

RF TEST REPORT

Applicant Shanghai Smawave Technology Co. ,Ltd

FCC ID 2AU8HSPH420-BQ

Product Industrial smart handheld terminal

Brand Smawave

Model SPH420-bq

Report No. R2212A1269-R1V1

Issue Date January 16, 2023

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2022)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Ka

TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

Report No.: R2212A1269-R1V1

1.	Τe	est Laboratory	5
	1.1.	Notes of the test report	5
	1.2.	Test facility	5
	1.3.	Testing Location	5
2.	G	eneral Description of Equipment under Test	6
	2.1.		
	2.2.	General information	6
3.	A	pplied Standards	8
4.	Te	est Configuration	9
5.	Τe	est Case Results1	0
	5.1.	Unwanted Emission1	0
6.	М	lain Test Instruments2	7
Αl	NNE	X A: The EUT Appearance2	8
ΑI	NNE	X B: Test Setup Photos	9

RF Test Report No.: R2212A1269-R1V1

Version	Revision description	Issue Date
Rev.0	Initial issue of report.	January 11, 2023
Rev.1	Update description.	January 16, 2023

Note: This revised report (Report No. R2212A1269-R1V1) supersedes and replaces the previously issued report (Report No. R2212A1269-R1). Please discard or destroy the previously issued report and dispose of it accordingly.

Summary of measurement results

Number	Test Case	Clause in FCC rules	Verdict
1	Unwanted Emissions	15.407(b)	PASS

Date of Testing: December 22, 2022

Date of Sample Received: December 12, 2022

Note: PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard.

All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai)

Co., Ltd. based on interpretations and/or observations of test results. Measurement

Uncertainties were not taken into account and are published for informational purposes only.

Only Radiated Spurious Emission is tested for SPH420-bq in this report. Other test items refer to the LTE Module report (Report No.: R2001A0018-R1, FCC ID: 2AU8HMGM5608A).

TA Technology (Shanghai) Co., Ltd. TA-MB-04-006R

This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA Technology** (Shanghai) Co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant	Shanghai Smawave Technology Co. ,Ltd
Applicant address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China
Manufacturer	Shanghai Smawave Technology Co. ,Ltd
Manufacturer address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China

2.2. General information

	EUT Description						
Model	SPH420-bq						
IMEI	862165041024215						
Hardware Version	V1.0.2						
Software Version	20230106_01_SPHX	20-aq_NDAC_V1.0.23					
Power Supply	Battery / AC adapter						
Antenna Type	Internal Antenna						
Antenna Connector	A permanently attach 15.203 requirement)	ed antenna (meet with the	ne standard FCC Part				
	Frequency (MHz)	Gain (dBi)					
	5720	0.6					
	5740	1.0	1.0				
	5760	0.3	0.3				
Antenna Gain	5780	0.5	0.5				
	5800	-0.2					
	5820	0.4	0.4				
	5840	1.2	1.2				
	5860	0.6	0.6				
Test Mode(s)	LTE Band 46						
Modulation Type	QPSK 16QAM;						
Operating temperature range:	-20 ° C to 60 ° C						
Operating voltage range:	Operating voltage range: 3.7 V to 4.4 V						
State DC voltage:							
Operating Frequency Range(s)	Mode	Tx (MHz)	Rx (MHz)				
Operating Frequency Kange(s)	LTE Band 46	5725 ~ 5850	5725 ~ 5850 5725 ~ 5850				
	EUT Access	ory					
Adapter Manufacturer: Zhuzhou Dachuan Electronic Technology Co.,Ltd Model: DCT12W050200ZZ-H1							

TA Technology (Shanghai) Co., Ltd. TA-MB-04-006R Page 6 of 29

RF Test Report No.: R2212A1269-R1V1

Battery Manufacturer: GuangDong FengHua New Energy Co., Ltd.		
I Battery		(Adapters: 94001-00001-EU; 94001-00002-UK; 94001-00003-US)
	Battery	Manufacturer: GuangDong FengHua New Energy Co., Ltd. Model: FHPK626263P

Note:

- 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.
- 2. There is more than one Adapter, each one should be applied throughout the compliance test respectively, and however, only the worst case (94001-00003-US) will be recorded in this report.

RF Test Report Report No.: R2212A1269-R1V1

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15E (2022) Unlicensed National Information Infrastructure Devices

ANSI C63.10-2013

Reference standard:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

TA Technology (Shanghai) Co., Ltd. Page 9 of 29 This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

5. Test Case Results

5.1. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band range from 9kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

9kHz~150 kHz

RBW=200Hz, VBW=1kHz/ Sweep=AUTO

150 kHz~30MHz

RBW=9KHz, VBW=30KHz,/ Sweep=AUTO

Below 1GHz

RBW=100kHz / VBW=300kHz / Sweep=AUTO

a) Peak emission levels are measured by setting the instrument as follows:

Above 1GHz

PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

b) Average emission levels are measured by setting the instrument as follows:

Above 1GHz

AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

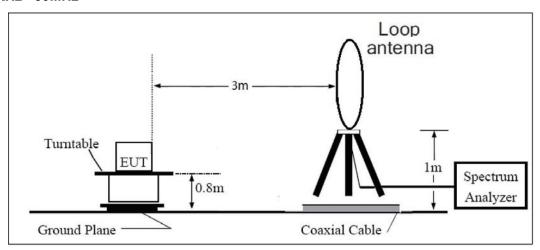
- c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission

RF Test Report No.: R2212A1269-R1V1

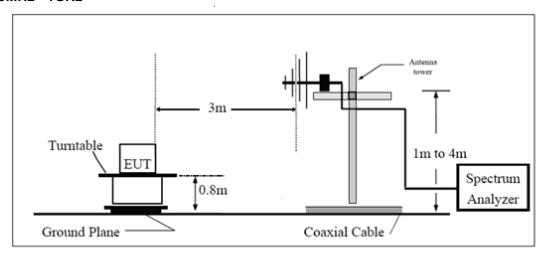
is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

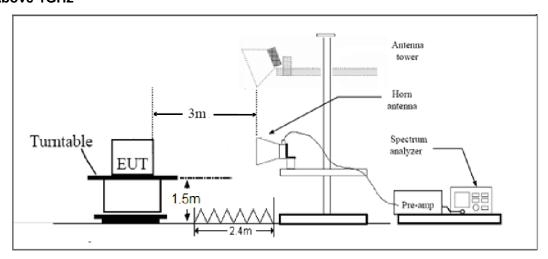
Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. For regulatory requirements that specify averaging only over the transmit duration (e.g., digital transmission system [DTS] and Unlicensed National Information Infrastructure [U-NII]), the video bandwidth shall be greater than [1 / (minimum transmitter on time)] and no less than 1 Hz.


The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the loop antenna is vertical, others antenna are vertical and horizontal.

The test is in transmitting mode.



Test setup


9KHz~30MHz

30MHz~1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Limits

(1) For transmitters operating in the 5725-5850 MHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note: the following formula is used to convert the EIRP to field strength

- $\S1$ \times E[dB μ V/m] = EIRP[dBm] 20 log(d[meters]) + 104.77, where E = field strength and
- d = distance at which field strength limit is specified in the rules;
- $2 \times E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table.

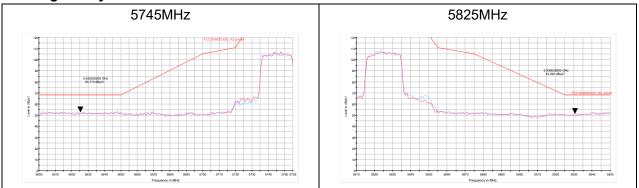
Frequency of emission (MHz)	Field strength(μV/m)	Field strength(dBµV/m)		
0.009–0.490	2400/F(kHz)	1		
0.490–1.705	24000/F(kHz)	I		
1.705–30.0	30	1		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above960	500	54		

MHz MHz MHz GHz 0.090 - 0.11016.42 - 16.423 399.9 - 410 4.5 - 5.15 10.495 - 0.505 16.69475 - 16.69525 608 - 614 5.35 - 5.46 7.25 - 7.75 16.80425 - 16.80475 2.1735 - 2.1905 960 - 1240 4.125 - 4.128 25.5 - 25.67 1300 - 1427 8.025 - 8.5 37.5 - 38.25 1435 - 1626.5 9.0 - 9.24.17725 - 4.17775 73 - 74.6 1645.5 - 1646.5 9.3 - 9.54.20725 - 4.20775 6.215 - 6.218 74.8 - 75.2 1660 - 1710 10.6 - 12.7 6.26775 - 6.26825 1718.8 - 1722.2 108 - 121.94 13.25 - 13.4 6.31175 - 6.31225 123 - 138 2200 - 2300 14.47 - 14.5 8.291 - 8.294 149.9 - 150.05 2310 - 2390 15.35 - 16.2 17.7 - 21.4 8.362 - 8.366 156.52475 - 156.52525 2483.5 - 2500 8.37625 - 8.38675 2690 - 2900 22.01 - 23.12 156.7 - 156.9 23.6 - 24.0 8.41425 - 8.41475 162.0125 - 167.17 3260 - 3267 12.29 - 12.293 167.72 - 173.2 3332 - 3339 31.2 - 31.8 12.51975 - 12.52025 240 - 285 3345.8 - 3358 36.43 - 36.5 12.57675 - 12.57725 322 - 335.4 3600 - 4400 (2) 13.36 - 13.41

Report No.: R2212A1269-R1V1

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
9KHz-30MHz	3.55 dB
30MHz-200MHz	4.17 dB
200MHz-1GHz	4.84 dB
1-18GHz	4.35 dB
18-26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

Test Results:

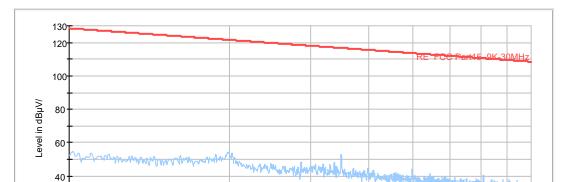
A symbol ($^{dB\mu V/}$) in the test plot below means ($^{dB\mu V/m}$)

The signal beyond the limit is carrier.

RF Test Report No.: R2212A1269-R1V1

Result of RE

Test result


Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 26.5GHz-40GHz are more than 20dB below the limit are not reported.

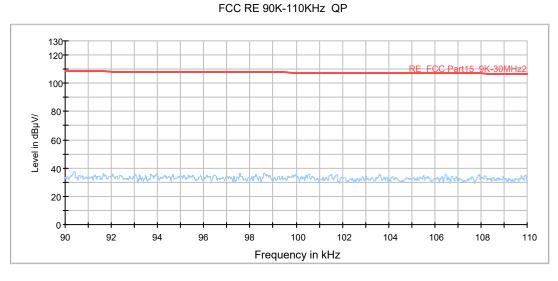
A symbol ($^{dB\mu V/}$) in the test plot below means ($^{dB\mu V/m}$) A symbol ($^{dB\ V/}$) in the test plot below means ($^{dB\mu V/m}$)

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 5785MHz are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Continuous TX mode:

20 | 9k

FCC RE 9K-90KHz AV

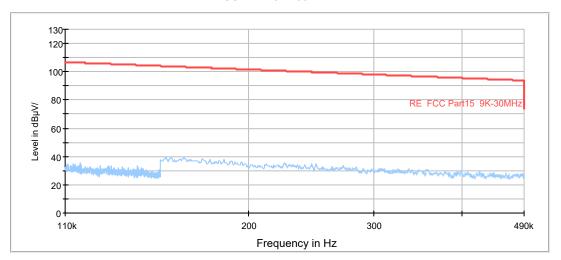

Radiates Emission from 9KHz to 90KHz

30k

Frequency in Hz

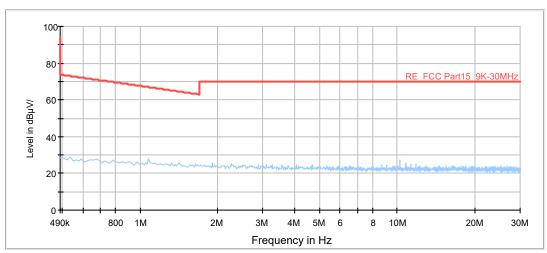
50

70 80

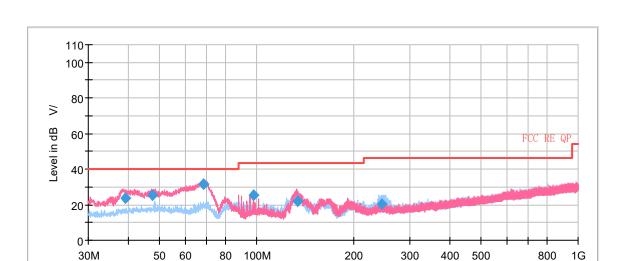


20k

Radiates Emission from 90KHz to 110KHz



FCC RE 110K-490KHz AV


Radiates Emission from 110KHz to 490KHz

FCC RE 490K-30MHz QP

Radiates Emission from 490KHz to 30MHz

30M

Report No.: R2212A1269-R1V1

400 500

800

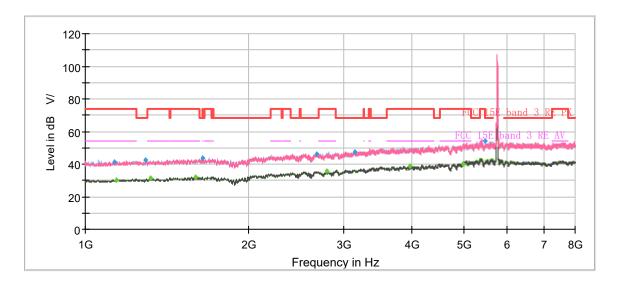
1G

Radiates Emission from 30MHz to 1GHz

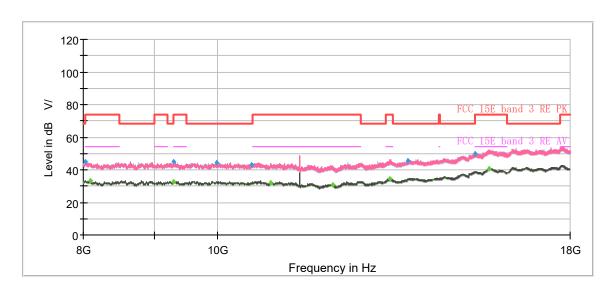
200

Frequency in Hz

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	
39.031333	23.67	40.00	16.34	125.0	V	293.0	19.2	
47.497333	25.55	40.00	14.45	100.0	V	285.0	20.5	
68.669000	31.70	40.00	8.30	100.0	V	57.0	16.7	
97.713667	25.58	43.50	17.92	100.0	V	195.0	18.4	
133.929667	21.74	43.50	21.76	125.0	V	220.0	15.0	
245.580000	20.49	46.00	25.51	100.0	Н	185.0	19.6	


Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

50

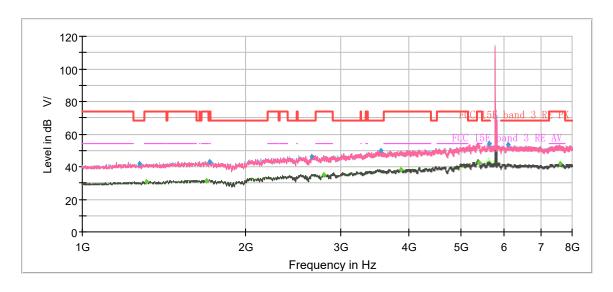

80

^{2.} Margin = Limit - Quasi-Peak

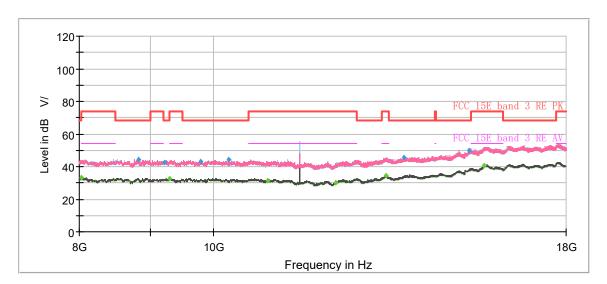
5745MHz

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 8GHz

Radiates Emission from 8GHz to 18GHz


RF Test Report Report No.: R2212A1269-R1V1

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1141.75		29.91	54.00	24.09	500.00	200.0	Н	3.00	-8
1292.25	42.49		68.20	25.71	500.00	100.0	V	124.00	-7
1316.75		31.13	54.00	22.87	500.00	100.0	Н	230.00	-7
1133.25	41.02		68.20	27.18	500.00	100.0	Н	170.00	-6
1598.50		32.09	54.00	21.91	500.00	100.0	V	195.00	-5
1644.00	43.49		68.20	24.71	500.00	100.0	V	89.00	-5
2673.88	46.42		68.20	21.78	500.00	200.0	Н	270.00	0
2787.63		35.50	54.00	18.50	500.00	200.0	V	0.00	0
3141.13	47.63		68.20	20.57	500.00	100.0	V	186.00	2
3964.50		38.63	54.00	15.37	500.00	100.0	V	267.00	5
4958.50		39.71	54.00	14.29	500.00	100.0	Н	266.00	7
5465.13	53.97		68.20	14.23	500.00	100.0	Н	210.00	9

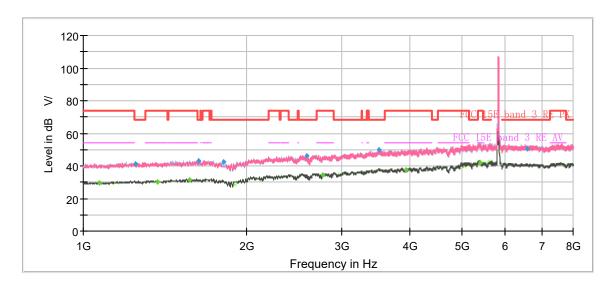

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit -MAX Peak/ Average

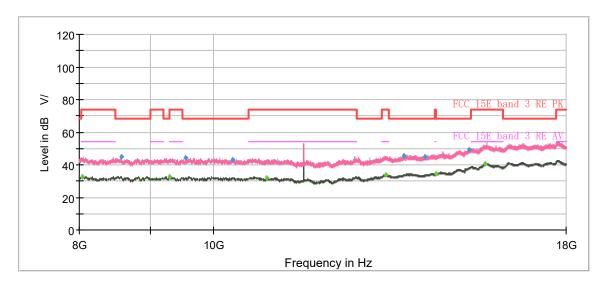
5785MHz

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 8GHz

Radiates Emission from 8GHz to 18GHz


RF Test Report Report No.: R2212A1269-R1V1

Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1272.13	41.94		68.20	26.26	500.00	100.0	V	265.00	-7
1311.50		30.97	54.00	23.03	500.00	200.0	Н	156.00	-7
1693.88		31.69	54.00	22.31	500.00	200.0	V	33.00	-5
1714.00	43.03		68.20	25.17	500.00	200.0	V	27.00	-4
2645.00	46.43		68.20	21.77	500.00	200.0	Н	216.00	0
2789.38		35.28	54.00	18.72	500.00	100.0	V	0.00	0
3545.38	49.92		68.20	18.28	500.00	100.0	V	0.00	4
3864.75		38.42	54.00	15.58	500.00	100.0	V	13.00	5
5397.75		42.73	54.00	11.27	500.00	200.0	V	195.00	9
5617.38	53.87		68.20	14.33	500.00	100.0	Н	211.00	9
6086.38	53.50		68.20	14.70	500.00	100.0	V	221.00	9
7587.00		41.83	54.00	12.17	500.00	100.0	V	192.00	11


Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

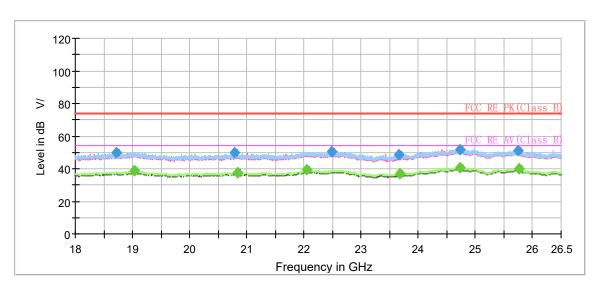
2. Margin = Limit -MAX Peak/ Average

5825MHz

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 8GHz

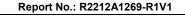
Radiates Emission from 8GHz to 18GHz

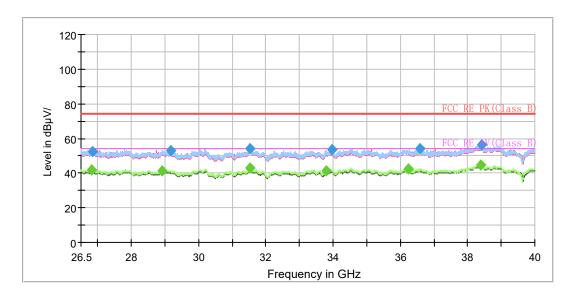
RF Test Report Report No.: R2212A1269-R1V1


Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1071.75		29.85	54.00	24.15	500.00	100.0	V	124.00	-8
1248.50	41.04		68.20	27.16	500.00	100.0	Н	321.00	-7
1371.00		30.14	54.00	23.86	500.00	200.0	Н	126.00	-6
1569.63		31.53	54.00	22.47	500.00	200.0	V	25.00	-5
1628.25	42.82		68.20	25.38	500.00	200.0	V	202.00	-5
1810.25	42.22		68.20	25.98	500.00	100.0	Н	0.00	-4
2581.13	46.04		68.20	22.16	500.00	100.0	V	119.00	0
2767.50		34.25	54.00	19.75	500.00	100.0	Н	237.00	0
3506.88	49.78		68.20	18.42	500.00	100.0	Н	295.00	4
3934.75		37.84	54.00	16.16	500.00	200.0	Н	249.00	5
6590.38	50.42		68.20	18.58	500.00	200.0	Н	41.00	9
5397.25		41.86	54.00	12.14	500.00	100.0	Н	150.00	11

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit -MAX Peak/ Average


RF Test Report No.: R2212A1269-R1V1


During the test, the Radiates Emission from 18GHz to 40GHz was performed in all modes with all channels, 5785MHz are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
18726.750000	49.66		74.00	24.34	500.0	100.0	Η	94.0	-6.7
19038.062500		38.84	54.00	15.16	500.0	100.0	Н	356.0	-6.4
20786.937500	49.68		74.00	24.32	500.0	100.0	Н	94.0	-6.3
20846.437500		37.68	54.00	16.32	500.0	100.0	Н	42.0	-6.3
22054.500000		39.62	54.00	14.38	500.0	100.0	Н	70.0	-4.6
22494.375000	50.68		74.00	23.32	500.0	100.0	Н	160.0	-4.6
23669.500000	48.61		74.00	25.39	500.0	100.0	Н	261.0	-5.5
23672.687500		36.95	54.00	17.05	500.0	100.0	Н	42.0	-5.4
24735.187500	51.84		74.00	22.16	500.0	100.0	Н	286.0	-1.4
24736.250000		40.82	54.00	13.18	500.0	100.0	Н	320.0	-1.4
25753.062500	51.22		74.00	22.78	500.0	100.0	Н	8.0	-2.4
25762.625000		39.76	54.00	14.24	500.0	100.0	Н	236.0	-2.4

Radiates Emission from 26.5GHz to 40GHz

Nadates Emission non 20.0012 to 40012									
Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
26812.187500		41.90	54.00	12.10	500.0	100.0	V	142.0	-0.1
26837.500000	52.70		74.00	21.30	500.0	200.0	Н	208.0	-0.3
28909.750000		41.51	54.00	12.49	500.0	100.0	V	135.0	-0.2
29164.562500	53.12		74.00	20.88	500.0	200.0	Н	84.0	-0.3
31515.250000		43.14	54.00	10.86	500.0	100.0	V	189.0	-0.3
31518.625000	53.97		74.00	20.03	500.0	100.0	Н	151.0	-0.1
33781.562500		41.45	54.00	12.55	500.0	100.0	Н	268.0	1.5
33957.062500	53.41		74.00	20.60	500.0	100.0	Н	305.0	-0.6
36231.812500		42.36	54.00	11.64	500.0	200.0	V	189.0	-0.9
36587.875000	53.91		74.00	20.09	500.0	100.0	Н	334.0	1.8
38398.562500		44.42	54.00	9.58	500.0	200.0	V	231.0	2.3
38413.750000	56.13		74.00	17.87	500.0	100.0	Н	152.0	2.6

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit-MAX Peak/ Average

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date	
Spectrum Analyzer	R&S	FSV40	101186	2022-05-14	2023-05-13	
EMI Test Receiver	R&S	ESR	102389	2022-05-25	2023-05-24	
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2020-04-02	2023-04-01	
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	1023	2020-05-05	2023-05-04	
Horn Antenna	R&S	HF907	102723	2020-08-11	2023-08-10	
Horn Antenna	ETS-Lindgren	3160-09	00102643	2021-10-10	2024-10-09	
Horn Antenna	STEATITE	QSH-SL-26-40 -K-15	16779	2019-12-24	2024-12-23	
Software	R&S	EMC32	9.26.0	1	1	

*****END OF REPORT *****

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

Report No.: R2212A1269-R1V1

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

Report No.: R2212A1269-R1V1