<Limit	PASS
BLE	HCH	2.156	<Limit	PASS

Test Graphs

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

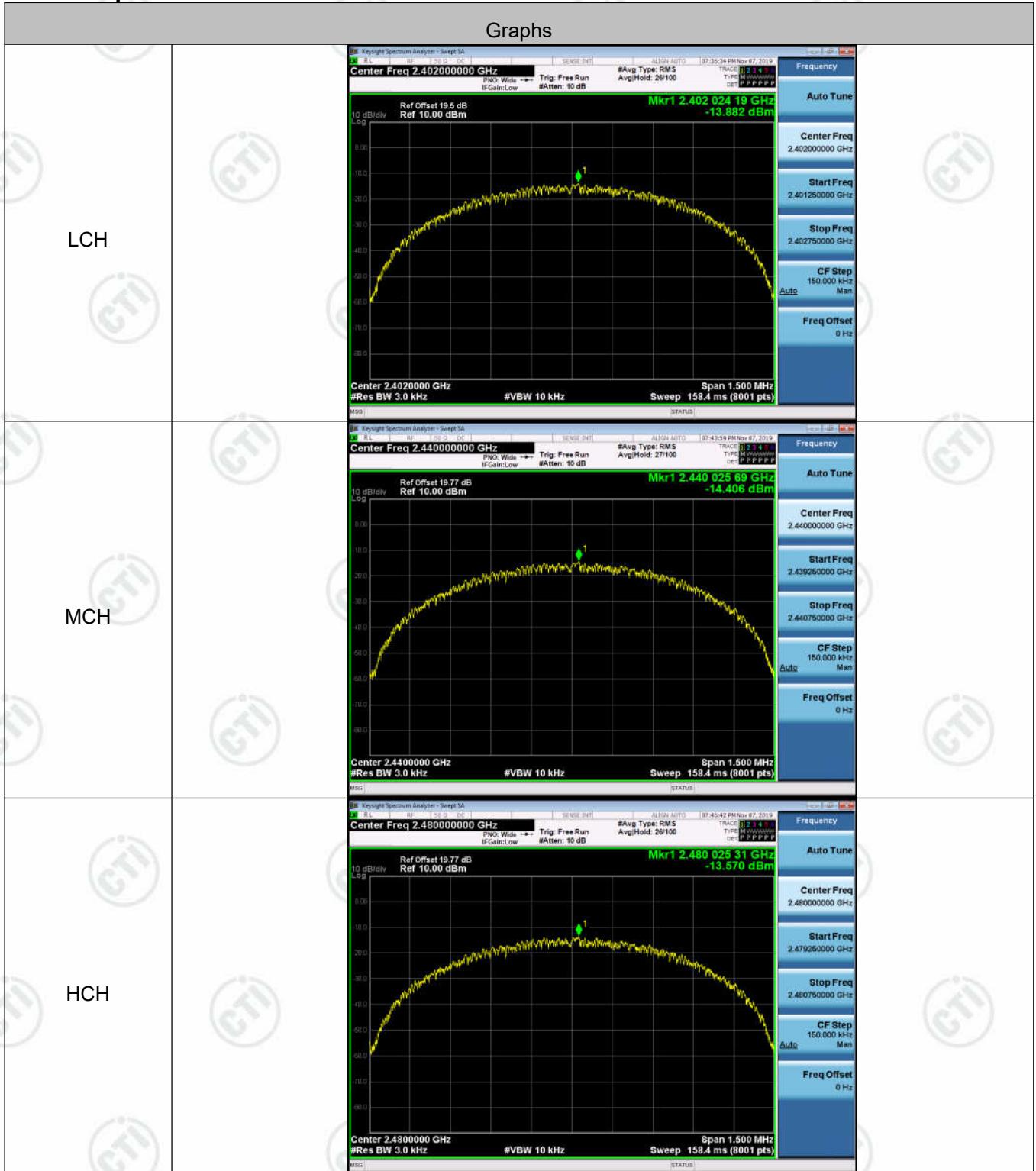
Limit	<input checked="" type="checkbox"/> Antenna not exceed 6 dBi: 8dBm <input type="checkbox"/> Antenna with DG greater than 6 dBi [Limit = 8 – (DG – 6)] <input type="checkbox"/> Point-to-point operation:
-------	---

Test Procedure

Test method Refer as KDB 558074 D01 15.247 Meas Guidance v05r02, Section 8.4

1. The EUT RF output connected to the spectrum analyzer by RF cable.
2. Setting maximum power transmit of EUT
3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
5. Mark the maximum level.

Measure and record the result of power spectral density in the test report.

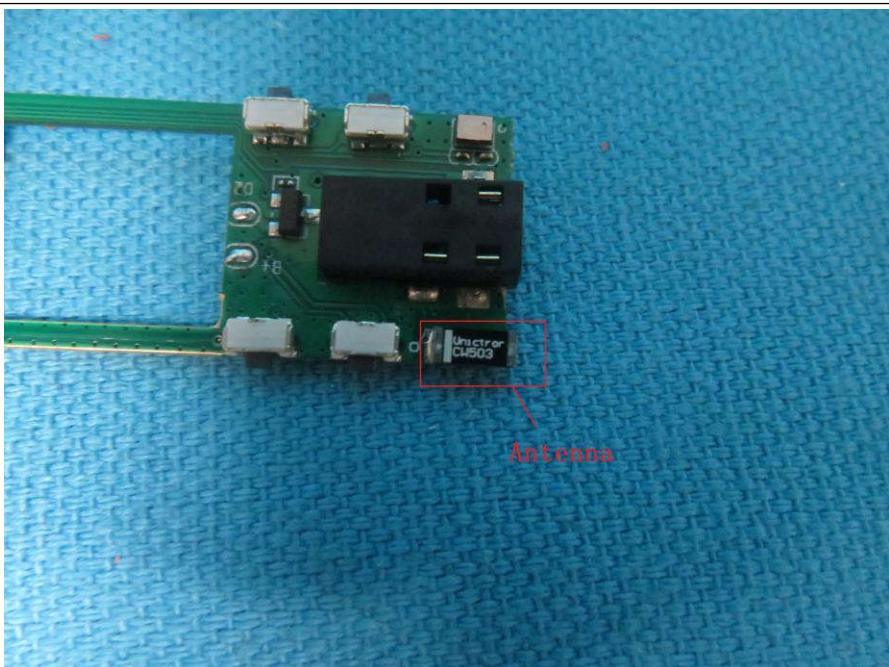

Test Setup

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-13.882	PASS
BLE	MCH	-14.406	PASS
BLE	HCH	-13.570	PASS

Test Graphs

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

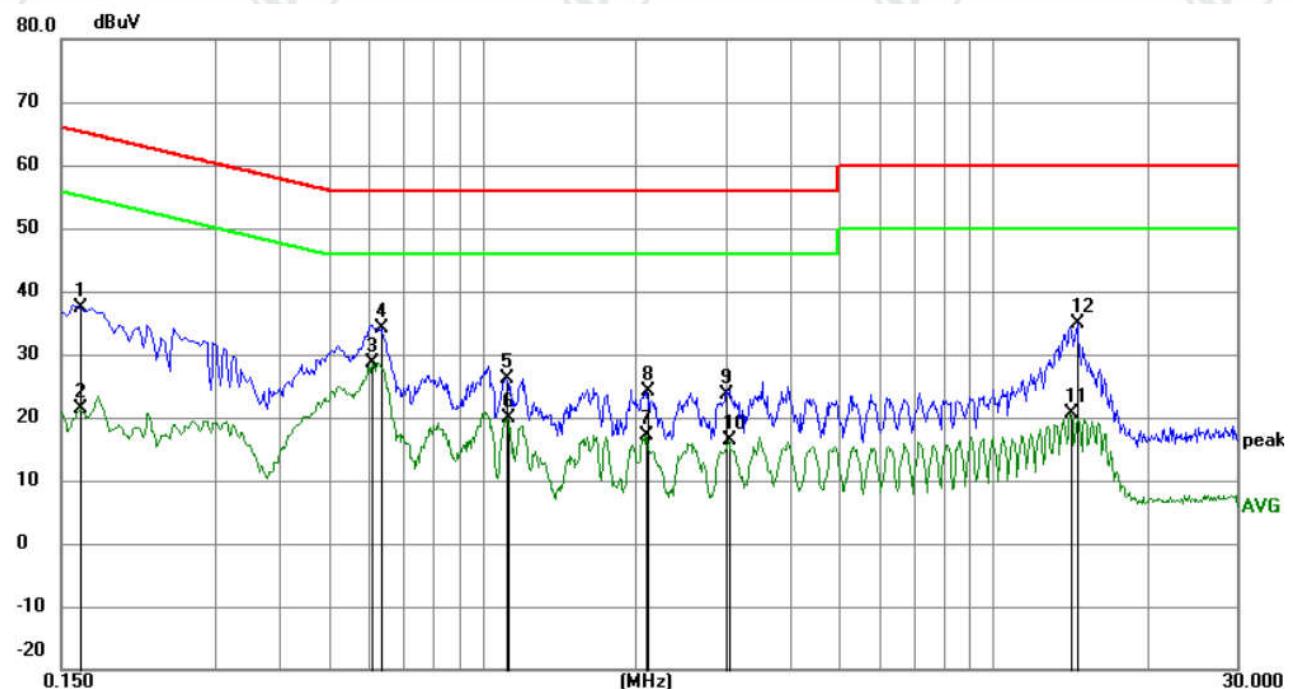
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.64 dBi.

Appendix G): AC Power Line Conducted Emission

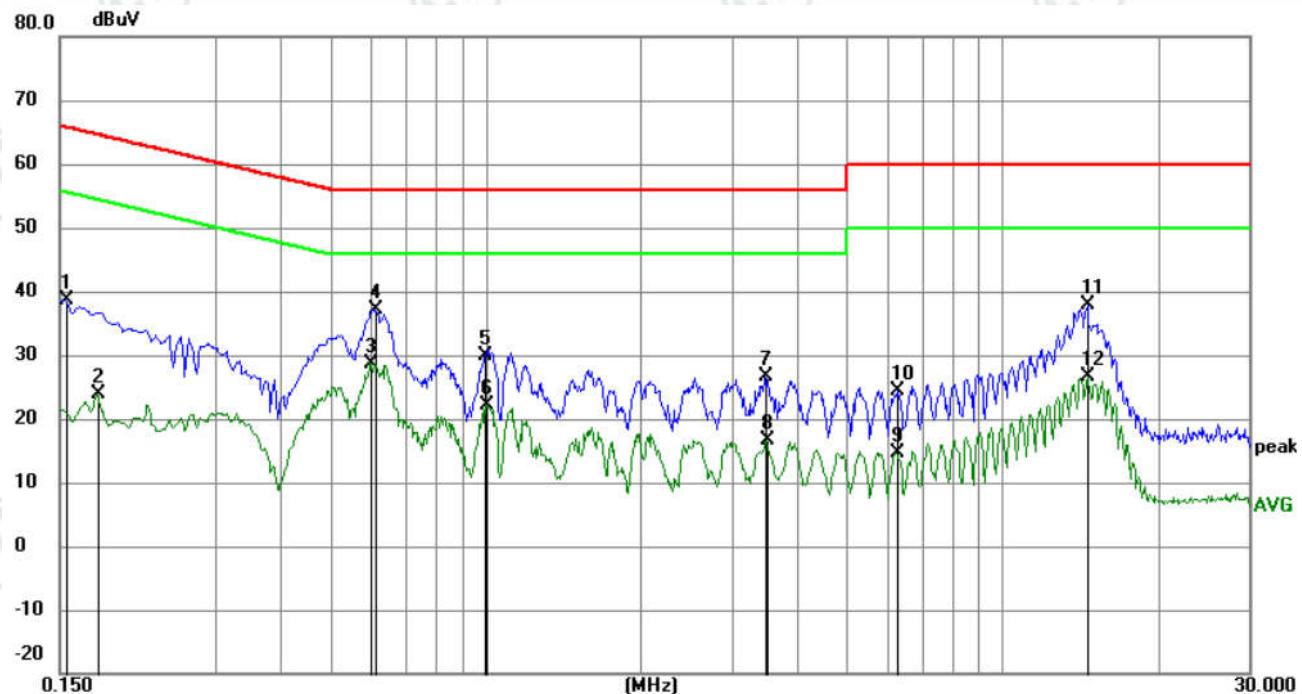
Test Procedure:	<p>Test frequency range :150KHz-30MHz</p> <ol style="list-style-type: none"> 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. 																
Limit:	<table border="1"> <thead> <tr> <th rowspan="2">Frequency range (MHz)</th> <th colspan="2">Limit (dBμV)</th> </tr> <tr> <th>Quasi-peak</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15-0.5</td> <td>66 to 56*</td> <td>56 to 46*</td> </tr> <tr> <td>0.5-5</td> <td>56</td> <td>46</td> </tr> <tr> <td>5-30</td> <td>60</td> <td>50</td> </tr> </tbody> </table> <p>* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.</p> <p>NOTE: The lower limit is applicable at the transition frequency</p>			Frequency range (MHz)	Limit (dB μ V)		Quasi-peak	Average	0.15-0.5	66 to 56*	56 to 46*	0.5-5	56	46	5-30	60	50
Frequency range (MHz)	Limit (dB μ V)																
	Quasi-peak	Average															
0.15-0.5	66 to 56*	56 to 46*															
0.5-5	56	46															
5-30	60	50															

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product : Lingolet ONE
Temperature : 24°C


Model/Type reference : ONE Mini
Humidity : 52%

Live line:

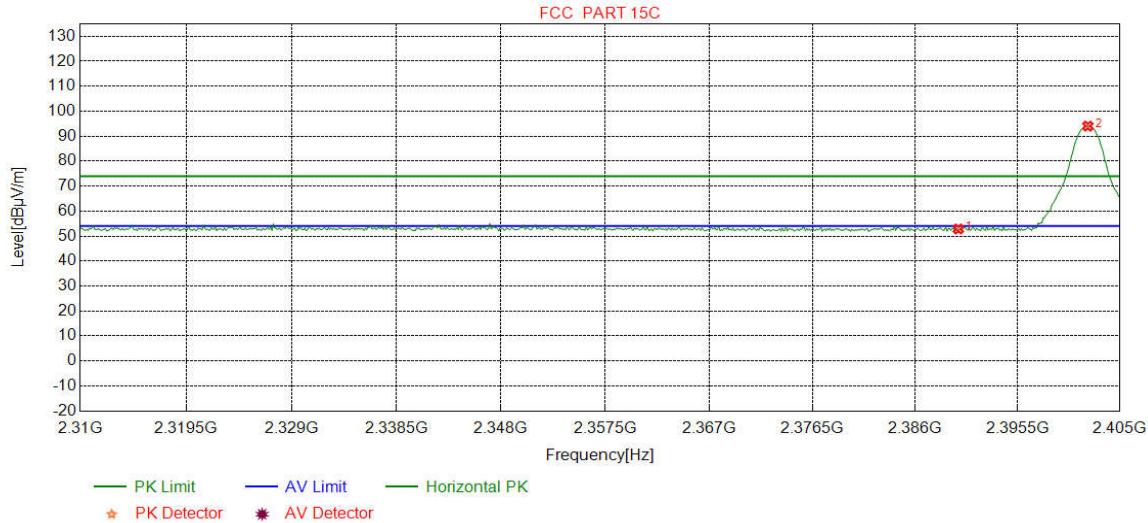
No.	Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBuV	Margin dB	Detector	Comment
1		0.1635	27.46	9.99	37.45	65.28	-27.83	QP	
2		0.1635	11.44	9.99	21.43	55.28	-33.85	AVG	
3	*	0.6090	18.59	10.08	28.67	46.00	-17.33	AVG	
4		0.6360	24.19	9.95	34.14	56.00	-21.86	QP	
5		1.1130	16.30	9.90	26.20	56.00	-29.80	QP	
6		1.1220	10.04	9.90	19.94	46.00	-26.06	AVG	
7		2.0895	7.35	9.83	17.18	46.00	-28.82	AVG	
8		2.1030	14.28	9.83	24.11	56.00	-31.89	QP	
9		2.9985	13.76	9.83	23.59	56.00	-32.41	QP	
10		3.0390	6.60	9.83	16.43	46.00	-29.57	AVG	
11		14.1630	10.72	9.98	20.70	50.00	-29.30	AVG	
12		14.6580	24.98	9.98	34.96	60.00	-25.04	QP	

Neutral line:

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Detector	Comment
			Level	Factor	ment				
1		0.1545	28.75	9.98	38.73	65.75	-27.02	QP	
2		0.1770	13.95	10.00	23.95	54.63	-30.68	AVG	
3 *		0.6000	18.63	10.12	28.75	46.00	-17.25	AVG	
4		0.6134	27.18	10.06	37.24	56.00	-18.76	QP	
5		0.9960	19.90	9.91	29.81	56.00	-26.19	QP	
6		1.0005	12.10	9.91	22.01	46.00	-23.99	AVG	
7		3.4845	16.83	9.83	26.66	56.00	-29.34	QP	
8		3.4980	6.81	9.83	16.64	46.00	-29.36	AVG	
9		6.2430	4.81	9.84	14.65	50.00	-35.35	AVG	
10		6.2700	14.56	9.84	24.40	60.00	-35.60	QP	
11		14.6580	27.79	9.98	37.77	60.00	-22.23	QP	
12		14.6580	16.74	9.98	26.72	50.00	-23.28	AVG	

Notes:

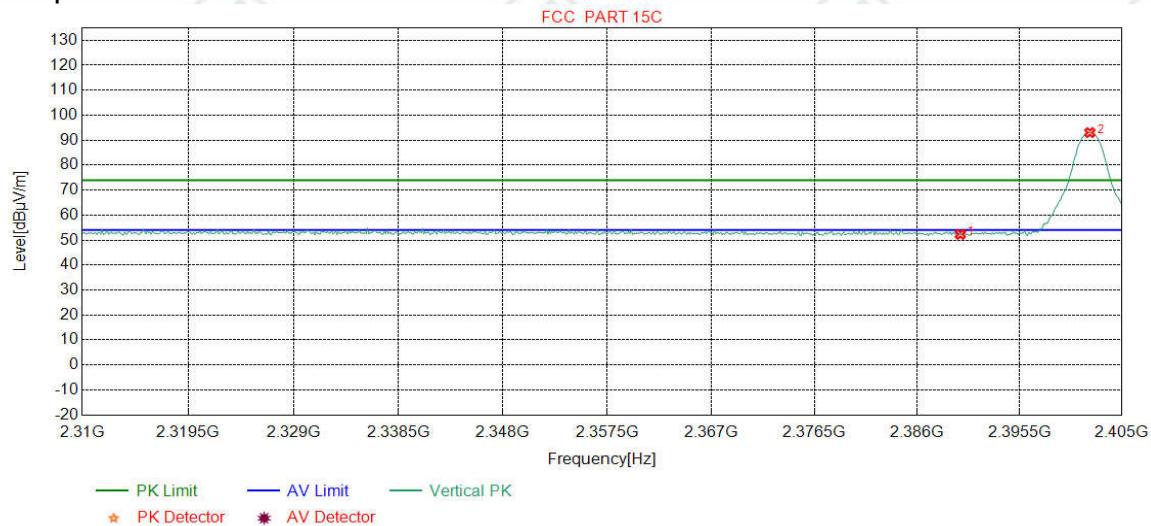
1. The following Quasi-Peak and Average measurements were performed on the EUT:
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
		Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedure as below:					
	Test method Refer as KDB 558074 D01 15.247 Meas Guidance v05r02, Section 8.6					
	<ol style="list-style-type: none"> The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel 					
	Above 1GHz test procedure as below:					
	<ol style="list-style-type: none"> Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). Test the EUT in the lowest channel , the Highest channel The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. Repeat above procedures until all frequencies measured was complete. 					
Limit:	Frequency	Limit (dB μ V/m @3m)	Remark			
	30MHz-88MHz	40.0	Quasi-peak Value			
	88MHz-216MHz	43.5	Quasi-peak Value			
	216MHz-960MHz	46.0	Quasi-peak Value			
	960MHz-1GHz	54.0	Quasi-peak Value			
	Above 1GHz	54.0	Average Value			
		74.0	Peak Value			

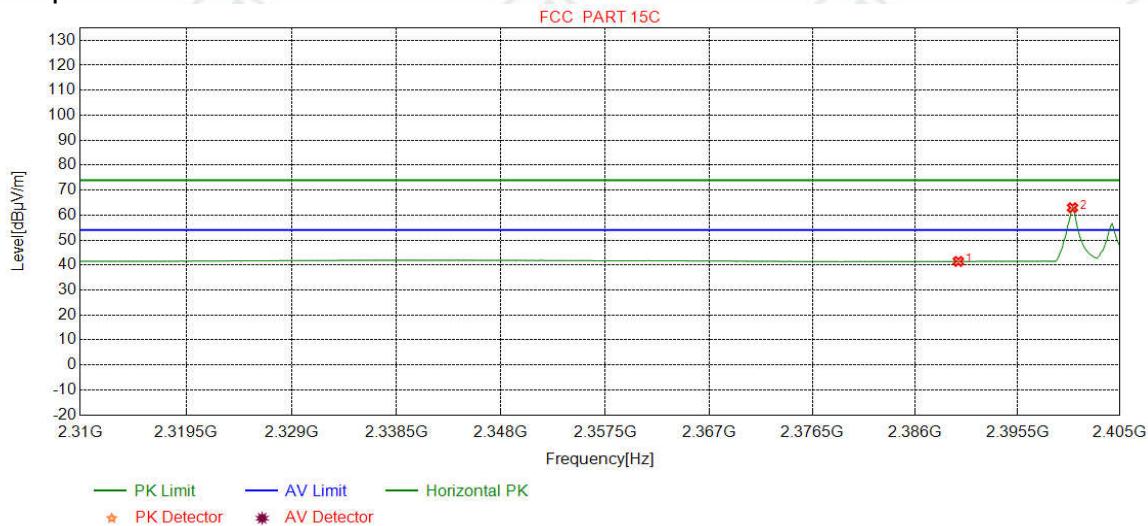
Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		


Test Graph

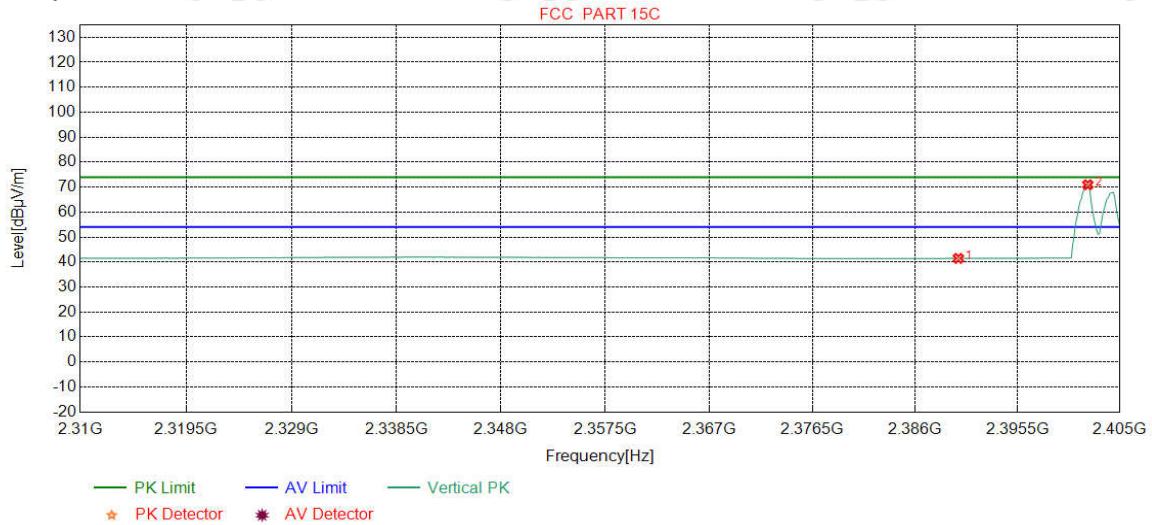
NO	Freq. [MHz]	AntFactor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.65	52.83	74.00	21.17	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	90.90	94.04	74.00	-20.04	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		


Test Graph

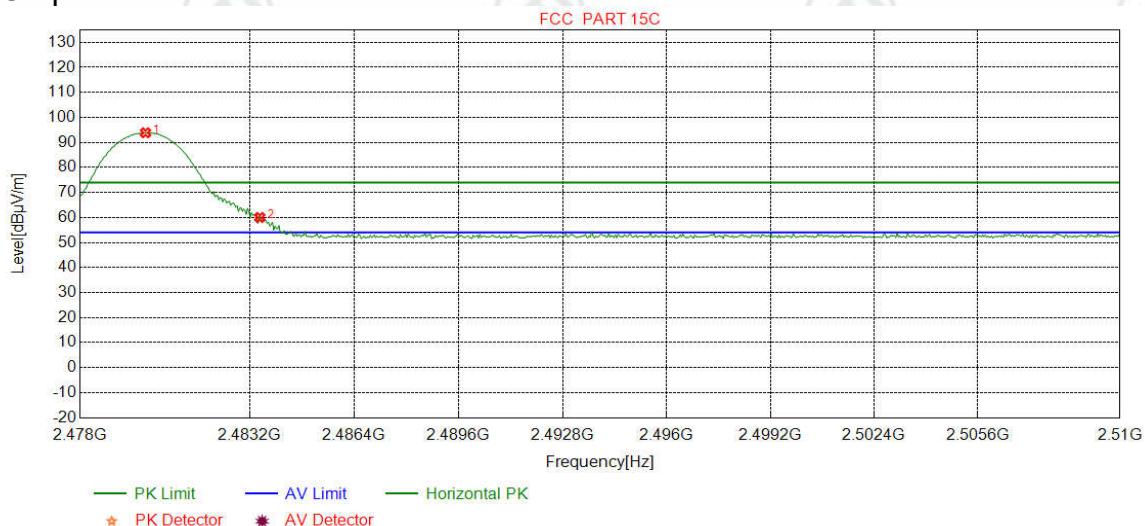
NO	Freq. [MHz]	AntFactor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level[dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.11	52.29	74.00	21.71	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	89.90	93.04	74.00	-19.04	Pass	Vertical

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		


Test Graph

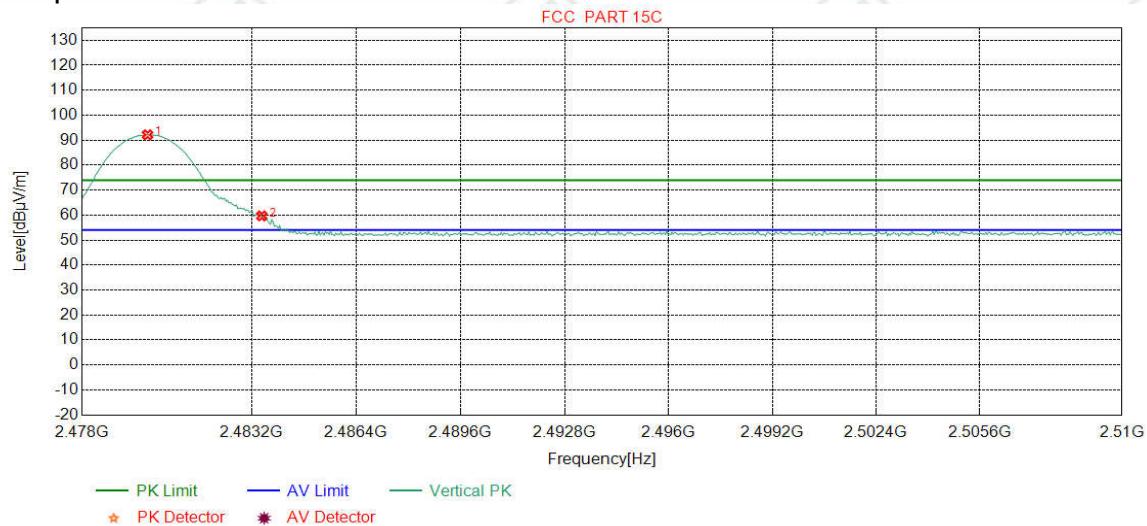
NO	Freq. [MHz]	AntFactor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.28	41.46	54.00	12.54	Pass	Horizontal
2	2400.6008	32.26	13.30	-42.43	59.83	62.96	54.00	-8.96	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		


Test Graph

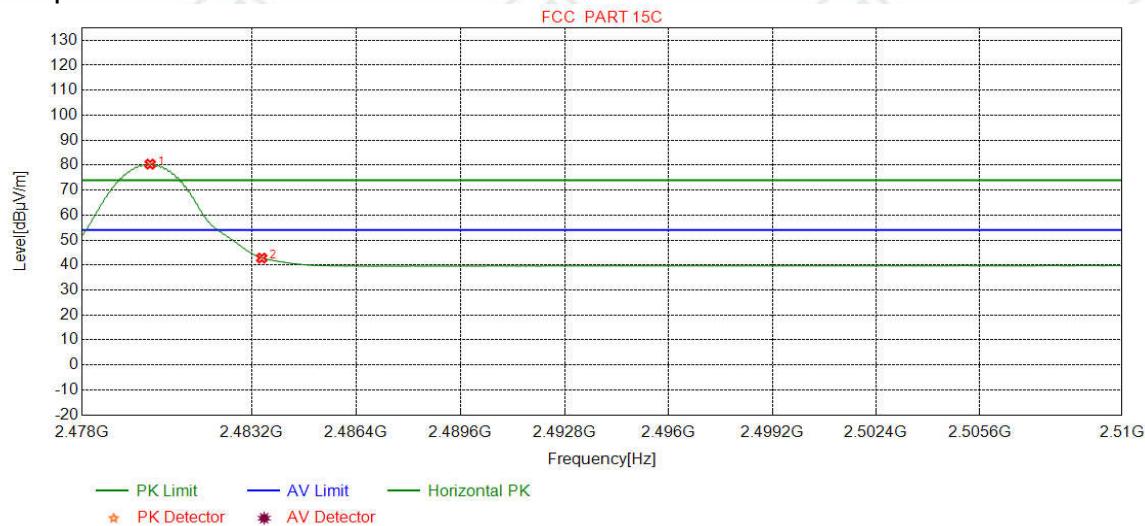
NO	Freq. [MHz]	AntFactor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level[dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.28	41.46	54.00	12.54	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	67.81	70.95	54.00	-16.95	Pass	Vertical

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		


Test Graph

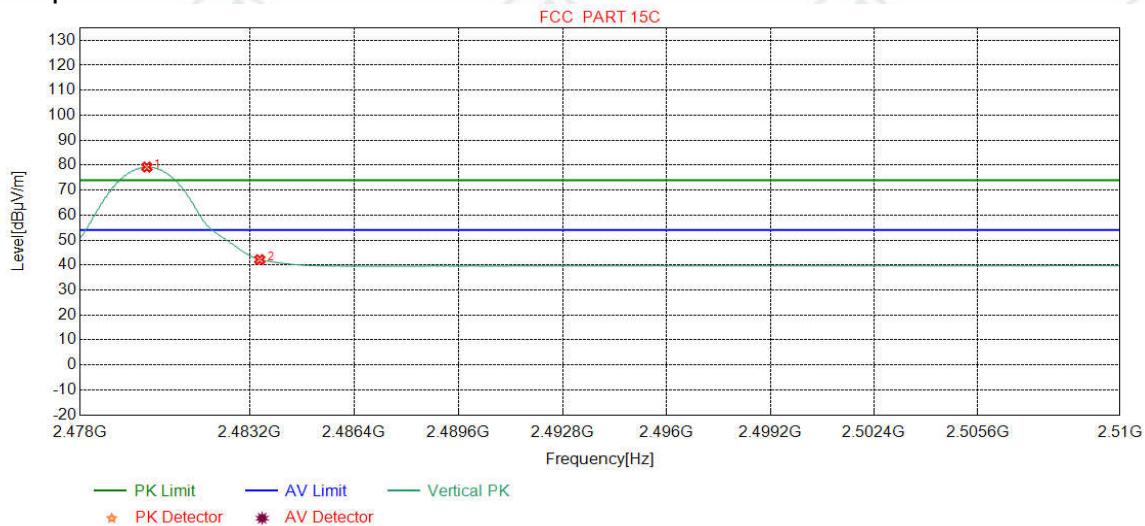
NO	Freq. [MHz]	AntFactor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	90.49	93.86	74.00	-19.86	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	56.65	60.01	74.00	13.99	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:			PK


Test Graph

NO	Freq. [MHz]	AntFactor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	88.77	92.14	74.00	-18.14	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	56.31	59.67	74.00	14.33	Pass	Vertical

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		


Test Graph

NO	Freq. [MHz]	AntFactor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2480.0826	32.37	13.39	-42.40	77.04	80.40	54.00	-26.40	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	39.43	42.79	54.00	11.21	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	AntFactor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-42.39	75.86	79.23	54.00	-25.23	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	38.80	42.16	54.00	11.84	Pass	Vertical

Final Test Level = Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
Above 1GHz		Peak	1MHz	3MHz	Peak	
		Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 15.247 Meas Guidance v05r02, Section 8.6

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dB μ V/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data:

Mode:			BLE GFSK Transmitting				Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity	Remark
1	51.5362	12.95	0.81	-32.10	51.05	32.71	40.00	7.29	Pass	H	PK
2	145.1505	7.38	1.42	-32.00	53.62	30.42	43.50	13.08	Pass	H	PK
3	201.9012	10.95	1.68	-31.94	57.80	38.49	43.50	5.01	Pass	H	PK
4	340.4310	14.09	2.20	-31.83	46.97	31.43	46.00	14.57	Pass	H	PK
5	482.3562	16.72	2.62	-31.90	48.33	35.77	46.00	10.23	Pass	H	PK
6	836.7327	21.34	3.49	-31.92	36.59	29.50	46.00	16.50	Pass	H	PK
7	34.2684	10.67	0.65	-32.12	54.82	34.02	40.00	5.98	Pass	V	PK
8	110.0330	10.89	1.24	-32.07	41.05	21.11	43.50	22.39	Pass	V	PK
9	206.4606	11.07	1.70	-31.95	47.36	28.18	43.50	15.32	Pass	V	PK
10	271.1661	12.62	1.96	-31.88	46.97	29.67	46.00	16.33	Pass	V	PK
11	480.0280	16.68	2.61	-31.90	49.03	36.42	46.00	9.58	Pass	V	PK
12	839.5460	21.37	3.50	-31.89	46.21	39.19	46.00	6.81	Pass	V	PK

Mode:		BLE GFSK Transmitting					Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity	Remark
1	1331.2331	28.23	2.79	-42.75	58.84	47.11	74.00	26.89	Pass	H	PK
2	1997.0997	31.68	3.47	-42.61	53.49	46.03	74.00	27.97	Pass	H	PK
3	4804.0000	34.50	4.55	-40.66	54.20	52.59	74.00	21.41	Pass	H	PK
4	7206.2804	36.31	5.81	-41.02	50.42	51.52	74.00	22.48	Pass	H	PK
5	9608.0000	37.64	6.63	-40.76	48.57	52.08	74.00	21.92	Pass	H	PK
6	12010.0000	39.31	7.60	-41.21	47.51	53.21	74.00	20.79	Pass	H	PK
7	1328.4328	28.23	2.79	-42.76	62.66	50.92	74.00	23.08	Pass	V	PK
8	1992.6993	31.65	3.46	-42.61	59.43	51.93	74.00	22.07	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	52.63	51.02	74.00	22.98	Pass	V	PK
10	7207.2805	36.31	5.81	-41.01	51.18	52.29	74.00	21.71	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	47.86	51.37	74.00	22.63	Pass	V	PK
12	12010.0000	39.31	7.60	-41.21	47.94	53.64	74.00	20.36	Pass	V	PK

Mode:		BLE GFSK Transmitting					Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity	Remark
1	1329.6330	28.23	2.79	-42.75	57.33	45.60	74.00	28.40	Pass	H	PK
2	1995.8996	31.67	3.47	-42.61	55.62	48.15	74.00	25.85	Pass	H	PK
3	4882.0000	34.50	4.81	-40.60	49.09	47.80	74.00	26.20	Pass	H	PK
4	7323.0000	36.42	5.85	-40.92	46.45	47.80	74.00	26.20	Pass	H	PK
5	9764.0000	37.71	6.71	-40.62	47.37	51.17	74.00	22.83	Pass	H	PK
6	12205.0000	39.42	7.67	-41.16	45.73	51.66	74.00	22.34	Pass	H	PK
7	1327.8328	28.23	2.79	-42.76	61.91	50.17	74.00	23.83	Pass	V	PK
8	1991.4992	31.64	3.46	-42.61	59.61	52.10	74.00	21.90	Pass	V	PK
9	4882.0000	34.50	4.81	-40.60	51.44	50.15	74.00	23.85	Pass	V	PK
10	7323.0000	36.42	5.85	-40.92	47.25	48.60	74.00	25.40	Pass	V	PK
11	9764.0000	37.71	6.71	-40.62	47.86	51.66	74.00	22.34	Pass	V	PK
12	12205.0000	39.42	7.67	-41.16	47.10	53.03	74.00	20.97	Pass	V	PK

Mode:		BLE GFSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity	Remark
1	1327.8328	28.23	2.79	-42.76	57.98	46.24	74.00	27.76	Pass	H	PK
2	1993.0993	31.65	3.46	-42.61	55.92	48.42	74.00	25.58	Pass	H	PK
3	4960.0000	34.50	4.82	-40.53	50.10	48.89	74.00	25.11	Pass	H	PK
4	7440.0000	36.54	5.85	-40.82	47.30	48.87	74.00	25.13	Pass	H	PK
5	9920.0000	37.77	6.79	-40.48	46.27	50.35	74.00	23.65	Pass	H	PK
6	12302.6202	39.48	7.73	-41.15	47.62	53.68	74.00	20.32	Pass	H	PK
7	1328.8329	28.23	2.79	-42.76	62.88	51.14	74.00	22.86	Pass	V	PK
8	1993.2993	31.66	3.46	-42.61	60.84	53.35	74.00	20.65	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	48.32	47.11	74.00	26.89	Pass	V	PK
10	7440.0000	36.54	5.85	-40.82	49.46	51.03	74.00	22.97	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	45.92	50.00	74.00	24.00	Pass	V	PK
12	12400.0000	39.54	7.86	-41.12	46.83	53.11	74.00	20.89	Pass	V	PK

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge + transmitter mode with all kind of data type, find the DH5 of data type is the worst case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.