

EchoNous, Inc.

Thor Radio Module AC WLAN and Bluetooth and BLE

FCC 15.247:2019 Bluetooth (FHSS) Radio

Report # ECHN0015.6

NVLAP LAB CODE: 200630-0 NVLAP LAB CODE: 200629-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: December 27, 2019 EchoNous, Inc.

EUT: Thor Radio Module AC WLAN and Bluetooth and BLE

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2019	ANSI C63.10:2013
FCC 15.247:2019	ANSI C03.10.2013

Results

itoouito				
Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
7.5	Duty Cycle	Yes	N/A	
7.8.2	Carrier Frequency Separation	Yes	Pass	
7.8.3	Number of Hopping Frequencies	Yes	Pass	
7.8.4	Dwell Time	Yes	Pass	
7.8.5	Output Power	Yes	Pass	
7.8.5	Equivalent Isotropic Radiated Power	Yes	Pass	
7.8.6	Band Edge Compliance	Yes	Pass	
7.8.6	Band Edge Compliance - Hopping Mode	Yes	Pass	
7.8.7	Occupied Bandwidth	Yes	Pass	
7.8.8	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Rod Munro, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. ECHN0015.6 3/95

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

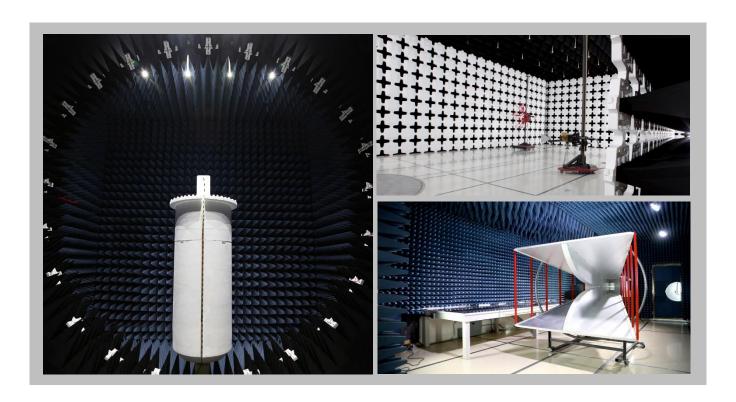
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations


FACILITIES

California	Minnesota	Oregon	Texas	Washington		
Labs OC01-17 41 Tesla Irvine, CA 92618	Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445	Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124	Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074	Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011		
(949) 861-8918	(612)-638-5136	(503) 844-4066	(469) 304-5255	(425)984-6600		
		NVLAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1		
BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
VCCI						
A-0029	A-0109	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157		

Report No. ECHN0015.6 5/95

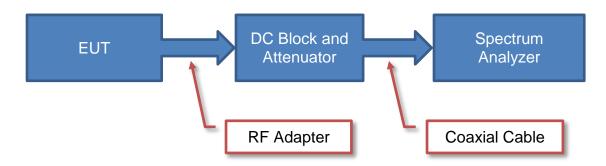
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

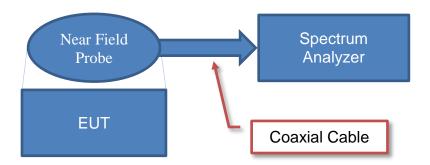
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

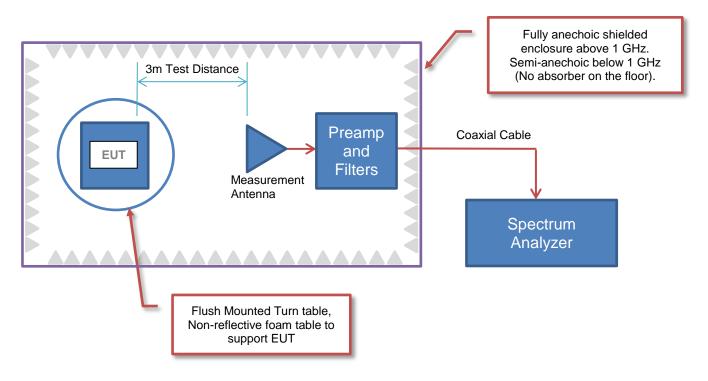
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. ECHN0015.6


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. ECHN0015.6 7/95

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	EchoNous, Inc.
Address:	8310 154th Ave NE, Bldg. B, Ste. 200
City, State, Zip:	Redmond, WA 98052
Test Requested By:	Sanchit Chirania
EUT:	Thor Radio Module AC WLAN and Bluetooth 5.0 and BLE
First Date of Test:	July 17, 2019
Last Date of Test:	December 27, 2019
Receipt Date of Samples:	July 16, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Qualcomm Snapdragon 835 WLAN with Bluetooth 5.0 and BLE for QCA6174 based NFA324 Foxconn Module, 2x2 802.11ac with MU-MIMO

Testing Objective:

To demonstrate compliance of the Bluetooth (FHSS) radio to FCC 15.247 requirements.

Report No. ECHN0015.6

CONFIGURATIONS

Configuration ECHN0015-1

Software/Firmware Running during test	
Description	Version
Qualcomm Radio Control Tool	4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Thor Radio Module AC WLAN and Bluetooth 5.0 and BLE	Qualcomm	Thor 1.0	Pre-production #1

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Laptop #1	Lenovo	E590	PF-1KP4WR		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB-C Cable	No	1.2m	No	USB-C Connector (Laptop)	USB-C Connector (Thor Radio Module)

Report No. ECHN0015.6 9/95

CONFIGURATIONS

Configuration ECHN0015- 4

Software/Firmware Running during test	
Description	Version
Qualcomm Radio Control Tool	4

EUT					
Description Manufacturer Model/Part Number Serial Number					
Thor Radio Module AC WLAN and	EchoNous, Inc.	Thor 1.0	H1UR1944002-		
Bluetooth 5.0 and BLE	ECHONOUS, IIIC.	11101 1.0	03		

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Laptop #1	Lenovo	E590	PF-1KP4WR	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB-C Cable	No	1.2m	No	USB-C Connector (Laptop)	USB-C Connector (Thor Radio Module)
USB-C Cable	No	2.0m	No	Thor Radio Module AC WLAN and Bluetooth 5.0 and BLE	Unterminated

Report No. ECHN0015.6 10/95

CONFIGURATIONS

Configuration ECHN0015-10

Software/Firmware Running during test	
Description	Version
Qualcomm Radio Control Tool	4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Thor Radio Module AC WLAN and Bluetooth 5.0 and BLE	EchoNous, Inc.	Thor 1.0	30

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Laptop #1	Lenovo	E590	PF-1KP4WR		
USB-C Hub	Monprice	15249	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB-C Cable	No	2.0m	No	Thor Radio Module AC WLAN and Bluetooth 5.0 and BLE	Unterminated
USB-C	Yes	0.1m	No	Laptop	USB-C Hub
USB-C	Yes	1.4m	No	AC/DC Adapter	USB-C Hub
USB-C	Yes	2.0m	No	USB-C Hub	Thor Radio Module AC WLAN and Bluetooth 5.0 and BLE

Report No. ECHN0015.6 11/95

MODIFICATIONS

Equipment Modifications

1 2019-07-17 Output Power delivered to Test Station. 2 2019-07-17 Bequivalent Isotropic Radiated Power Dower 3 2019-07-17 Duty Cycle 4 2019-07-17 Duty Cycle 5 2019-07-17 Duty Cycle 6 2019-07-24 Delivered to Test Station. 7 2019-07-24 Deping Hopping Conducted Emissions 6 2019-07-24 Delivered to Test Station. 8 2019-08-01 Frequency Separation 8 2019-08-02 Band Edge Compliance Hopping Mode Power It Station. 1 2019-08-02 Band Edge Compliance Delivered to Test Station. 7 2019-08-02 Spurious Radiated Emissions 8 2019-08-08 Band Edge Compliance Delivered to Test Station. 8 2019-11-26 Radiated Emissions Radiated Element following the test. 8 2019-11-26 Radiated Element following the test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. No EMI suppression Emissions Radiated Element following the test. 8 2019-08-02 Band Edge Compliance Radiated Element following the test. 9 2019-08-08 Band Edge Compliance Radiated Element following the test. Provided Radiated Element following the test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this	Itom	Doto	Test	Modification	Note	Diaposition of FLIT
2019-07-17 Output Power Celivered to Test Station. Tested as delivered to Power Test Station. Tested as delivered to Test S	Item	Date	1621			Disposition of EUT
Test Station. Tested as delivered to Test Station. Tested as devices were added or modified during this test. Tested as devices were added or modified during this test. Tested as devices were added or modified during this test. Tested as devices were added or modified during this test. Tested as devices were added or modified during this test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. Tested as delivered to Test Station. Tested as delivered to Test Stat	1	2010 07 17	Output Power			
2 2019-07-17 Equivalent Sotropic Radiated Power Tested as delivered to Demonstrate Power Tested as delivered to Test Station. Test Station. Tested as delivered to Test Station. Tested as delive	1	2019-07-17	Output Fower			
2 2019-07-17			Equivalent		inodined during this test.	
2019-07-17 Radiated Power Test Station. Tested as delivered to Test Station. Test Station. Tested as delivered to Test Station. Test Station. Tested as delivered to T						
Power lest Station. Modified during this test. Tested as delivered to Test Station. Mo EMI suppression delivered to Test Station. Number of Bandwidth Prequencies Tested as delivered to Test Station. Mo EMI suppression devices were added or Test Station. Mo EMI suppression devices wer	2	2019-07-17				
2019-07-17 Duty Cycle delivered to Test Station. Tested as delivered to Test Station. Test Station. Tested as delivered to				Test Station.	modified during this test.	test.
Test Station. Tested as delivered to Test Station. Number of Hopping Frequencies Spurious Conducted Emissions Tested as delivered to Test Station. Tested as delivered to Test Station. Spurious Carrier Separation Separation Band Edge Compliance Test Station. Tested as delivered to devices were added or Test Station. Tested as delivered to Test Station. Test Station. Tested as delivered to Test Station. Tested as delivered to Test Station. Test Station. Test Station. Tested as delivered to Test Station. Test Station. Test Station. Tested as delivered to Test Station. Tested as delivered to Test Station. Tested as delivered to Test Station. Test Station. Tested as delivered to Test Station. Test Station. Tested as delivered to Test Station. Tested as Tested				Tested as	No EMI suppression	EUT remained at
4 2019-07-17	3	2019-07-17	Duty Cycle			Element following the
2019-07-17 Occupied Bandwidth delivered to Test Station. Number of Hopping Tested as delivered to Test Station. No EMI suppression devices were added or Frequencies Tested as delivered to Test Station. Tested as delivered to Tested	ī					
Surface Properties Proper			Occupied			
Number of Hopping Hopping Sequencies Tested as delivered to Frequencies Test Station. No EMI suppression devices were added or modified during this test. Tested as delivered to Test Station. No EMI suppression devices were added or modified during this test. Spurious Tested as delivered to Emissions Test Station. Tested as delivered to Emissions Test Station. No EMI suppression devices were added or modified during this test. No EMI suppression devices were added or modified during this test. Carrier Tested as delivered to Emissions Test Station. Spurious Tested as delivered to Separation Test Station. Spurious Tested as delivered to Gevices were added or modified during this test. Spurious Tested as delivered to Gevices were added or modified during this test. Spurious Tested as delivered to Gevices were added or modified during this test. Spurious Tested as delivered to Test Station. No EMI suppression Devices were added or modified during this test. EUT remained at Element following the test. EUT remained at Element following the test. EUT remained at Element following the test. Spurious Tested as delivered to devices were added or modified during this test. No EMI suppression Sequenced to Tested as delivered to Mo EMI suppression devices were added or modified during this test. Spurious Tested as delivered to Devices were added or Modified during this test. Spurious Tested as delivered to Devices were added or Modified during this test. Scheduled testing was completed.	4	2019-07-17				
Superiors Conducted Separation Separ						
Frequencies Test Station. modified during this test. Tested as delivered to Test Station. Dwell Time delivered to Test Station. Spurious Tested as delivered to Test Station. Tested as delivered to Test Station. Tested as delivered to Test Station. Tested as delivered to Emissions Test Station. Tested as delivered to Demonstrate test. Tested as	_					
Tested as delivered to Test Station. Tested as delivered to Emissions Tested as delivered to Test Station. Tested as Tested as Test Station. Tested as Tested as Tested as Tested as	5	2019-07-24				_
Carrier Tested as delivered to Test Station. Surious Tested as delivered to Test Station. Tested as Tested Station. Tested As Tested Station. Tested Station.			Frequencies		-	
Test Station. Modified during this test. Spurious Tested as delivered to Emissions Test Station. Tested as delivered to Emissions Test Station. Tested as delivered to Emissions Test Station. Tested as delivered to Test Station. Tested as delivered to Separation Test Station. Tested as delivered to Separation Test Station. Tested as delivered to Test Station. Tested as delivered to Hopping Mode Test Station. Tested as delivered to Test Station. Tested as Test	_					
Spurious Conducted Conducted Emissions Tested as delivered to Emissions Tested as delivered to Emissions Tested as delivered to Emissions Tested as Separation Tested as Separation Separation Tested as delivered to Separation Tested as Separation Separation Separation Tested as Separation Separation Separation Tested as Separation Separati	6	2019-07-24	Dwell Time			_
7 2019-07-24 Conducted Emissions delivered to Emissions Test Station. 8 2019-08-01 Frequency Separation Test Station. 9 2019-08-01 Band Edge Compliance Hopping Mode Test Station. 10 2019-08-02 Band Edge Compliance Compliance Factor Station. 11 2019-11-26 Spurious Radiated Emissions Tested as delivered to Test Station. 12 2019-12-27 Conducted Station Devices were added or Test Station. 10 2019-12-27 Conducted delivered to Emissions delivered to Test Station. 10 2019-12-27 Conducted delivered to Tested as Teste						
Emissions Test Station. Tested as delivered to Separation Band Edge Compliance Tested as delivered to Hopping Mode Test Station. Tested as delivered to Separation Tested as delivered to Hopping Mode Test Station. Tested as delivered to Tested as delivered to Test Station. Tested as delivered to Tested as Tested as delivered to Tested as Tested as Tested as Tested as Tested	_	0040 07 04				
Separation Tested as delivered to Separation Tested as delivered to Separation Test Station.	1	2019-07-24				
8 2019-08-01 Frequency Separation 9 2019-08-01 Band Edge Compliance - Hopping Mode 10 2019-08-02 Band Edge Compliance 11 2019-11-26 Spurious Radiated Emissions 12 2019-12-27 Conducted 12 2019-12-27 Conducted 1						
Separation Test Station. modified during this test. test. Band Edge Compliance - Hopping Mode Test Station. Band Edge Compliance - Hopping Mode Test Station. Band Edge Compliance Tested as delivered to Test Station. Tested as delivered to Tested as delivered to Test Station. Tested as delivered to Tested as delivered to Test Station. Tested as delivered to Tested as delivered to Test Station. Tested as delivered to Tested as delivered to Test Station. Tested as delivered to	0	0040 00 04				
Band Edge Compliance - Hopping Mode Test Station. Band Edge Compliance - Hopping Mode Test Station. Band Edge Compliance - Hopping Mode Test Station. Tested as delivered to Tested as delivered to Test Station. Tested as delivered to Tested as delivered to Test Station. Tested as delivered to Tested as delivered to Test Station. Tested as delivered to Tested as del	8	2019-08-01				
9 2019-08-01 Compliance - Hopping Mode Test Station. 10 2019-08-02 Band Edge Compliance Compliance Compliance Spurious Radiated Element following the test. 11 2019-11-26 Radiated Emissions Tested as delivered to Tested as delivered to Emissions Tested as delivered to Tested as deliver						1000
Hopping Mode Test Station. Tested as delivered to Tested as delivered to Tested as delivered to devices were added or Test Station. Tested as delivered to Tested	0	2010 09 01				
10 2019-08-02 Band Edge Compliance Compliance Spurious Paissions Band Edge Compliance Spurious Paissions Powerline Conducted Spurious Powerline Conducted Spuriou	9	2019-00-01				
10 2019-08-02 Band Edge Compliance delivered to Test Station. Mo EMI suppression devices were added or Modified during this test. 11 2019-11-26 Radiated delivered to Emissions Test Station. Tested as delivered to Emissions Test Station. Mo EMI suppression devices were added or Test Station. Mo EMI suppression devices were added or Modified during this test. 12 2019-12-27 Conducted Delivered to devices were added or devices were added						
Test Station. modified during this test. test. Spurious Radiated delivered to Emissions Powerline Conducted Test Station. modified during this test. test. No EMI suppression devices were added or modified during this test. Tested as delivered to devices were added or devices were	10	2010-08-02				
Spurious Radiated Radiated Emissions Powerline Conducted Conducted Radiated at delivered to Emissions Round Radiated Emissions Test Station. Tested as delivered to devices were added or devices were	10	2019-00-02	Compliance			_
11 2019-11-26 Radiated delivered to Emissions Test Station. Mo EMI suppression devices were added or test. 12 2019-12-27 Conducted Delivered to devices were added or devices w			Spurious			
Emissions Test Station. modified during this test. test. Powerline Tested as delivered to devices were added or was completed. Tested as delivered to devices were added or was completed.	11	2019-11-26				
Powerline Tested as delivered to devices were added or was completed.	• •	2310 11 20				
12 2019-12-27 Conducted delivered to devices were added or was completed	-					
	12	2019-12-27				
			Emissions	Test Station.	modified during this test.	was completed.

Report No. ECHN0015.6 12/95

POWER SETTINGS

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types	Туре	Channel	Position	Frequency (MHz)	Power Setting
		0 or 1	Low Channel	2402	9
DH5, 2DH5, 3DH5	FHSS	39	Mid Channel	2440 or 2441	9
		78 or 79	High Channel	2480	9

Report No. ECHN0015.6 13/95

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARH	2019-05-02	2020-05-02
LISN	Solar Electronics	9252-50-R-24-BNC	LIP	2019-08-28	2020-08-28
Cable - Conducted Cable Assembly	Northwest EMC	EVG, HHD, RKT	EVGA	2019-01-07	2020-01-07

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

ECHN0015-10

MODES INVESTIGATED

BT FHSS, Tx, DH5, Mid Ch. 2441 MHz

Report No. ECHN0015.6

EUT:	Thor Radio Module AC WLAN and Bluetooth and BLE	Work Order:	ECHN0015
Serial Number:	30	Date:	2019-12-27
Customer:	EchoNous, Inc.	Temperature:	20.3°C
Attendees:	None	Relative Humidity:	36.9%
Customer Project:	None	Bar. Pressure:	1026 mb
Tested By:	Cole Ghizzone	Job Site:	EV07
Power:	5.0 VDC via 110VAC/60Hz	Configuration:	ECHN0015-10

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

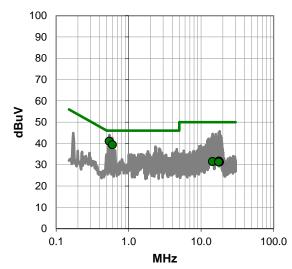
Run #:	20	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

BT FHSS, Tx, DH5, Mid Ch. 2441 MHz


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. ECHN0015.6 15/95

RESULTS - Run #20

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.5	23.800	19.9	43.7	56.0	-12.3
0.6	21.800	19.9	41.7	56.0	-14.3
18.0	24.200	20.6	44.8	60.0	-15.2
17.5	23.500	20.6	44.1	60.0	-15.9
17.6	22.600	20.6	43.2	60.0	-16.8
17.5	22.500	20.6	43.1	60.0	-16.9
14.4	20.400	20.4	40.8	60.0	-19.2

	Average	Data - vs	 Average 	Limit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.5	21.100	19.9	41.0	46.0	-5.0
0.6	19.500	19.9	39.4	46.0	-6.6
17.6	11.100	20.6	31.7	50.0	-18.3
14.4	11.100	20.4	31.5	50.0	-18.5
17.5	10.800	20.6	31.4	50.0	-18.6
18.0	10.700	20.6	31.3	50.0	-18.7
17.5	10.700	20.6	31.3	50.0	-18.7

CONCLUSION

Pass

Tested By

EUT:	Thor Radio Module AC WLAN and Bluetooth and BLE	Work Order:	ECHN0015
Serial Number:	30	Date:	2019-12-27
Customer:	EchoNous, Inc.	Temperature:	20.3°C
Attendees:	None	Relative Humidity:	36.9%
Customer Project:	None	Bar. Pressure:	1026 mb
Tested By:	Cole Ghizzone	Job Site:	EV07
Power:	5.0 VDC via 110VAC/60Hz	Configuration:	ECHN0015-10

TEST SPECIFICATIONS

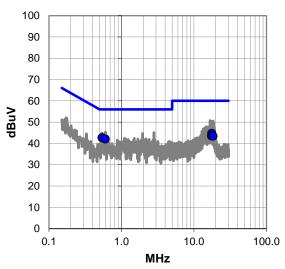
Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

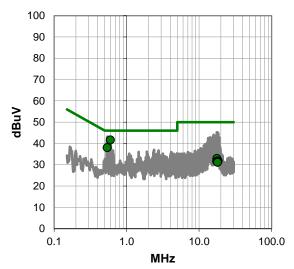
Run #:	21	Line:	High Line	Add. Ext. Attenuation (dB):	0
--------	----	-------	-----------	-----------------------------	---

COMMENTS

None


EUT OPERATING MODES

BT FHSS, Tx, DH5, Mid Ch. 2441 MHz


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. ECHN0015.6 17/95

RESULTS - Run #21

Quasi Peak Data - vs - Quasi Peak Limit

	adoi i oak	Data 10	Quuoi	our Ellin	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.5	22.800	19.9	42.7	56.0	-13.3
0.6	22.200	19.9	42.1	56.0	-13.9
17.6	24.100	20.6	44.7	60.0	-15.3
18.0	22.900	20.6	43.5	60.0	-16.5
18.0	22.900	20.6	43.5	60.0	-16.5
17.5	22.900	20.6	43.5	60.0	-16.5
18.4	22.700	20.7	43.4	60.0	-16.6

Average Data - vs - Average Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
0.6	21.700	19.9	41.6	46.0	-4.4					
0.5	18.100	19.9	38.0	46.0	-8.0					
17.6	12.300	20.6	32.9	50.0	-17.1					
18.4	11.000	20.7	31.7	50.0	-18.3					
17.5	11.000	20.6	31.6	50.0	-18.4					
18.0	10.800	20.6	31.4	50.0	-18.6					
18.0	10.500	20.6	31.1	50.0	-18.9					

CONCLUSION

Pass

Tested By

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIA	25-Apr-18	25-Apr-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	29-Mar-19	29-Mar-20
Attenuator	Fairview Microwave	SA4014-20	TKV	18-Jan-19	18-Jan-20
Block - DC	Fairview Microwave	SD3379	AMU	18-Jan-19	18-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	5-May-19	5-May-20

TEST DESCRIPTION

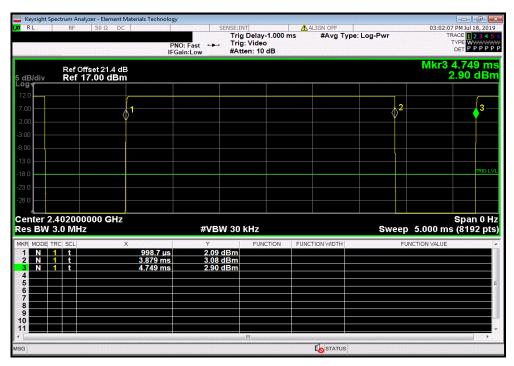
The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

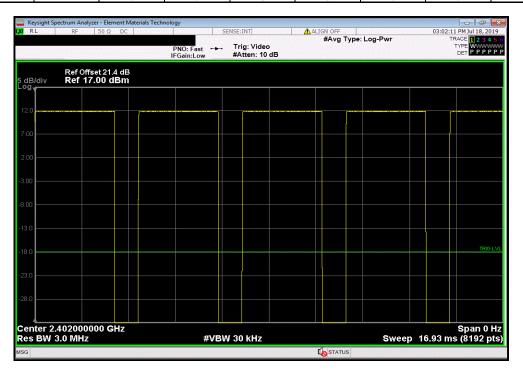
The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.


EUT: Thor Radio Module AC WLAN and Bluetooth and BLE
Serial Number: Pre-production #1
Customer: EchoNous, Inc. Work Order: ECHN0015
Date: 17-Jul-19
Temperature: 22.4 °C Humidity: 59.2% RH Barometric Pres.: 1015 mbar Project: None
Tested by: Brian Fahey and Jeff Alcoke
TEST SPECIFICATIONS Power: 3.7 VDC Test Method Job Site: NC0A FCC 15.247:2019 COMMENTS Reference level offset: RF measurement cable, 20 dB attenuator, and DC Block = 21.4 dBm. DEVIATIONS FROM TEST STANDARD mun Johny Configuration # JAH AL Signature Number of Pulses Value (%) Pulse Width Period Results (%) DH5, GFSK Low Channel, 2402 MHz Low Channel, 2402 MHz 76.8 N/A 76.8 N/A N/A N/A N/A N/A 2.88 ms 3.75 ms N/A N/A N/A N/A N/A 3.75 ms Mid Channel, 2441 MHz 2.88 ms Mid Channel, 2441 MHz N/A N/A N/A High Channel, 2480 MHz High Channel, 2480 MHz 2.879 ms 3.75 ms N/A 76.8 N/A N/A N/A N/A N/A N/A 2DH5, pi/4-DQPSK Low Channel, 2402 MHz 2.373 ms 3.75 ms 63.3 N/A N/A Low Channel, 2402 MHz Mid Channel, 2441 MHz N/A 2.374 ms N/A 3.751 ms N/A 63.3 N/A N/A N/A N/A 5 1 N/A 3.75 ms N/A N/A Mid Channel, 2441 MHz N/A 5 N/A N/A High Channel, 2480 MHz 2.373 ms 63.3 N/A High Channel, 2480 MHz N/A N/A 5 N/A N/A N/A 3DH5, 8-DPSK Low Channel, 2402 MHz Low Channel, 2402 MHz 3.75 ms N/A 76.9 N/A N/A N/A 2.884 ms N/A N/A N/A Mid Channel, 2441 MHz Mid Channel, 2441 MHz 3.75 ms N/A 76.9 N/A N/A N/A N/A N/A 2.884 ms N/A High Channel, 2480 MHz High Channel, 2480 MHz 76.9 N/A N/A N/A N/A N/A 2.883 ms 3.75 ms N/A N/A

Report No. ECHN0015.6 20/95

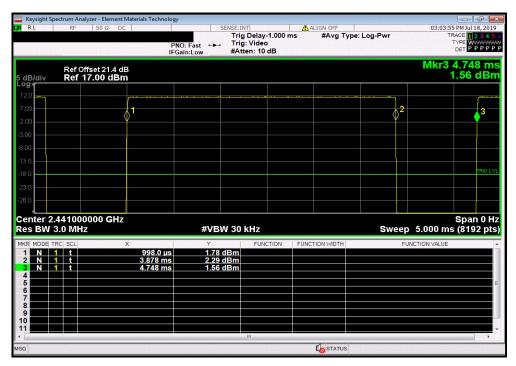


DH5, GFSK, Low Channel, 2402 MHz

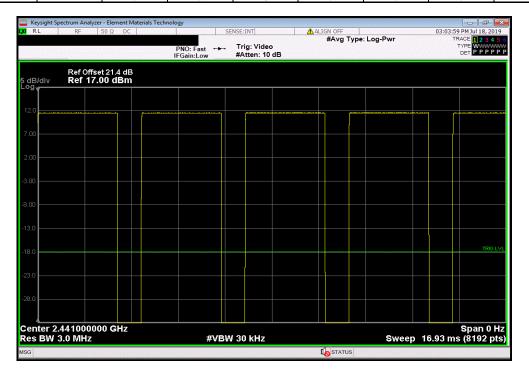
| Number of Value Limit
| Pulse Width | Period | Pulses (%) (%) | Results |
| 2.88 ms | 3.75 ms | 1 | 76.8 | N/A | N/A |

	DH5, GFSK, Low Channel, 2402 MHz						
			Number of	Value	Limit		
	 Pulse Width	Period	Pulses	(%)	(%)	Results	
i	N/A	N/A	5	N/A	N/A	N/A	

Report No. ECHN0015.6 21/95



DH5, GFSK, Mid Channel, 2441 MHz

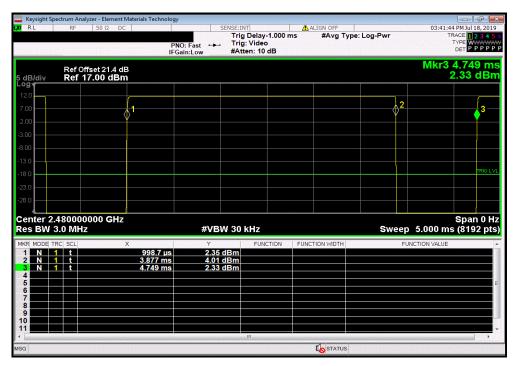

Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

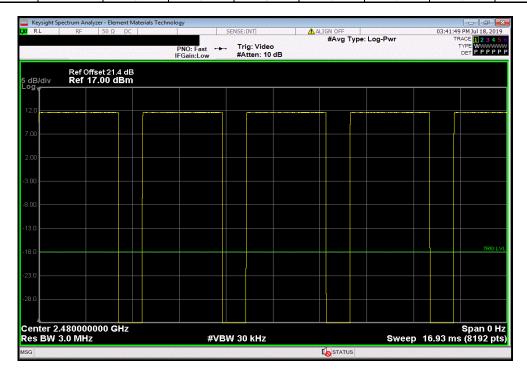
2.88 ms 3.75 ms 1 76.8 N/A N/A

	DH5, GFSK, Mid Channel, 2441 MHz						
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	N/A	N/A	5	N/A	N/A	N/A	

Report No. ECHN0015.6 22/95



DH5, GFSK, High Channel, 2480 MHz

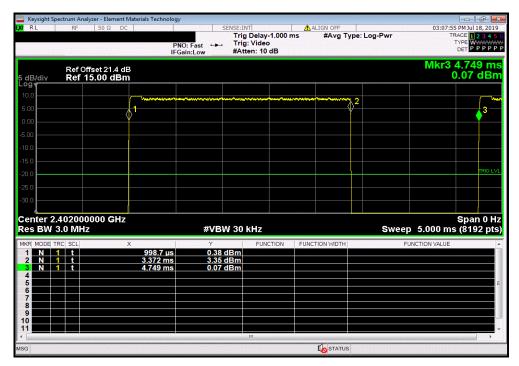

Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

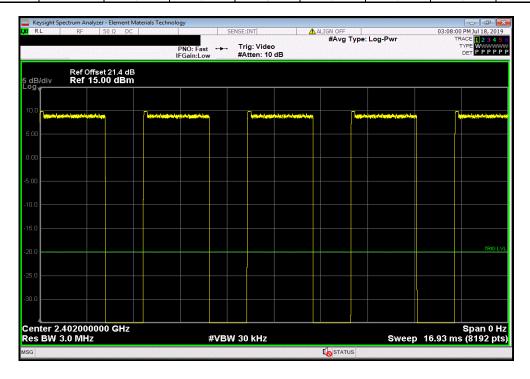
2.879 ms 3.75 ms 1 76.8 N/A N/A

	DH5, GFSK, High Channel, 2480 MHz					
			Number of	Value	Limit	
_	Pulse Width	Period	Pulses	(%)	(%)	Results
ĺ	N/A	N/A	5	N/A	N/A	N/A

Report No. ECHN0015.6 23/95



2DH5, pi/4-DQPSK, Low Channel, 2402 MHz

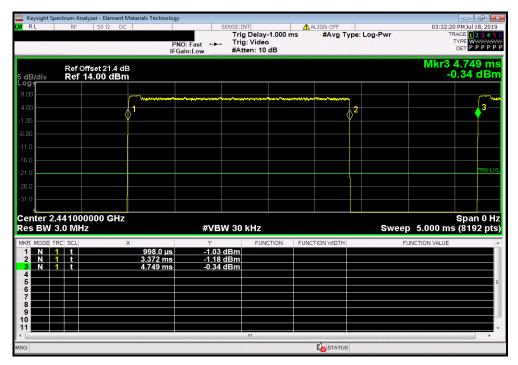

Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

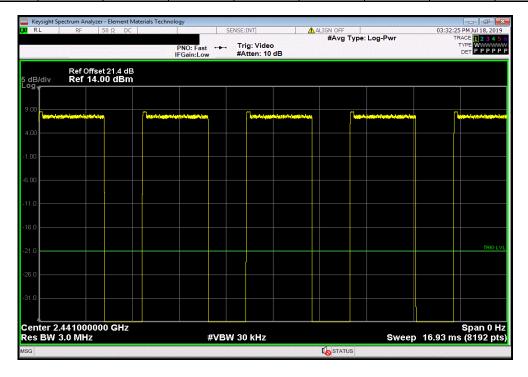
2.373 ms 3.75 ms 1 63.3 N/A N/A

		2DH5, pi/4-D0	QPSK, Low Chan	nel, 2402 MHz		
			Number of	Value	Limit	
_	Pulse Width	Period	Pulses	(%)	(%)	Results
ĺ	N/A	N/A	5	N/A	N/A	N/A

Report No. ECHN0015.6 24/95



2DH5, pi/4-DQPSK, Mid Channel, 2441 MHz

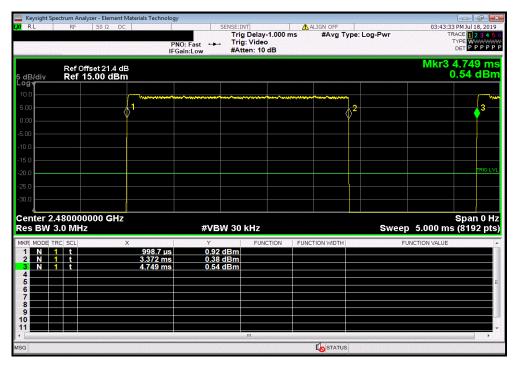

Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

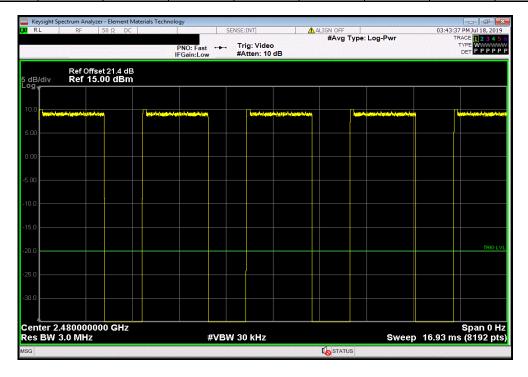
2.374 ms 3.751 ms 1 63.3 N/A N/A

		2DH5, pi/4-D0	QPSK, Mid Chani	nel, 2441 MHz		
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

Report No. ECHN0015.6 25/95



2DH5, pi/4-DQPSK, High Channel, 2480 MHz

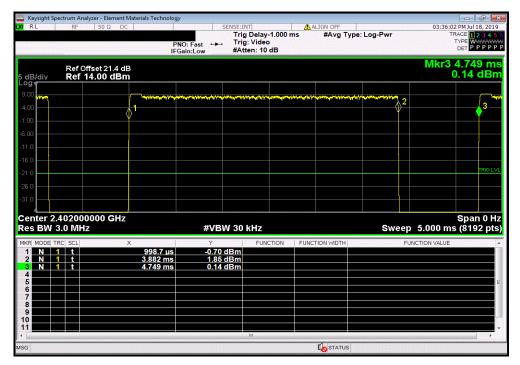

Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

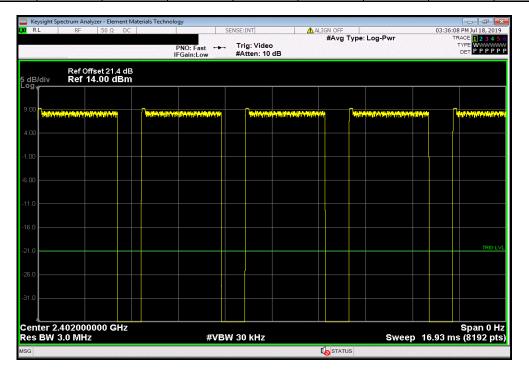
2.373 ms 3.75 ms 1 63.3 N/A N/A

		2DH5, pi/4-DC	PSK, High Chan	nel, 2480 MHz				
			Number of	Value	Limit			
	Pulse Width	Period	Pulses	(%)	(%)	Results		
N/A N/A 5 N/A N/A								

Report No. ECHN0015.6



3DH5, 8-DPSK, Low Channel, 2402 MHz

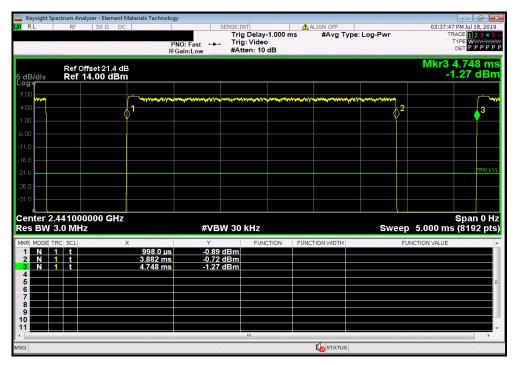

Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

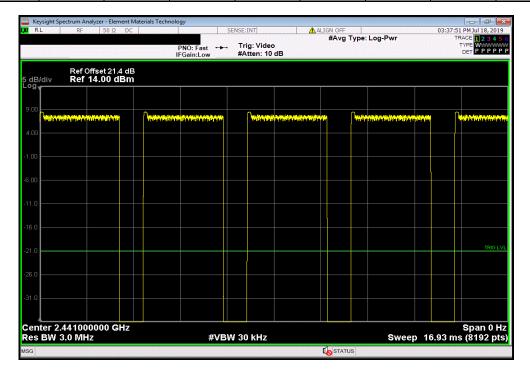
2.884 ms 3.75 ms 1 76.9 N/A N/A

		3DH5, 8-DF	SK, Low Channe	l, 2402 MHz		
			Number of	Value	Limit	
	 Pulse Width	Period	Pulses	(%)	(%)	Results
l	N/A	N/A	5	N/A	N/A	N/A

Report No. ECHN0015.6 27/95



3DH5, 8-DPSK, Mid Channel, 2441 MHz

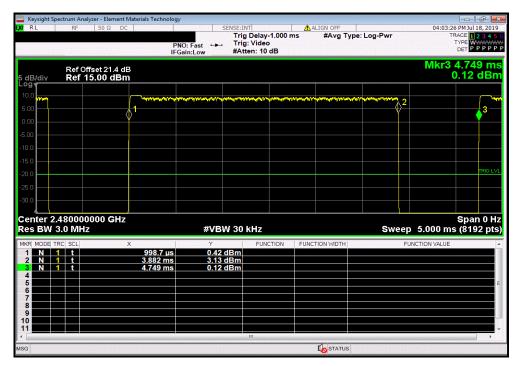

Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

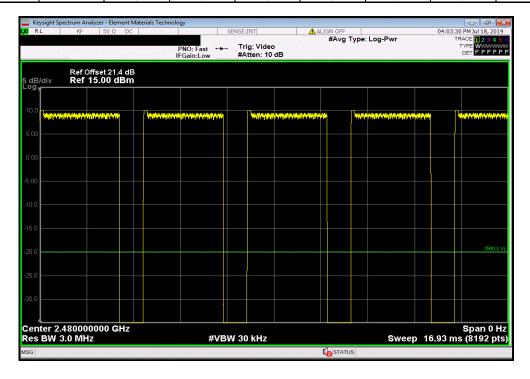
2.884 ms 3.75 ms 1 76.9 N/A N/A

	3DH5, 8-DPSK, Mid Channel, 2441 MHz										
				Number of	Value	Limit					
		Pulse Width	Period	Pulses	(%)	(%)	Results				
i		N/A	N/A	5	N/A	N/A	N/A				

Report No. ECHN0015.6 28/95


29/95

3DH5, 8-DPSK, High Channel, 2480 MHz


Number of Value Limit

Pulse Width Period Pulses (%) (%) Results

2.883 ms 3.75 ms 1 76.9 N/A N/A

	3DH5	, 8-DPSK, High Chan	nel, 2480 MHz		
		Number of	Value	Limit	
 Pulse V	Nidth Perio	d Pulses	(%)	(%)	Results
N/A	A N/A	5	N/A	N/A	N/A

Report No. ECHN0015.6

CARRIER FREQUENCY SEPARATION

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIA	25-Apr-18	25-Apr-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	29-Mar-19	29-Mar-20
Attenuator	Fairview Microwave	SA4014-20	TKV	18-Jan-19	18-Jan-20
Block - DC	Fairview Microwave	SD3379	AMU	18-Jan-19	18-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	5-May-19	5-May-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The channel carrier frequencies in the 2400-2483.5MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Or, if the output power is less than 125 mW, the channel separation can be 25 kHz or 2/3 of the 20dB bandwidth. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

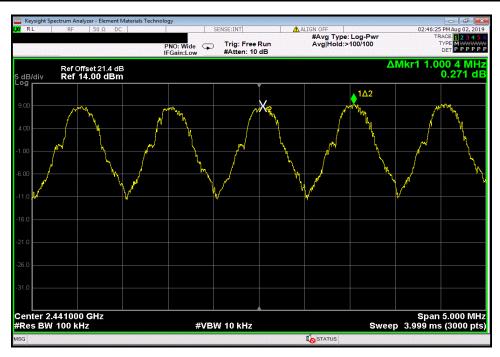
Report No. ECHN0015.6

CARRIER FREQUENCY SEPARATION

						TbtTx 2018.09.13	XMit 2019.06.11
EUT:	Thor Radio Module AC W	/LAN and Bluetooth and BLE		_	Work Order:	ECHN0015	
Serial Number:	Pre-production #1					1-Aug-19	
Customer:	EchoNous, Inc.				Temperature:	22.6 °C	
Attendees:						48.7% RH	
Project:			Barometric Pres.:				
	Brian Fahey and Jeff Alco	oke	Job Site:	NC0A			
TEST SPECIFICATION	ONS			Test Method			
FCC 15.247:2019				ANSI C63.10:2013			
COMMENTS							
Reference level offs	set: RF measurement cab	le, 20 dB attenuator, and DC Block = 2	1.4 dBm.				
DEVIATIONS FROM	TEST STANDARD						
None							
Configuration #	1	Signature	m Ad	un Jaff			
			·	-	•	Limit	•
					Value	(≥)	Results
DH5, GFSK, Hopping							
	Mid Channel 2441 MHz				1 0 MHz	1 MHz	Pass

Report No. ECHN0015.6 31/95

CARRIER FREQUENCY SEPARATION



DH5, GFSK, Hopping Mode, Mid Channel, 2441 MHz

Limit

Value (2) Results

1.0 MHz 1 MHz Pass

Report No. ECHN0015.6 32/95

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

BT EDR, Low Ch. 0 = 2402 MHz, Mid Ch. 39 = 2441 MHz, High Ch. 78 = 2480 MHz, Software power setting = 9

POWER SETTINGS INVESTIGATED

3.7 VDC

CONFIGURATIONS INVESTIGATED

ECHN0015 - 4

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop	Frequenc	٧	26.5 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

ILOI LQUII MILITI					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - High Pass	Micro-Tronics	HPM50111	HFO	11-Dec-2018	12 mo
Filter - Low Pass	Micro-Tronics	LPM50004	LFD	15-Feb-2019	12 mo
Attenuator	Coaxicom	3910-20	AXZ	15-Feb-2019	12 mo
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	EVY	31-Jul-2019	12 mo
Cable	None	Standard Gain Horns Cable	EVF	18-Nov-2019	12 mo
Cable	N/A	Double Ridge Horn Cables	EVB	18-Nov-2019	12 mo
Cable	N/A	Bilog Cables	EVA	18-Nov-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	31-Jul-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	18-Nov-2019	12 mo
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	18-Nov-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	18-Nov-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	18-Nov-2019	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AIV	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AHV	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	0 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	7-Feb-2018	24 mo
Antenna - Biconilog	Teseq	CBL 6141B	AXR	2-Oct-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	24-Mar-2019	12 mo
-					

Report No. ECHN0015.6 33/95

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

SPURIOUS RADIATED EMISSIONS

9607.550

PSA-ESCI 2019.05.10

EmiR5 2019.08.15.1

W	ork Order:		N0015		Date:		v-2019	_		///		6	1
	Project: Job Site:		one V01	Te	mperature: Humidity:		<u>°C</u> % RH		A	//			
Seria	I Number:		944002-03	Barom	etric Pres.:		mbar		Tested by:	Jeff Alcoke	9		1
	EUT:	Thor Radi		C WLAN a	nd Bluetooth	and BLE							- -
	figuration:												=
	Attendees:	EchoNous, Inc. None											_
	UT Power:		3.7 VDC										
Operat	ting Mode:	BT EDR,	BT EDR, Low Ch. 0 = 2402 MHz, Mid Ch. 39 = 2441 MHz, High Ch. 78 = 2480 MHz, Software power setting = 9										
Орстан	ing Mode.												=
D	Deviations:	None											
		See comm	nents below	for channe	el, modulatio	n type, and	l FUT orie	ntation Note	e: the emiss	sion below o	loes not fa	ll in a	=
С	omments:				vas the only								
					rements on								_
Test Spec							Test Meth						= =
FCC 15.24	17:2019						ANSI C63	3.10:2013					
											-		=
Run #	12	Test Di	istance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	I Pa	ass	=
Γ													
80 -													
70													
60 -													
00													
												-	
ے ⁵⁰ ع													
w//n g p												Ĭ.	
a 40 -												*	
ס													
30													
00													
00													
20 -													
10													
0 +													
100	00											10000	
						MHz				■ PK	◆ AV	• QP	
							Delevited					1	
						External	Polarity/ Transducer		Distance			Compared to	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)	
, ,													Comments
9607.850 9607.867	53.7 52.6	-1.9 -1.9	2.23 1.0	286.0 300.0	3.0 3.0	0.0 0.0	Horz Vert	AV AV	0.0 0.0	51.8 50.7	54.0 54.0	-2.2 -3.3	Low Ch, DH5, EUT Horz Low Ch, DH5, EUT Vert
9607.858	51.6	-1.9	2.51	56.0	3.0	0.0	Horz	AV	0.0	49.7	54.0	-4.3	Low Ch, DH5, EUT on Side
9607.817 9608.342	50.6 49.9	-1.9 -1.9	3.23	54.0 61.0	3.0 3.0	0.0 0.0	Vert	AV AV	0.0	48.7 48.0	54.0 54.0	-5.3 -6.0	Low Ch, DH5, EUT on Side Low Ch, DH5, EUT Horz
9608.342 9608.317	49.9 48.9	-1.9 -1.9	2.37 1.37	136.0	3.0	0.0	Vert Horz	AV	0.0 0.0	48.0 47.0	54.0 54.0	-6.0 -7.0	Low Ch, DH5, EUT Vert
9608.225	43.9	-1.9	2.26	35.0	3.0	0.0	Horz	AV	0.0	42.0	54.0	-12.0	Low Ch, 3DH5, EUT Horz
9607.717 9607.450	42.7 62.0	-1.9 -1.9	2.26 2.23	35.0 286.0	3.0 3.0	0.0 0.0	Horz Horz	AV PK	0.0 0.0	40.8 60.1	54.0 74.0	-13.2 -13.9	Low Ch, 2DH5, EUT Horz Low Ch, DH5, EUT Horz
9607.717	61.0	-1.9	1.0	300.0	3.0	0.0	Vert	PK	0.0	59.1	74.0	-14.9	Low Ch, DH5, EUT Vert
9607.717	60.0	-1.9	2.51	56.0	3.0	0.0	Horz	PK	0.0	58.1	74.0	-15.9	Low Ch, DH5, EUT on Side
9608.842 9608.383	59.0 58.4	-1.9 -1.9	3.23 2.37	54.0 61.0	3.0 3.0	0.0 0.0	Vert Vert	PK PK	0.0 0.0	57.1 56.5	74.0 74.0	-16.9 -17.5	Low Ch, DH5, EUT on Side Low Ch, DH5, EUT Horz
9608.683	57.4	-1.9	1.37	136.0	3.0	0.0	Horz	PK	0.0	55.5	74.0	-18.5	Low Ch, DH5, EUT Vert
9608.083	57.1	-1.9	2.26	35.0	3.0	0.0	Horz	PK	0.0	55.2	74.0	-18.8	Low Ch, 3DH5, EUT Horz

Report No. ECHN0015.6 35/95

-19.4

Low Ch, DH5, EUT Vert Low Ch, 3DH5, EUT Horz Low Ch, 2DH5, EUT Horz

35.0

3.0

Horz

SPURIOUS RADIATED EMISSIONS

Seri Cor I Opera	Attendees EUT Power ating Mode Deviations Comments	H1UR1 Thor Rac Thor R	,	Baromo C WLAN a = 2402 MHz	z, Mid Ch. 39	21 36.8° 1000 n and BLE 9 = 2441 M		n. 78 = 248	Tested by:	ware powe	er setting =		
Run	# 13	Test D	Distance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass	- -
80 70													
60													
m//ngp								•	•				
30								•	•				
20 10													
0													
0	10		100			1000 MHz			10000	■ PK	◆ AV	100000 • QP	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7440.475 7441.933 7321.608 7322.892 7321.217 7322.417 7340.733 7442.400 7323.450 4961.908 4884.400 4957.658 4884.467 4804.242 4806.125 12397.500 12009.611 12203.441	25.4 25.6 25.5 25.5 25.5 25.5 39.2 38.8 39.1 38.9 25.9 25.9 25.9 25.6 25.6 25.7 26.3 26.2 26.4 26.4 26.3 26.3	14.6 14.6 14.1 14.1 14.1 14.1 14.6 14.6	1.5 1.44 1.44 1.5 1.5 1.5 1.5 1.5 1.5 1.44 1.44	360.0 0.0 360.0 0.0 69.0 0.0 360.0 69.0 0.0 360.0 0.0 360.0 0.0 360.0 0.0 360.0 360.0 360.0 360.0 360.0 360.0 360.0 324.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vert Horz Horz Vert Vert Horz Vert Vert Vert Vert Vert Vert Vert Vert	AV AV AV AV PK PK PK PK AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	40.1 40.0 39.7 39.7 39.6 39.6 53.8 53.4 53.2 53.0 52.9 52.8 32.4 32.3 32.1 31.8 31.7 27.5 27.5 27.3 27.3 27.2	54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-13.9 -14.0 -14.3 -14.4 -14.4 -20.2 -20.6 -20.8 -21.0 -21.1 -21.2 -21.6 -21.7 -21.9 -22.2 -22.3 -26.5 -26.7 -26.8	High Ch, DH5, EUT Vert High Ch, DH5, EUT Horz Mid Ch, DH5, EUT Horz Mid Ch, DH5, EUT Horz Mid Ch, DH5, EUT Vert Mid Ch, 2DH5, EUT Horz Mid Ch, 3DH5, EUT Horz High Ch, DH5, EUT Horz High Ch, DH5, EUT Wert Mid Ch, 2DH5, EUT Wert Mid Ch, 3DH5, EUT Wert Mid Ch, DH5, EUT Horz Mid Ch, DH5, EUT Wert Mid Ch, DH5, EUT Horz High Ch, DH5, EUT Wert Low Ch, DH5, EUT Wert Low Ch, DH5, EUT Horz High Ch, DH5, EUT Horz Mid CH, DH5, EUT Horz Low Ch, DH5, EUT Wert

Report No. ECHN0015.6 36/95

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
12205.320	26.4	0.8	1.5	0.0	3.0	0.0	Vert	AV	0.0	27.2	54.0	-26.8	Mid CH, DH5, EUT Vert
4961.792	39.8	6.5	1.5	0.0	3.0	0.0	Vert	PK	0.0	46.3	74.0	-27.7	High Ch, DH5, EUT Vert
4806.225	40.4	5.5	1.44	360.0	3.0	0.0	Horz	PK	0.0	45.9	74.0	-28.1	Low Ch, DH5, EUT Horz
4960.483	39.3	6.5	1.5	360.0	3.0	0.0	Horz	PK	0.0	45.8	74.0	-28.2	High Ch, DH5, EUT Horz
4880.833	39.4	6.4	1.44	0.0	3.0	0.0	Horz	PK	0.0	45.8	74.0	-28.2	Mid Ch, DH5, EUT Horz
4882.267	39.0	6.4	1.44	360.0	3.0	0.0	Vert	PK	0.0	45.4	74.0	-28.6	Mid Ch, DH5, EUT Vert
4803.367	39.1	5.4	1.44	0.0	3.0	0.0	Vert	PK	0.0	44.5	74.0	-29.5	Low Ch, DH5, EUT Vert
12398.100	40.2	1.1	1.5	0.0	3.0	0.0	Horz	PK	0.0	41.3	74.0	-32.7	High Ch, DH5, EUT Horz
12397.550	40.2	1.1	1.5	360.0	3.0	0.0	Vert	PK	0.0	41.3	74.0	-32.7	High Ch, DH5, EUT Vert
12011.680	40.2	1.0	1.5	324.0	3.0	0.0	Vert	PK	0.0	41.2	74.0	-32.8	Low Ch, DH5, EUT Vert
12206.570	40.3	0.8	1.5	0.0	3.0	0.0	Vert	PK	0.0	41.1	74.0	-32.9	Mid CH, DH5, EUT Vert
12206.580	40.0	0.8	1.5	360.0	3.0	0.0	Horz	PK	0.0	40.8	74.0	-33.2	Mid CH, DH5, EUT Horz
12012.230	39.5	1.0	1.5	347.0	3.0	0.0	Horz	PK	0.0	40.5	74.0	-33.5	Low Ch, DH5, EUT Horz

SPURIOUS RADIATED EMISSIONS

										EmiR5 2019.08.15.1		PSA-ESCI 2019.05.10)
W	ork Order:		N0015		Date:		v-2019		1	//			
	Project:		one	Ter	nperature:		2 °C	(/		//			
	Job Site:		V01		Humidity:		% RH		(1)	141	15-		_
Seria	al Number:		944002-03		etric Pres.:		mbar		Tested by:	Jeff Alcoke	;		_
	EUT:	Thor Radi	o Module AC	C WLAN a	nd Bluetooth	and BLE							_
	figuration:	4											_
	Customer:		s, Inc.										_
	Attendees:												_
E	UT Power:												_
Operat	ting Mode:	BT EDR, I	Low Ch. 0 =	2402 MHz	, Mid Ch. 39	= 2441 M	Hz, High Ch	ı. 78 = 248	80 MHz, Soft	ware powe	r setting = 9	9	
Ороги	ing mode.												_
D	Deviations:	None											
	ocviations.												_
							d EUT orien	tation. Not	e: All emissi	ons were n	oise floor a	ind do not	
С	comments:	need a Du	ity Cycle cor	rection fac	tor applied t	o them.							
													_
Test Spec	ifications						Test Meth	od					-
FCC 15.24							ANSI C63.						=
1 00 13.2-	47.2013						AIVOI 000.	10.2013					
													=
Run #	16	Test Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)	l	Results	Pa	ass	_
-													
00													
80 -													
70 -													
/0 T													
60													
00													
-													
_ 50 -													
ے ع													
w/ /ng p	*									•			
2 40													
뜅													
30 -													
20 -													
10 +													
0 +	00	240	10	2420		2440		2400		2400		2500	
238	80	240	10	2420		2440		2460		2480		2500	
						MHz				■ PK	◆ AV	QP	
											* AV	- 41	
						F.4.	Polarity/		Dist			0	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	External Attenuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)	. урс	Delector	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
													Comments
2388.927	28.7	-4.0	1.5	69.0	3.0	20.0	Horz	AV	0.0	44.7	54.0	-9.3	Low Ch, DH5, EUT Horz
2389.633	28.6	-4.0	1.5	69.0	3.0	20.0	Horz	AV	0.0	44.6	54.0	-9.4	Low Ch, 3DH5, EUT Horz
2483.957	28.3	-3.8	1.05	203.0	3.0 3.0	20.0	Horz	AV	0.0	44.5	54.0	-9.5 -9.5	High Ch, DH5, EUT Horz High Ch, DH5, EUT Horz
2483.597 2483.520	28.3 28.3	-3.8 -3.8	1.5 1.5	51.0 91.0	3.0 3.0	20.0 20.0	Vert Horz	AV AV	0.0 0.0	44.5 44.5	54.0 54.0	-9.5 -9.5	High Ch, 3DH5, EUT Horz
2389.660	28.5	-3.6 -4.0	2.99	33.0	3.0	20.0	Vert	AV	0.0	44.5	54.0	-9.5 -9.5	Low Ch, DH5, EUT Horz
2389.687	28.5	-4.0	1.5	69.0	3.0	20.0	Horz	AV	0.0	44.5	54.0	-9.5	Low CH, 2DH5, EUT Horz
2483.760	28.2	-3.8	1.5	279.0	3.0	20.0	Horz	AV	0.0	44.4	54.0	-9.6	High Ch, DH5, EUT Vert
2483.500	28.2	-3.8	1.54	321.0	3.0	20.0	Vert	AV	0.0	44.4	54.0	-9.6	High Ch, DH5, EUT Vert
2483.657	28.2	-3.8	1.5	89.0	3.0	20.0	Horz	AV	0.0	44.4	54.0	-9.6	High Ch, DH5, EUT on Side
2483.550	28.2	-3.8	3.32	308.0	3.0	20.0	Vert	AV	0.0	44.4	54.0	-9.6	High Ch, DH5, EUT on Side
2483.547	28.2	-3.8	1.5	91.0	3.0	20.0	Horz	AV	0.0	44.4	54.0	-9.6	High Ch, 2DH5, EUT Horz
2389.650	43.6	-4.0	1.5 1.5	69.0 69.0	3.0 3.0	20.0 20.0	Horz Horz	PK PK	0.0 0.0	59.6	74.0 74.0	-14.4 -14.6	Low Ch, DH5, EUT Horz Low Ch, 3DH5, EUT Horz
2388.930	43.4	-4.0								59.4			

Report No. ECHN0015.6 38/95

PK PK PK

PK

0.0

0.0

0.0

58.8

58.7

58.6

58.4

58.4

74.0

74.0 74.0 74.0 74.0

74.0

-15.2

-15.3

-15.4

-15.6

-15.6

Low CH, 2DH5, EUT Horz

High Ch, DH5, EUT Vert High Ch, DH5, EUT Horz

High Ch, 2DH5, EUT Horz

High Ch, DH5, EUT Horz

High Ch, DH5, EUT on Side

3.0

3.0 3.0

3.0

20.0

20.0

20.0 20.0

20.0

20.0

Horz

Vert

Vert Horz

Horz

69.0

321.0

51.0 91.0

1.5 1.54 1.5 1.5

1.05

43.2

42.6

42.4 42.3

42.2

2388.493

2484.140

2484.523

2485.087

2485.370

2483.897

-3.8

-3.7 -3.7

-3.7

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2388.500	42.3	-4.0	2.99	33.0	3.0	20.0	Vert	PK	0.0	58.3	74.0	-15.7	Low Ch, DH5, EUT Horz
2485.363	41.9	-3.7	1.5	91.0	3.0	20.0	Horz	PK	0.0	58.2	74.0	-15.8	High Ch, 3DH5, EUT Horz
2485.440	41.8	-3.7	1.5	279.0	3.0	20.0	Horz	PK	0.0	58.1	74.0	-15.9	High Ch, DH5, EUT Vert
2485.393	41.6	-3.7	1.5	89.0	3.0	20.0	Horz	PK	0.0	57.9	74.0	-16.1	High Ch, DH5, EUT on Side

NUMBER OF HOPPING FREQUENCIES

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIA	25-Apr-18	25-Apr-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	29-Mar-19	29-Mar-20
Attenuator	Fairview Microwave	SA4014-20	TKV	18-Jan-19	18-Jan-20
Block - DC	Fairview Microwave	SD3379	AMU	18-Jan-19	18-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	5-May-19	5-May-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The number of hopping frequencies was measured across the authorized band. The hopping function of the EUT was enabled.

NUMBER OF HOPPING FREQUENCIES

				TbtTx 2018.09.1	3 XMit 2019.06.11
EUT:	Thor Radio Module AC WLAN and Bluetooth and BLE		Work Order:	ECHN0015	
Serial Number:	Pre-production #1		Date:	24-Jul-19	
Customer:	EchoNous, Inc.		Temperature:	22.3 °C	
Attendees:	None		Humidity:	52% RH	
Project:	None		Barometric Pres.:	1028 mbar	
Tested by:	Brian Fahey and Jeff Alcoke	Power: 3.7 VDC	Job Site:	NC0A	
TEST SPECIFICATION	DNS	Test Method			
FCC 15.247:2019		ANSI C63.10:2013			
COMMENTS					
Reference level offs	et: RF measurement cable, 20 dB attenuator, and DC Block = 2	21.4 dBm.			
DEVIATIONS FROM	TEST STANDARD				
None					
Configuration #	1 Signature	- John Jeff			
	_	_	Number of	Limit	
			Channels	(≥)	Results
DH5, GFSK					
	Mid Channel, 2441 MHz		79	15	Pass

Report No. ECHN0015.6 41/95

NUMBER OF HOPPING FREQUENCIES

DH5, GFSK, Mid Channel, 2441 MHz

Number of Limit
Channels (2) Results

79 15 Pass

Report No. ECHN0015.6 42/95

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIA	25-Apr-18	25-Apr-20
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	29-Mar-19	29-Mar-20
Attenuator	Fairview Microwave	SA4014-20	TKV	18-Jan-19	18-Jan-20
Block - DC	Fairview Microwave	SD3379	AMU	18-Jan-19	18-Jan-20
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	5-May-19	5-May-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The hopping function of the EUT was enabled.

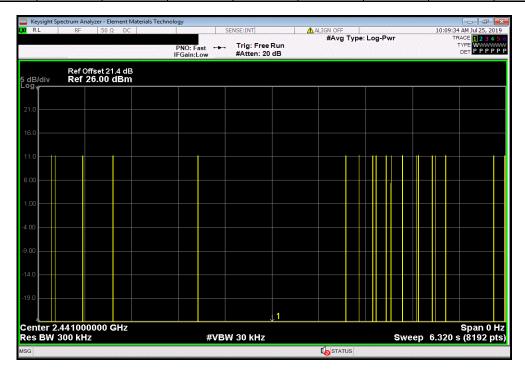
The dwell time limit is based on the Number of Hopping Channels * 400 mS. For Bluetooth this would be 79 Channels * 400 mS = 31.6 Sec.

On Time During 31.6 Sec = Pulse Width * Average Number of Pulses * Scale Factor

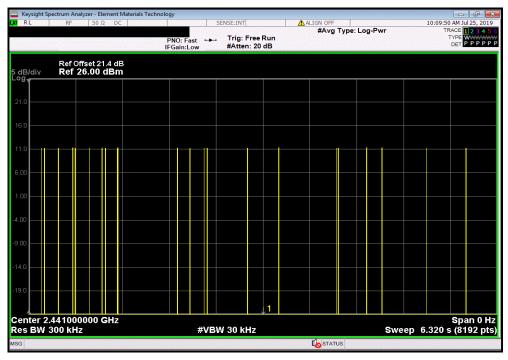
>Average Number of Pulses is based on 4 samples.

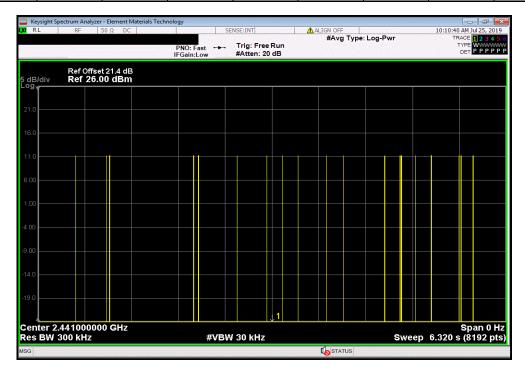
➤ Scale Factor = 31.6 Sec / Screen Capture Sweep Time = 31.6 Sec / 6.32 Sec = 5

EUT: Thor Radio Module AC WLAN and Bluetooth and BLE
Serial Number: Pre-production #1
Customer: EchoNous, Inc. Work Order: ECHN0015
Date: 24-Jul-19
Temperature: 22.5 °C Humidity: 49.9% RH Barometric Pres.: 1028 mbar Project: None
Tested by: Brian Fahey and Jeff Alcoke
TEST SPECIFICATIONS Power: 3.7 VDC
Test Method Job Site: NC0A FCC 15.247:2019 ANSI C63.10:2013 COMMENTS Reference level offset: RF measurement cable, 20 dB attenuator, and DC Block = 21.4 dBm. DEVIATIONS FROM TEST STANDARD m 7 duy Configuration # Signature On Time (ms) During 31.6 s Number of Pulses Average No of Pulses Results Factor (ms) (ms) DH5, GFSK Mid Channel, 2441 MHz Mid Channel, 2441 MHz N/A N/A N/A N/A 2.883 N/A N/A N/A N/A 19 22 19 N/A Mid Channel, 2441 MHz Mid Channel, 2441 MHz N/A N/A N/A N/A N/A Mid Channel, 2441 MHz Mid Channel, 2441 MHz N/A 20 N/A N/A N/A N/A N/A N/A 288.3 400 Pass 2.883 20 2DH5, pi/4-DQPSK Mid Channel, 2441 MHz 2.381 N/A N/A N/A N/A N/A N/A Mid Channel, 2441 MHz Mid Channel, 2441 MHz N/A N/A 14 25 N/A 22 20 N/A N/A Mid Channel, 2441 MHz N/A N/A N/A N/A N/A Mid Channel, 2441 MHz N/A N/A N/A 20.25 Mid Channel 2441 MHz 2 381 N/A 241 08 400 Pass 3DH5, 8-DPSK Mid Channel, 2441 MHz Mid Channel, 2441 MHz N/A 22 N/A N/A N/A N/A N/A N/A N/A N/A 2.898 N/A N/A N/A Mid Channel, 2441 MHz Mid Channel, 2441 MHz N/A N/A 22 18 N/A Mid Channel, 2441 MHz Mid Channel, 2441 MHz N/A 20.5 N/A 5 N/A 400 N/A Pass N/A 20 N/A 2.898 N/A 297.05


Report No. ECHN0015.6 44/95

DH5, GFSK, Mid Channel, 2441 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results 2.883 N/A N/A N/A N/A N/A


DH5, GFSK, Mid Channel, 2441 MHz								
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit			
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results		
N/A	19	N/A	N/A	N/A	N/A	N/A		


Report No. ECHN0015.6 45/95

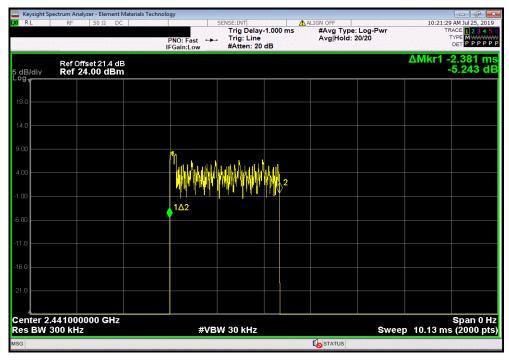
DH5, GFSK, Mid Channel, 2441 MHz **Pulse Width** Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A

DH5, GFSK, Mid Channel, 2441 MHz								
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit			
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results		
N/A	19	N/A	N/A	N/A	N/A	N/A		

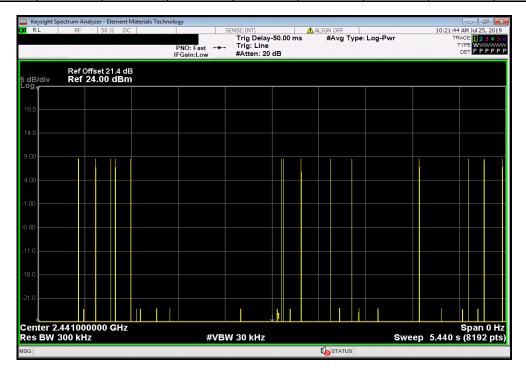
Report No. ECHN0015.6 46/95

TbtTx 2018.09.13 XMit 2019.06.11

	DH5, GFSK, Mid Channel, 2441 MHz									
Pulse	Pulse Width Number of Average No. Scale On Time (ms) Limit									
(1	ns) Puls	es of Pulses	Factor	During 31.6 s	(ms)	Results				
N	V/A 20	N/A	N/A	N/A	N/A	N/A				


DH5, GFSK, Mid Channel, 2441 MHz										
Pulse Width	Pulse Width Number of Average No. Scale On Time (ms) Limit									
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results				
2.883	N/A	20	5	288.3	400	Pass				

Calculation Only

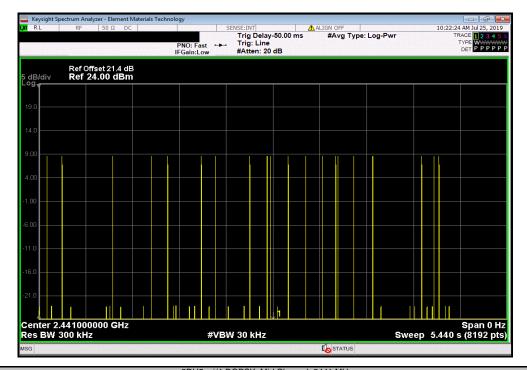

No Screen Capture Required

2DH5, pi/4-DQPSK, Mid Channel, 2441 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A N/A

2DH5, pi/4-DQPSK, Mid Channel, 2441 MHz										
Pulse Width	Pulse Width Number of Average No. Scale On Time (ms) Limit									
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results				
N/A	14	N/A	N/A	N/A	N/A	N/A				

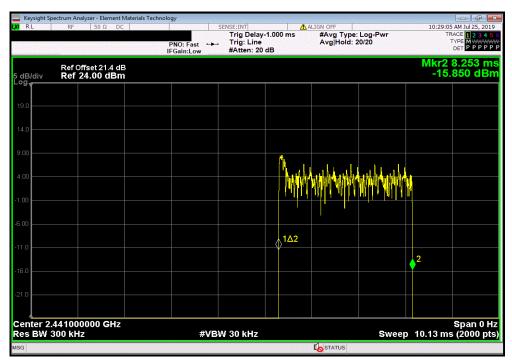
Report No. ECHN0015.6 48/95

2DH5, pi/4-DQPSK, Mid Channel, 2441 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A

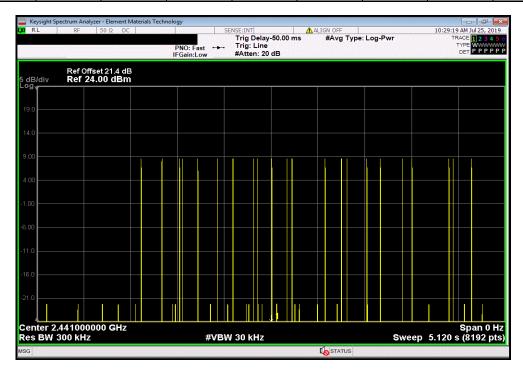

2DH5, pi/4-DQPSK, Mid Channel, 2441 MHz										
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit					
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results	_			
N/A	22	N/A	N/A	N/A	N/A	N/A	I			

Report No. ECHN0015.6 49/95

2DH5, pi/4-DQPSK, Mid Channel, 2441 MHz							
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit		
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results	
N/A	20	N/A	N/A	N/A	N/A	N/A	

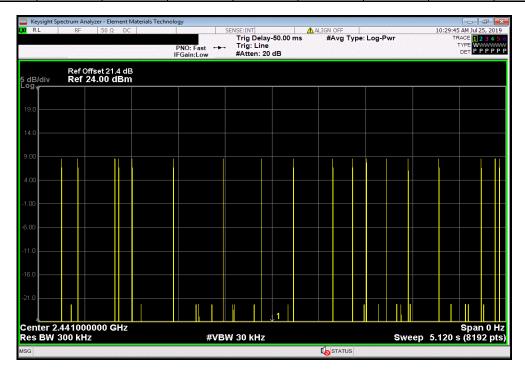

		2DH5, pi/4-D0	JPSK, Mid Chan	inel, 2441 MHz		
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit	
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results
2.381	N/A	20.25	5	241.08	400	Pass

Calculation Only


No Screen Capture Required

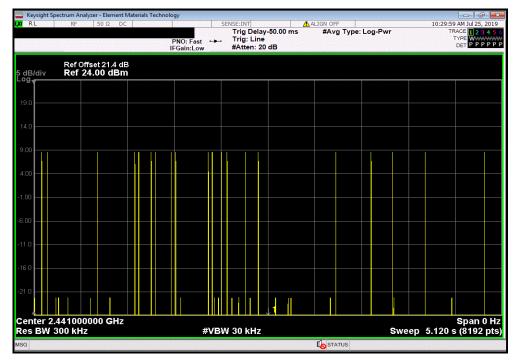
3DH5, 8-DPSK, Mid Channel, 2441 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A N/A


3DH5, 8-DPSK, Mid Channel, 2441 MHz								
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit			
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results		
N/A	22	N/A	N/A	N/A	N/A	N/A	l	


Report No. ECHN0015.6 51/95

3DH5, 8-DPSK, Mid Channel, 2441 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A

	3DH5, 8-DPSK, Mid Channel, 2441 MHz								
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit				
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results			
N/A	18	N/A	N/A	N/A	N/A	N/A			



Report No. ECHN0015.6 52/95

TbtTx 2018.09.13 XMit 2019.06.11

	3DH5, 8-DPSK, Mid Channel, 2441 MHz								
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit				
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results			
N/A	20	N/A	N/A	N/A	N/A	N/A			

	3DH5, 8-DPSK, Mid Channel, 2441 MHz								
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit				
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results			
2.898	N/A	20.5	5	297.05	400	Pass			

Calculation Only

No Screen Capture Required