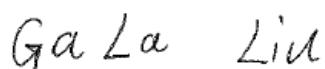


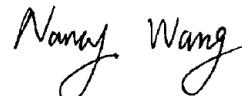
TEST REPORT

Applicant Name: ENCARDIO-RITE ELECTRONICS PVT. LTD.
Address: A-7, INDUSTRIAL ESTATE, TALKATORA ROAD, LUCKNOW,
UP-226011, India
Report Number: 2501P02854E-RF-00
FCC ID: 2AU85EWN-06VC

Test Standard (s)


FCC PART 15.247

Sample Description


Product Type: NEXAWAVE VibraLink Hex
Model No.: EWN-06VC
Multiple Model(s) No.: N/A
Trade Mark:
Date Received: 2025/01/20
Issue Date: 2025/08/01

Test Result:	Pass▲
--------------	-------

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Gala Liu
RF Engineer

Approved By:

Nancy Wang
RF Supervisor

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China
Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION.....	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
OBJECTIVE	5
TEST METHODOLOGY	5
MEASUREMENT UNCERTAINTY	6
TEST FACILITY	6
SYSTEM TEST CONFIGURATION.....	7
DESCRIPTION OF TEST CONFIGURATION	7
EQUIPMENT MODIFICATIONS	7
EUT EXERCISE SOFTWARE	7
SUPPORT EQUIPMENT LIST AND DETAILS	7
EXTERNAL I/O CABLE.....	7
BLOCK DIAGRAM OF TEST SETUP	8
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC §1.1307 (B) & §2.1091- MPE-BASED EXEMPTION.....	11
APPLICABLE STANDARD	11
RESULT	11
FCC §15.203 - ANTENNA REQUIREMENT.....	12
APPLICABLE STANDARD	12
ANTENNA CONNECTOR CONSTRUCTION	12
FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS.....	13
APPLICABLE STANDARD	13
EUT SETUP.....	13
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	14
TEST PROCEDURE	15
FACTOR & OVER LIMIT/MARGIN CALCULATION	15
TEST DATA	16
FCC §15.247(A) (2) - 6 DB EMISSION BANDWIDTH.....	32
APPLICABLE STANDARD	32
TEST PROCEDURE	32
TEST DATA	32
FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER	35
APPLICABLE STANDARD	35
TEST PROCEDURE	35
TEST DATA	36
FCC §15.247(D) - 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE.....	38
APPLICABLE STANDARD	38
TEST PROCEDURE	38
TEST DATA	38

FCC §15.247(E) - POWER SPECTRAL DENSITY.....	40
APPLICABLE STANDARD	40
TEST PROCEDURE	40
TEST DATA	41
C63.10 §11.6- DUTY CYCLE.....	43
TEST PROCEDURE	43
TEST DATA	43
EUT PHOTOGRAPHS.....	45
TEST SETUP PHOTOGRAPHS.....	46

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2501P02854E-RF-00	Original Report	2025/08/01

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	NEXAWAVE VibraLink Hex
Tested Model	EWN-06VC
Multiple Model(s)	N/A
Frequency Range	903-927MHz
Maximum Conducted Peak Output Power	15.78dBm
Modulation Technique	DTS: FSK
Antenna Specification [#]	4.44dBi (provided by the applicant)
Voltage Range	DC 3.60V from Battery
Sample serial number	2XQY-2 for Radiated Emissions Test 2XQY-1 for RF Conducted Test (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	N/A

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		109.2kHz(k=2, 95% level of confidence)
RF Frequency		56.6Hz(k=2, 95% level of confidence)
RF output power, conducted		0.86dB(k=2, 95% level of confidence)
Power Spectral Density		0.90dB(k=2, 95% level of confidence)
Unwanted Emission, conducted		1.60dB(k=2, 95% level of confidence)
AC Power Lines Conducted Emissions	9kHz~150 kHz	3.63dB(k=2, 95% level of confidence)
	150 kHz ~30MHz	3.66dB(k=2, 95% level of confidence)
Radiated Emissions	0.009MHz~30MHz	3.60dB(k=2, 95% level of confidence)
	30MHz~200MHz (Horizontal)	5.32dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical)	5.43dB(k=2, 95% level of confidence)
	200MHz~1000MHz (Horizontal)	5.77dB(k=2, 95% level of confidence)
	200MHz~1000MHz (Vertical)	5.73dB(k=2, 95% level of confidence)
	1GHz - 6GHz	5.34dB(k=2, 95% level of confidence)
	6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)
	18GHz - 40GHz	5.64dB(k=2, 95% level of confidence)
	Temperature	±1°C
Humidity		±1%
Supply voltages		±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

Channel List

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
1	903.00	11	908.00	21	913.00	31	918.00	41	923.00
2	903.50	12	908.50	22	913.50	32	918.50	42	923.50
3	904.00	13	909.00	23	914.00	33	919.00	43	924.00
4	904.50	14	909.50	24	914.50	34	919.50	44	924.50
5	905.00	15	910.00	25	915.00	35	920.00	45	925.00
6	905.50	16	910.50	26	915.50	36	920.50	46	925.50
7	906.00	17	911.00	27	916.00	37	921.00	47	926.00
8	906.50	18	911.50	28	916.50	38	921.50	48	926.50
9	907.00	19	912.00	29	917.00	39	922.00	49	927.00
10	907.50	20	912.50	30	917.50	40	922.50	/	/

Note 1: Channel 1, 20 and 49 were chosen for test.

Note 2: The EUT only supports DTS technology, not FHSS or hybrid system.

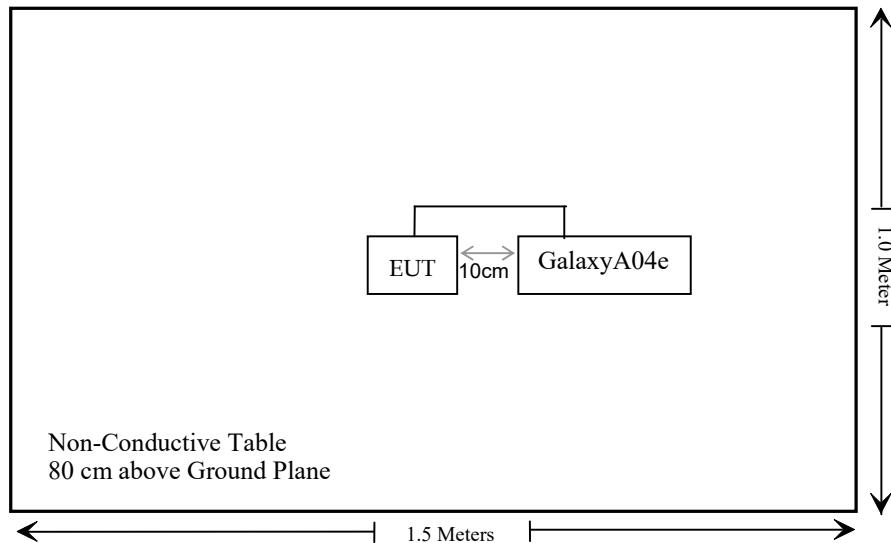
Equipment Modifications

No modification was made to the EUT tested.

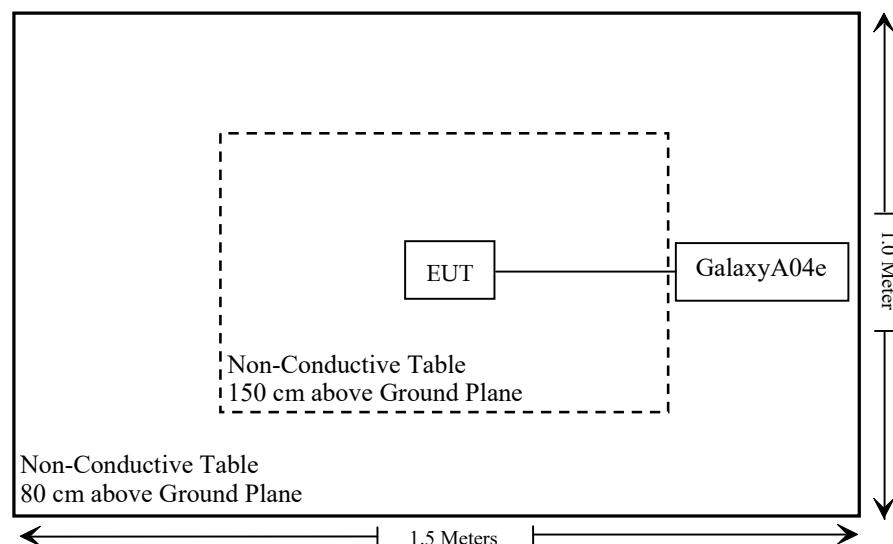
EUT Exercise Software

“RF-Test-SIW apk[#]” exercise software was used and the power level is Default[#]. The software and power level was provided by the manufacturer.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
SAMSUNG	GalaxyA04e	SM-A042F/DS	R9ZW90K0DHB

External I/O Cable


Cable Description	Length (m)	From Port	To
Unshielded Detachable Control Cable	1.2	EUT	GalaxyA04e

Block Diagram of Test Setup

Spurious emissions below 1GHz:

Spurious emissions above 1GHz:

SUMMARY OF TEST RESULTS

Test Rules	Description of Test	Result
FCC §1.1307 (B) & §2.1091	MPE-Based Exemption	Compliant
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Not Applicable
FCC §15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
FCC §15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
FCC §15.247(b)(3)	Maximum Conducted Output Power	Compliant
FCC §15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
FCC §15.247(e)	Power Spectral Density	Compliant
C63.10 §11.6	Duty Cycle	/

Not Applicable: The EUT is not be connected to the public Network.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03
Sonoma instrument	Pre-amplifier	310 N	186238	2024/05/21	2025/05/20
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
Unknown	Cable	Chamber A Cable 1	N/A	2024/06/18	2025/06/17
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26
A.H.System	Preamplifier	PAM-0118P	489	2024/11/15	2025/11/14
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25
The Electro-Mechanics Co.	Horn Antenna	3115	9107-3694	2024/06/06	2027/06/05
Unknown	RF Cable	KMSE	735	2024/12/06	2025/12/05
Unknown	RF Cable	UFA147	219661	2024/12/06	2025/12/05
JD	Filter Switch Unit	DT7220FSU	DS79906	2024/09/09	2025/09/08
JD	Multiplex Switch Test Control Set	DT7220SCU	DS79903	2024/09/09	2025/09/08
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSU26	200120	2024/12/04	2025/12/03
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2024/12/04	2025/12/03
Unknown	10dB Attenuator	Unknown	F-03-EM190	2024/06/27	2025/06/26
Unknown	10dB Attenuator	Unknown	F-03-EM190	2025/06/26	2026/06/25

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (B) & §2.1091- MPE-BASED EXEMPTION

Applicable Standard

According to subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

According to KDB 447498 D04 v01 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power (ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(1)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	$1,920 R^2$.
1.34-30	$3,450 R^2/f^2$.
30-300	$3.83 R^2$.
300-1,500	$0.0128 R^2 f$.
1,500-100,000	$19.2R^2$.

R is the minimum separation distance in meters

f = frequency in MHz

Result

Frequency (MHz)	Tune up conducted power [#] (dBm)	Antenna Gain [#]		ERP		Evaluation Distance (m)	ERP Limit (mW)
		(dBi)	(dBd)	(dBm)	(mW)		
903-927	16.0	4.44	2.29	18.29	67.45	0.2	462

Note: The tune up conducted power and antenna gain was declared by the applicant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

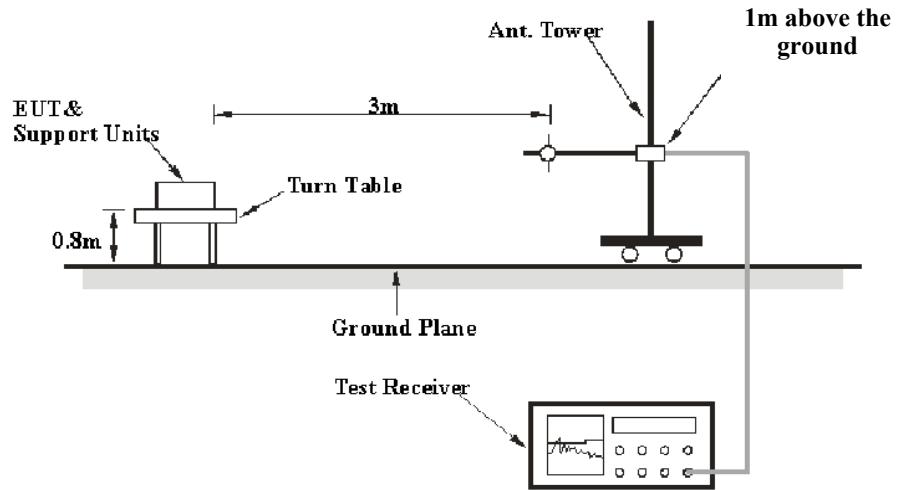
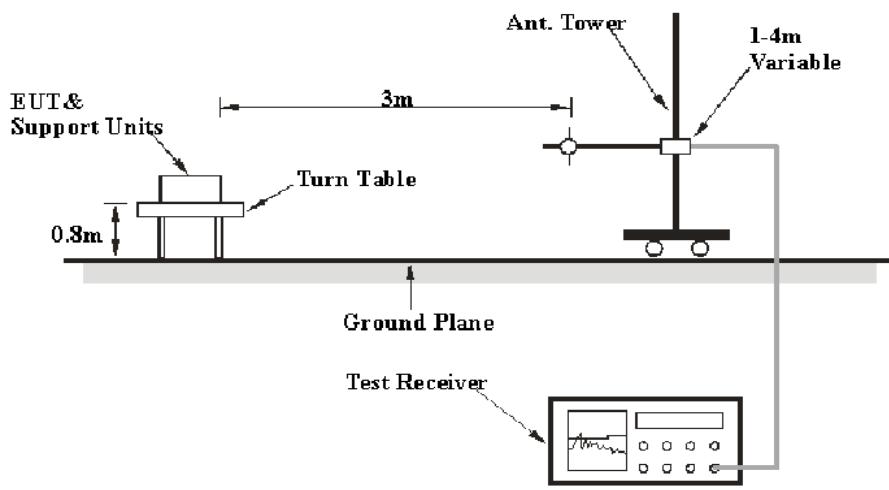
Result: Compliant

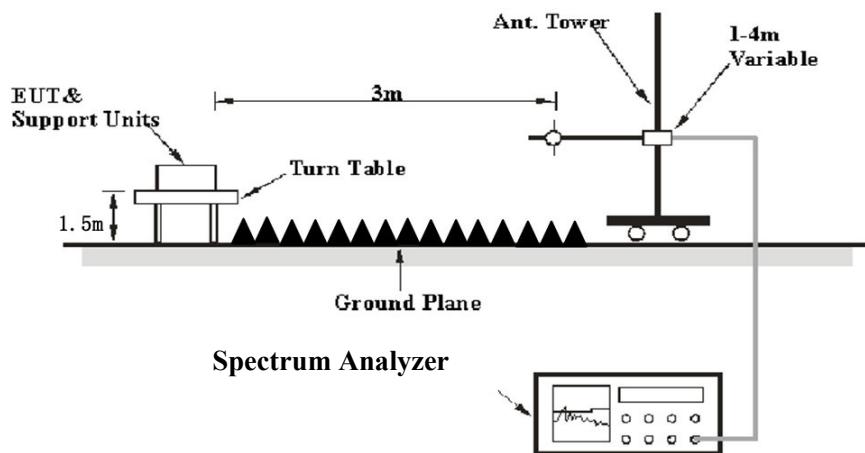
FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.



Antenna Connector Construction


The EUT has one external antenna with unique antenna connector, and the maximum antenna gain[#] is 4.44dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS**Applicable Standard**

FCC §15.247 (d); §15.209; §15.205;

EUT Setup**9 kHz-30MHz:****30MHz-1GHz:**

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	Detector
9 kHz – 150 kHz	/	/	200 Hz	QP	QP
	300 Hz	1 kHz	/	PK	Peak
150 kHz – 30 MHz	/	/	9 kHz	QP	QP
	10 kHz	30 kHz	/	PK	Peak
30 MHz – 1000 MHz	/	/	120 kHz	QP	QP
	100 kHz	300 kHz	/	PK	Peak

Above 1GHz:

Pre-scan

Measurement	Duty cycle	RBW	Video B/W	Detector
PK	Any	1MHz	3 MHz	Peak
	>98%	1MHz	1 kHz	Peak
	<98%	1MHz	≥1/Ton	Peak

Final measurement for emission identified during pre-scan

Measurement	Duty cycle	RBW	Video B/W	Detector
PK	Any	1MHz	3 MHz	Peak
AV	>98%	1MHz	10 Hz	Peak
	<98%	1MHz	≥1/Ton	Peak

Note: Ton is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

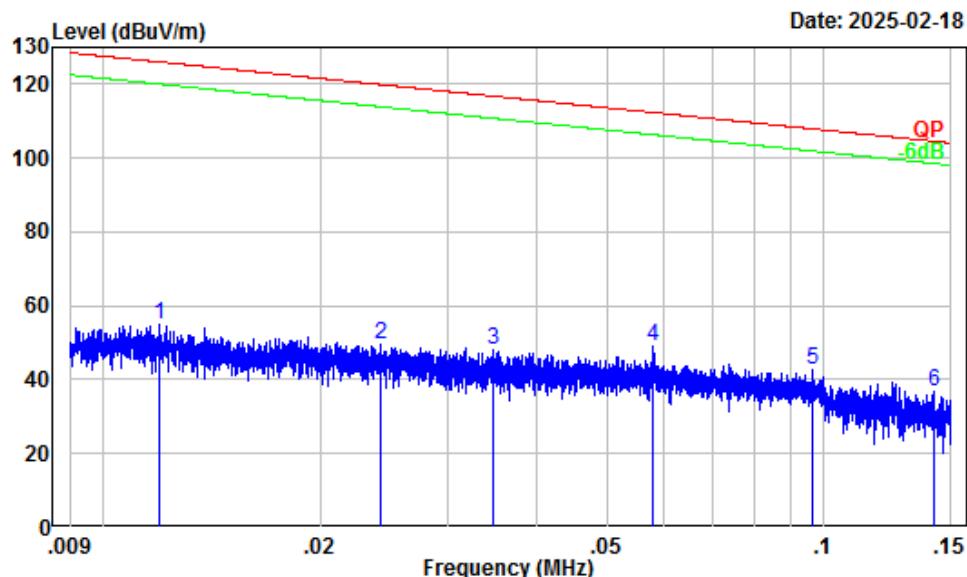
$$\text{Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “**Over Limit/Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

$$\begin{aligned} \text{Over Limit/Margin} &= \text{Level/Corrected Amplitude} - \text{Limit} \\ \text{Level / Corrected Amplitude} &= \text{Read Level} + \text{Factor} \end{aligned}$$

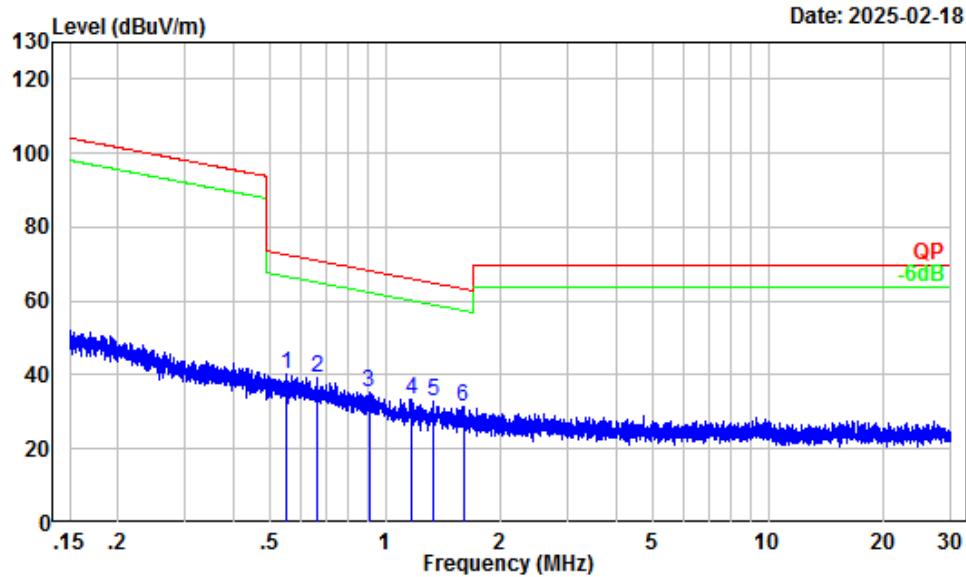
Test Data

Environmental Conditions


Temperature:	22.3~22.5 °C
Relative Humidity:	46~60 %
ATM Pressure:	101.3~102.8 kPa

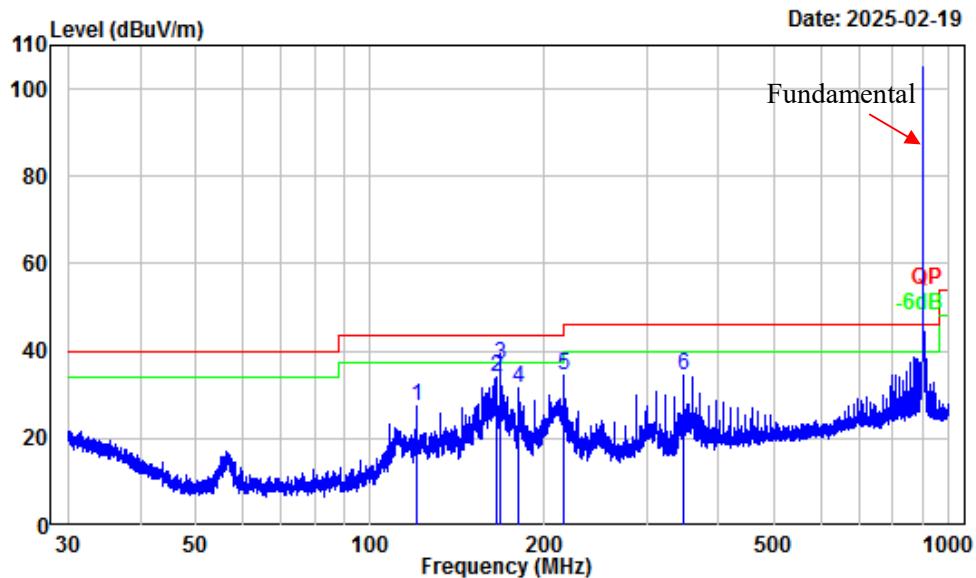
The testing was performed by Anson Su from 2025-02-18 to 2025-02-19 for below 1GHz and Wing K Ji on 2025-02-26 for above 1GHz.

EUT operation mode: Transmitting


Note:

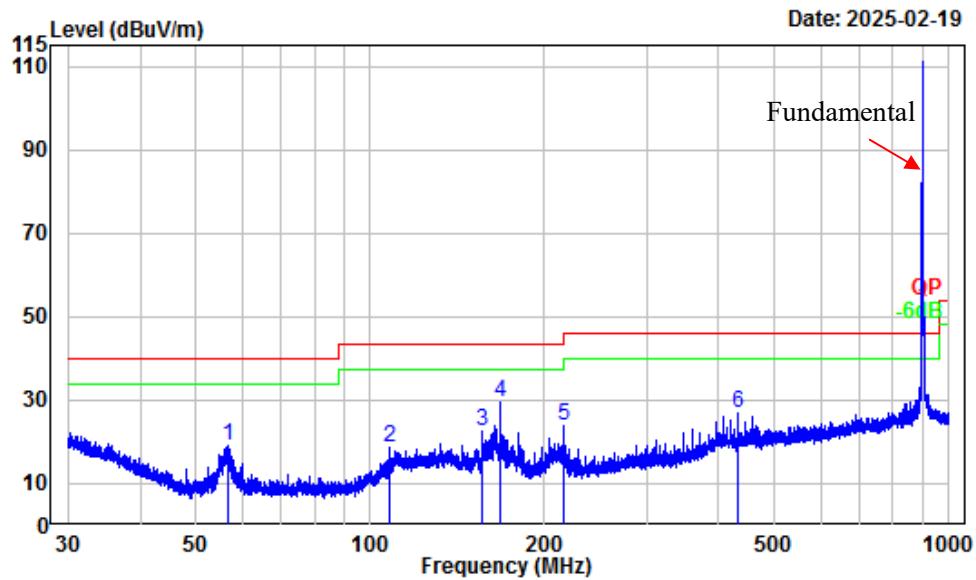
- 1. Pre-scan in the X, Y and Z axes of orientation, the worst case Z-axis of orientation was recorded.*
- 2. For 9 kHz-1GHz, when the test result of peak was less than the limit of QP/Average more than 6dB, just peak value were recorded.*

Battery:**Low Channel:****9 kHz-30MHz: (Worst case is parallel)**


Site : Chamber A
Condition : 3m
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 0.3/1kHz
Tester : Anson Su

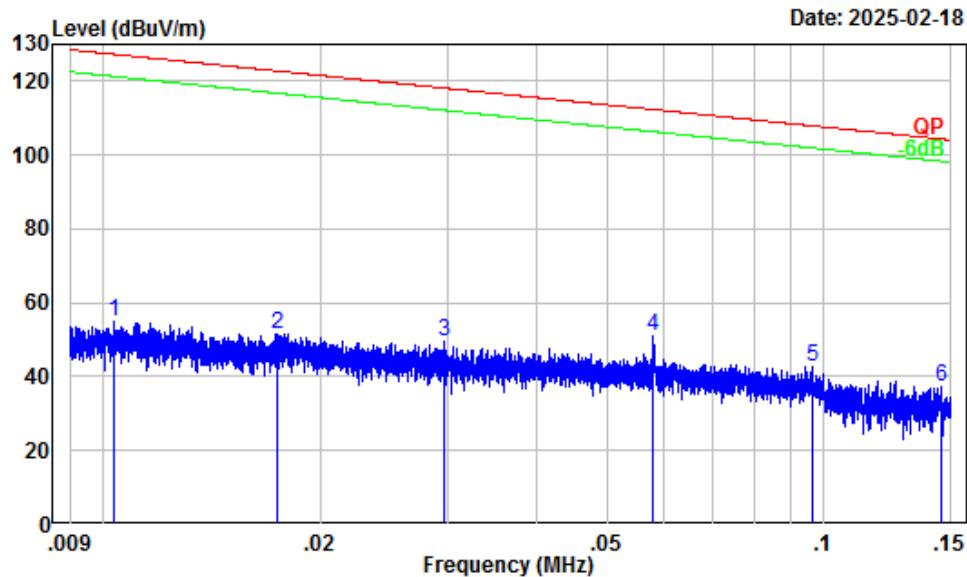
	Freq	Factor	Read Level	Limit Level	Over Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	31.92	22.84	54.76	126.02	-71.26	Peak
2	0.02	29.57	20.14	49.71	119.88	-70.17	Peak
3	0.03	27.99	20.10	48.09	116.76	-68.67	Peak
4	0.06	25.60	23.67	49.27	112.33	-63.06	Peak
5	0.10	22.27	20.59	42.86	107.94	-65.08	Peak
6	0.14	19.53	17.28	36.81	104.57	-67.76	Peak

Site : Chamber A
Condition : 3m
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Tester : Anson Su

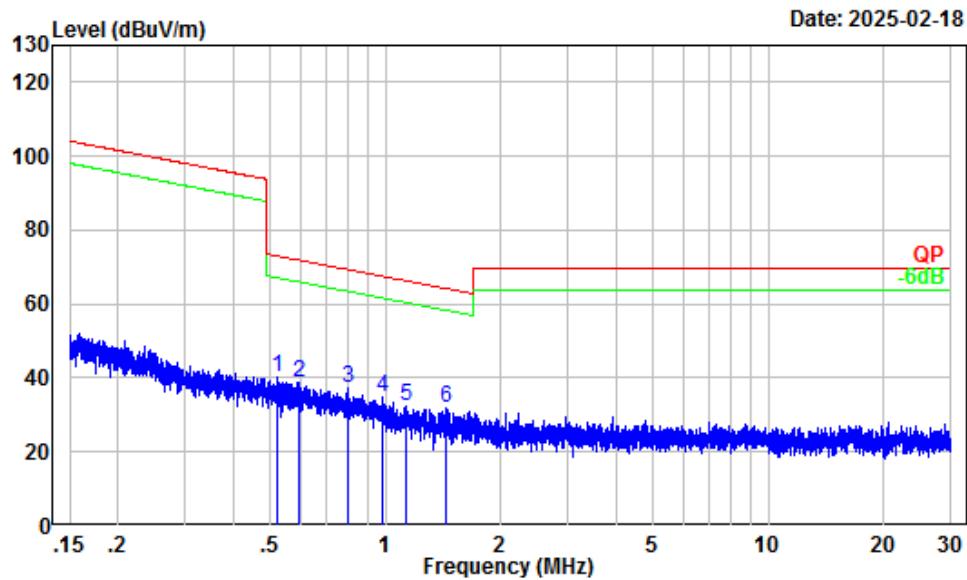

	Freq	Factor	Read Level	Limit Level	Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.55	5.79	34.24	40.03	72.79	-32.76	Peak
2	0.66	4.41	34.84	39.25	71.14	-31.89	Peak
3	0.91	1.91	33.42	35.33	68.35	-33.02	Peak
4	1.17	0.72	32.86	33.58	66.07	-32.49	Peak
5	1.34	0.25	32.62	32.87	64.88	-32.01	Peak
6	1.60	-0.47	31.83	31.36	63.32	-31.96	Peak

30 MHz~1GHz:**Horizontal**

Site : Chamber A
Condition : 3m Horizontal
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Anson Su

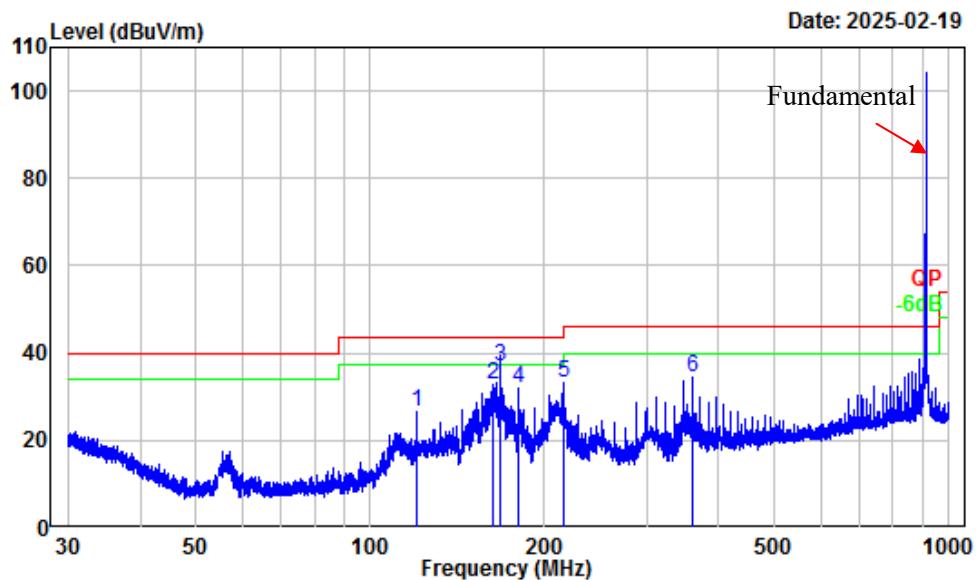

Freq Factor	MHz	Read	Limit	Over	Remark
		Level	Level	Line	
1	120.01	-11.45	38.64	27.19	43.50 -16.31 Peak
2	164.91	-12.90	46.84	33.94	43.50 -9.56 Peak
3	168.05	-13.00	49.79	36.79	43.50 -6.71 QP
4	180.02	-13.65	45.11	31.46	43.50 -12.04 Peak
5	216.02	-14.20	48.47	34.27	46.00 -11.73 Peak
6	348.03	-10.21	44.70	34.49	46.00 -11.51 Peak

Vertical


Site : Chamber A
Condition : 3m Vertical
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Anson Su

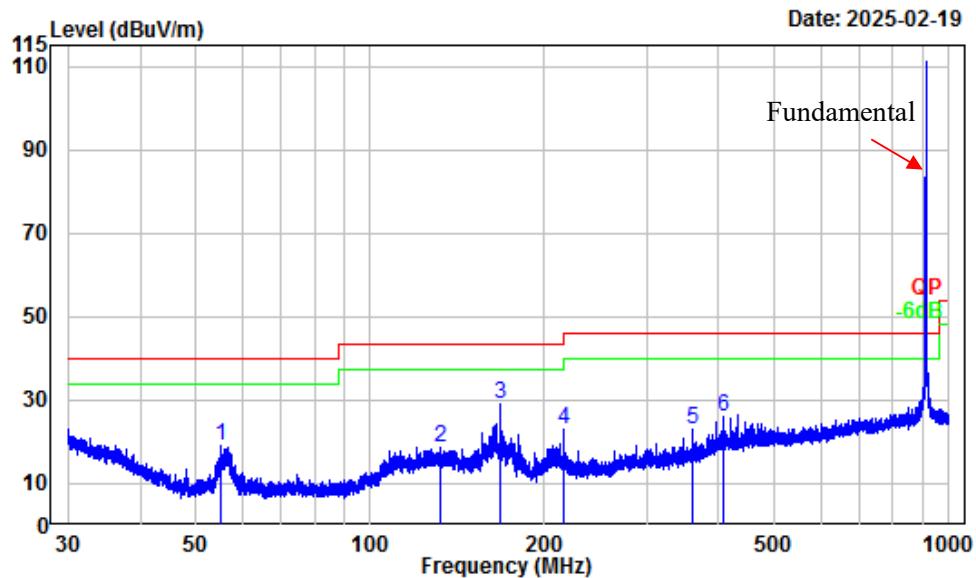
Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	
1	56.89	-18.31	37.31	19.00	40.00	-21.00	Peak
2	107.98	-13.61	32.36	18.75	43.50	-24.75	Peak
3	155.98	-12.64	35.23	22.59	43.50	-20.91	Peak
4	168.05	-13.00	42.62	29.62	43.50	-13.88	Peak
5	216.02	-14.20	38.15	23.95	46.00	-22.05	Peak
6	432.17	-7.78	34.86	27.08	46.00	-18.92	Peak

Middle Channel:**9 kHz-30MHz: (Worst case is parallel)**


Site : Chamber A
Condition : 3m
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 0.3/1kHz
Tester : Anson Su

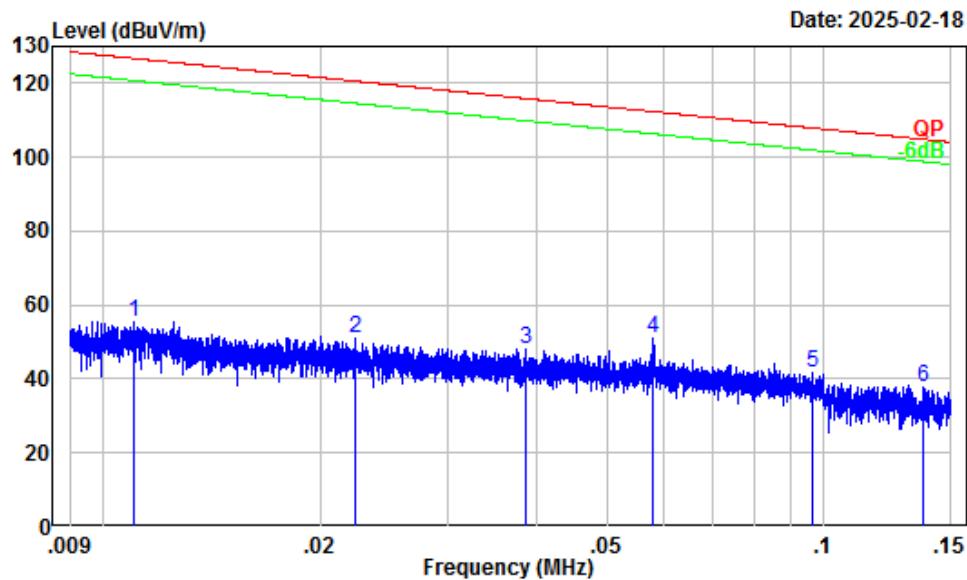
Freq	Factor	Read	Limit	Over	Remark	
		Level	Level	Line		
		MHz	dB/m	dB _{uV}	dB _{uV/m}	dB
1	0.01	32.23	22.56	54.79	127.29	-72.50 Peak
2	0.02	30.89	20.71	51.60	122.78	-71.18 Peak
3	0.03	28.55	21.08	49.63	118.14	-68.51 Peak
4	0.06	25.59	25.23	50.82	112.33	-61.51 Peak
5	0.10	22.27	20.59	42.86	107.94	-65.08 Peak
6	0.15	19.32	18.11	37.43	104.35	-66.92 Peak

Site : Chamber A
Condition : 3m
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Tester : Anson Su

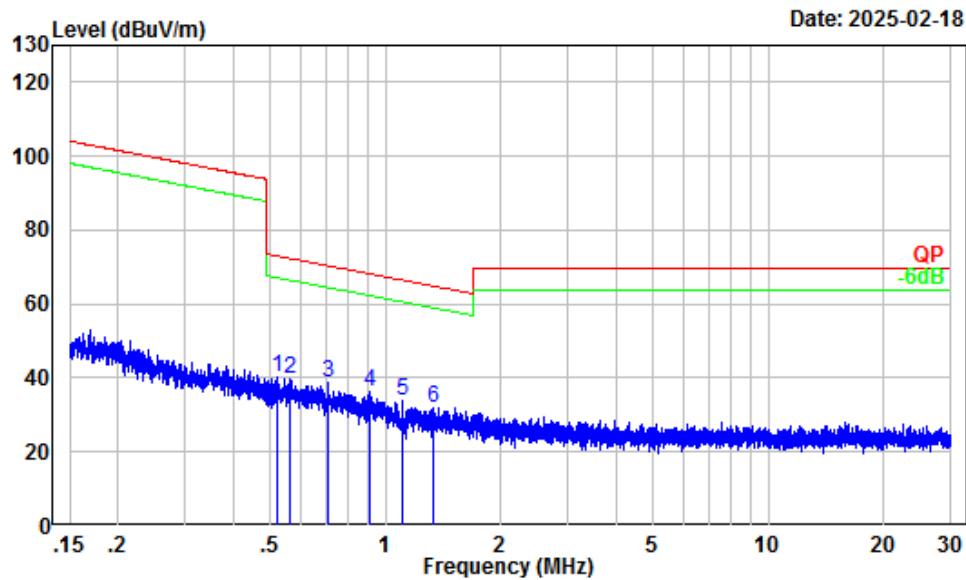

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	
1	0.52	6.14	34.02	40.16	73.25	-33.09	Peak
2	0.59	5.25	33.33	38.58	72.10	-33.52	Peak
3	0.80	2.68	34.59	37.27	69.43	-32.16	Peak
4	0.98	1.36	33.33	34.69	67.67	-32.98	Peak
5	1.14	0.82	31.76	32.58	66.33	-33.75	Peak
6	1.44	-0.02	31.79	31.77	64.26	-32.49	Peak

30 MHz~1GHz:**Horizontal**

Site : Chamber A
Condition : 3m Horizontal
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Anson Su

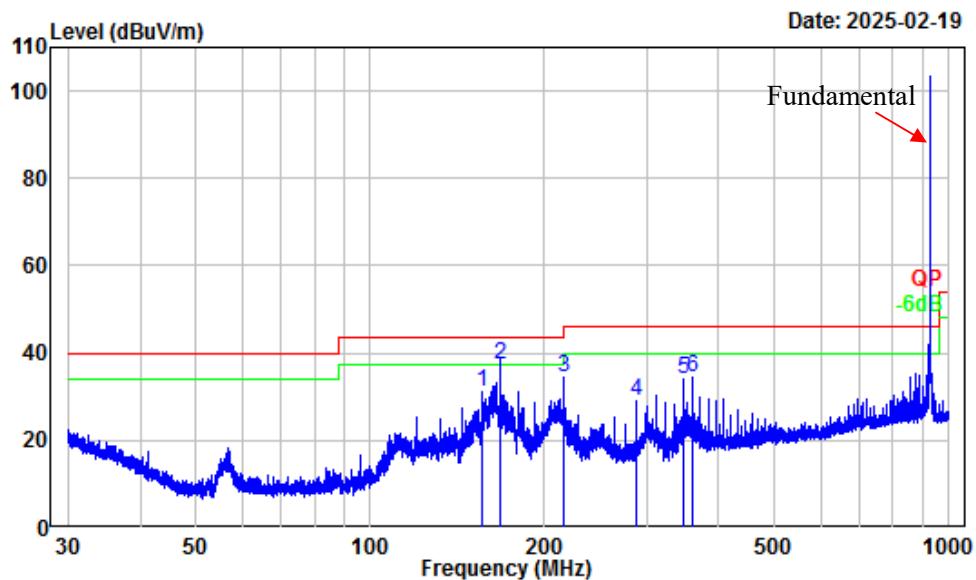

Freq Factor	MHz	Read	Limit	Over	Remark
		Level	Level	Line	
1	120.01	-11.45	37.88	26.43	43.50 -17.07 Peak
2	162.61	-12.77	45.61	32.84	43.50 -10.66 Peak
3	167.97	-13.00	50.10	37.10	43.50 -6.40 QP
4	180.02	-13.65	45.43	31.78	43.50 -11.72 Peak
5	216.02	-14.20	47.24	33.04	46.00 -12.96 Peak
6	359.97	-9.89	44.51	34.62	46.00 -11.38 Peak

Vertical


Site : Chamber A
Condition : 3m Vertical
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Anson Su

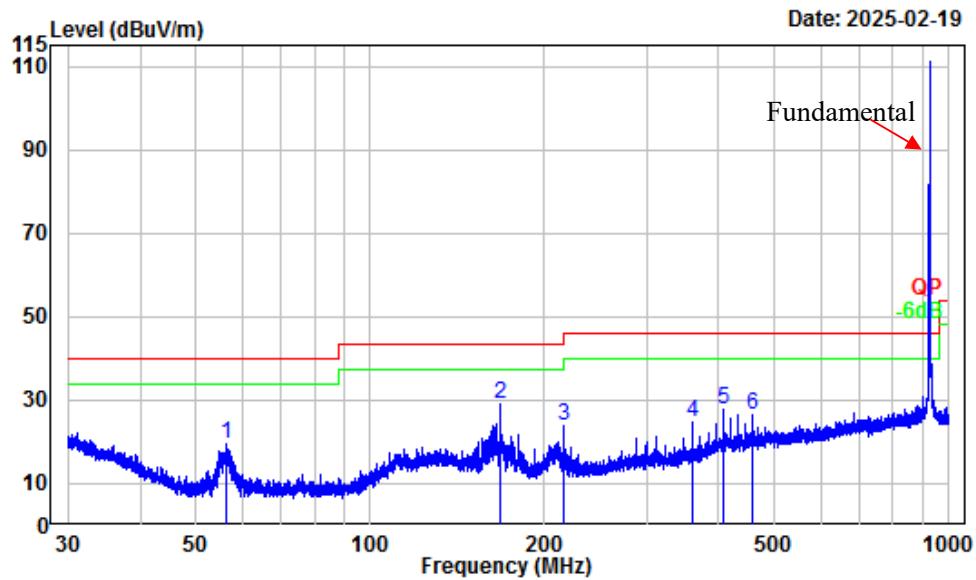
	Freq	Factor	Read Level	Limit Level	Over Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	55.05	-18.32	37.26	18.94	40.00	-21.06	Peak
2	131.99	-11.30	30.08	18.78	43.50	-24.72	Peak
3	167.97	-13.00	42.11	29.11	43.50	-14.39	Peak
4	216.02	-14.20	37.34	23.14	46.00	-22.86	Peak
5	360.13	-9.88	32.89	23.01	46.00	-22.99	Peak
6	408.05	-8.20	34.28	26.08	46.00	-19.92	Peak

High Channel:**9 kHz-30MHz: (Worst case is parallel)**


Site : Chamber A
Condition : 3m
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 0.3/1kHz
Tester : Anson Su

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	
1	0.01	32.10	23.54	55.64	126.75	-71.11	Peak
2	0.02	29.95	21.03	50.98	120.61	-69.63	Peak
3	0.04	27.59	20.61	48.20	115.86	-67.66	Peak
4	0.06	25.60	25.21	50.81	112.34	-61.53	Peak
5	0.10	22.23	19.24	41.47	107.90	-66.43	Peak
6	0.14	19.78	17.94	37.72	104.83	-67.11	Peak

Site : Chamber A
Condition : 3m
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Tester : Anson Su


Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	
1	0.52	6.16	33.90	40.06	73.28	-33.22	Peak
2	0.56	5.63	33.95	39.58	72.57	-32.99	Peak
3	0.71	3.79	34.86	38.65	70.49	-31.84	Peak
4	0.91	1.90	34.61	36.51	68.34	-31.83	Peak
5	1.11	0.89	32.88	33.77	66.55	-32.78	Peak
6	1.34	0.26	31.69	31.95	64.90	-32.95	Peak

30 MHz~1GHz:**Horizontal**

Site : Chamber A
Condition : 3m Horizontal
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Anson Su

Freq	Factor	Read	Limit	Over	Remark	
		Level	Level	Line		
1	156.18	-12.64	43.81	31.17	43.50	-12.33 Peak
2	167.97	-13.00	50.30	37.30	43.50	-6.20 QP
3	216.02	-14.20	48.70	34.50	46.00	-11.50 Peak
4	287.99	-11.22	40.27	29.05	46.00	-16.95 Peak
5	348.03	-10.21	44.38	34.17	46.00	-11.83 Peak
6	360.13	-9.88	44.38	34.50	46.00	-11.50 Peak

Vertical

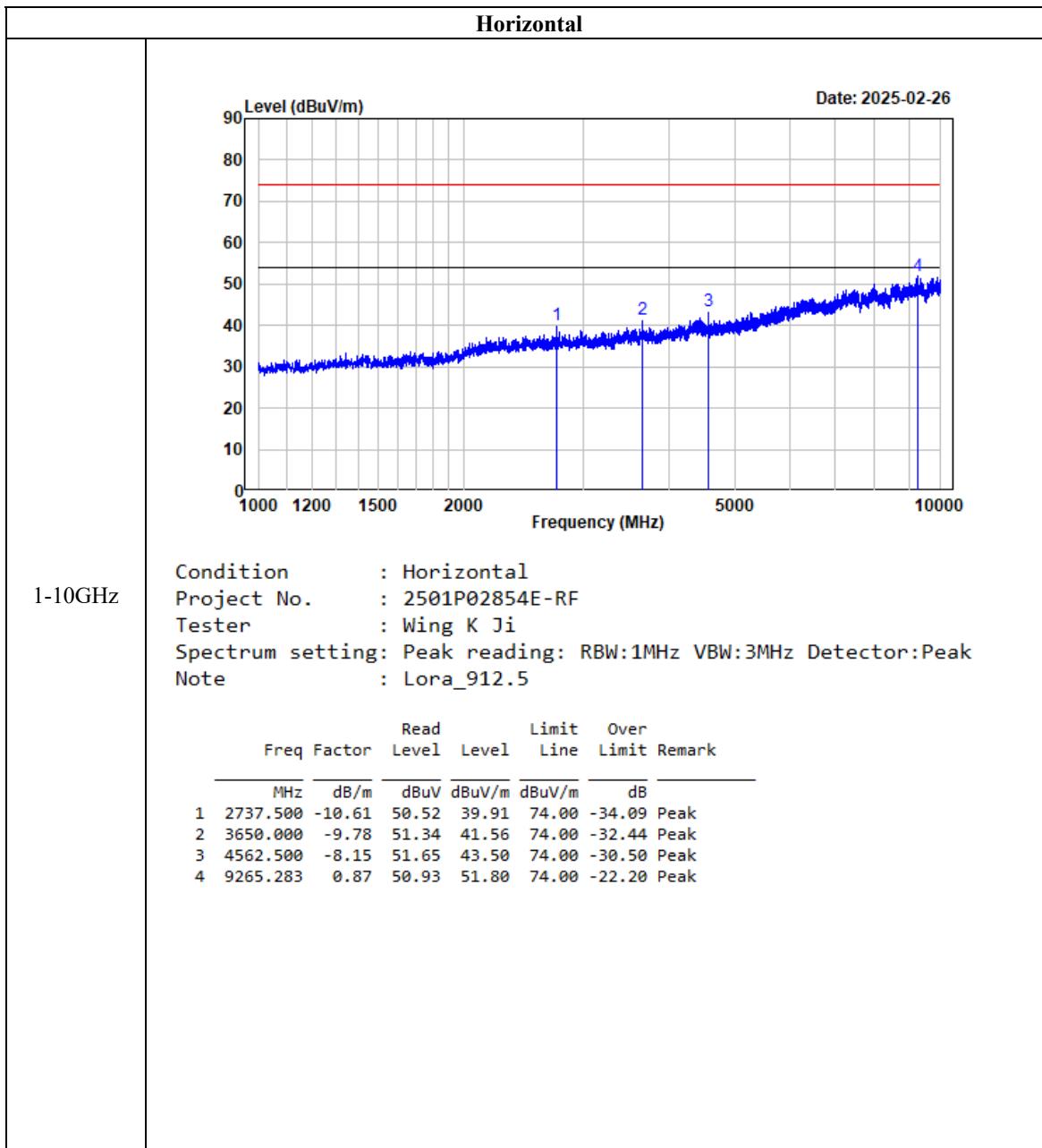
Site : Chamber A
Condition : 3m Vertical
Project Number : 2501P02854E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Anson Su

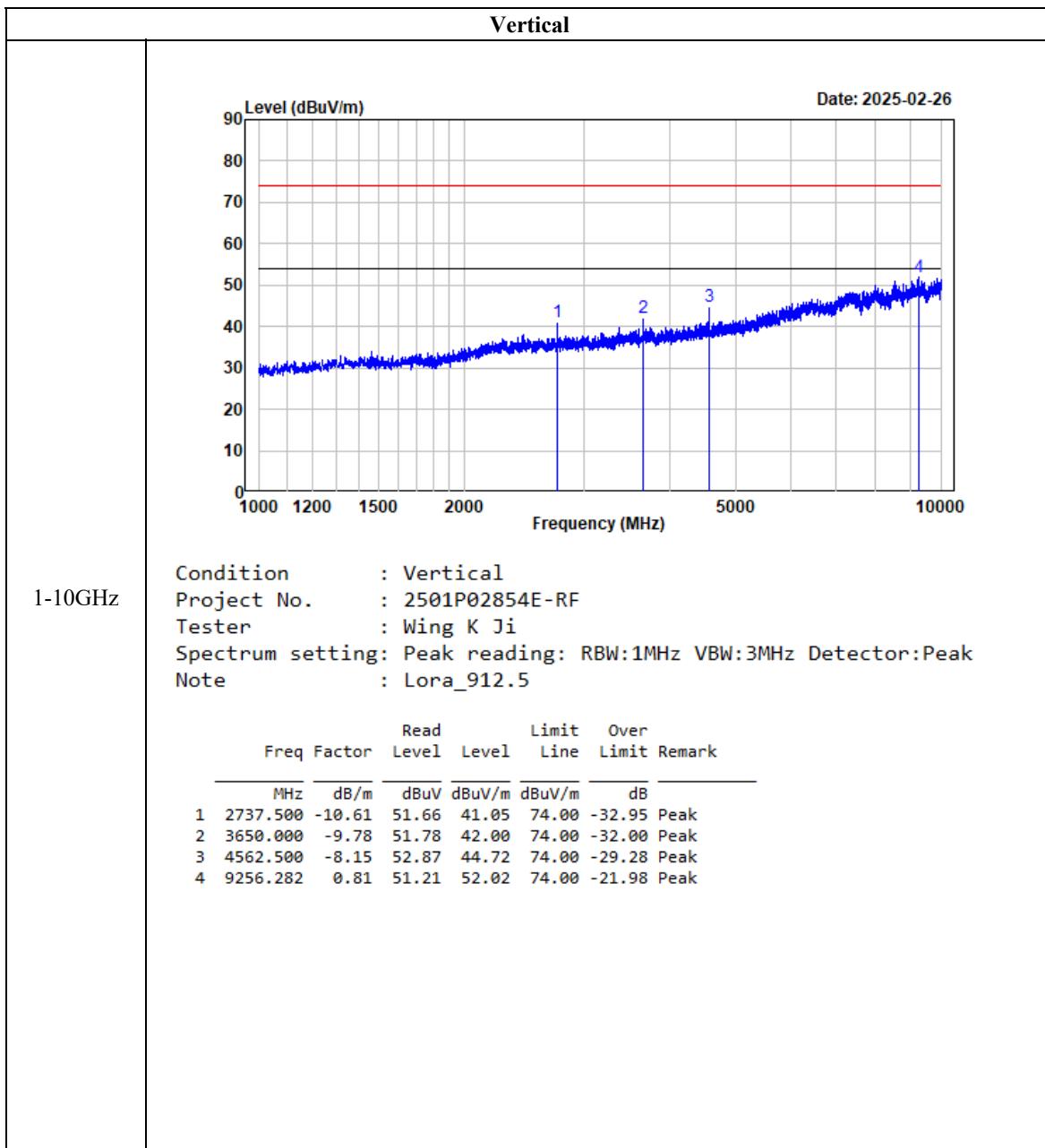
	Freq	Factor	Read Level	Limit Level	Over Line	Over Limit	Remark
	MHz	dB/m	dB _{uV}	dB _{uV/m}	dB _{uV/m}	dB	
1	56.37	-18.32	37.86	19.54	40.00	-20.46	Peak
2	168.05	-13.00	42.23	29.23	43.50	-14.27	Peak
3	216.02	-14.20	37.86	23.66	46.00	-22.34	Peak
4	359.97	-9.89	34.67	24.78	46.00	-21.22	Peak
5	408.05	-8.20	35.79	27.59	46.00	-18.41	Peak
6	456.11	-7.24	33.82	26.58	46.00	-19.42	Peak

Above 1 GHz:

Frequency (MHz)	Reading (dB μ V)	PK/Ave	Polar (H/V)	Factor (dB/m)	Absolute Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
Low Channel 903MHz							
2709.00	50.46	PK	H	-10.53	39.93	74	-34.07
2709.00	50.39	PK	V	-10.53	39.86	74	-34.14
3612.00	51.59	PK	H	-10.08	41.51	74	-32.49
3612.00	52.04	PK	V	-10.08	41.96	74	-32.04
4515.00	51.84	PK	H	-8.02	43.82	74	-30.18
4515.00	52.01	PK	V	-8.02	43.99	74	-30.01
Middle Channel 912.5MHz							
2737.50	50.52	PK	H	-10.61	39.91	74	-34.09
2737.50	51.66	PK	V	-10.61	41.05	74	-32.95
3650.00	51.34	PK	H	-9.78	41.56	74	-32.44
3650.00	51.78	PK	V	-9.78	42.00	74	-32.00
4562.50	51.65	PK	H	-8.15	43.50	74	-30.50
4562.50	52.87	PK	V	-8.15	44.72	74	-29.28
High Channel 927MHz							
2781.00	50.19	PK	H	-10.61	39.58	74	-34.42
2781.00	50.94	PK	V	-10.61	40.33	74	-33.67
3708.00	50.94	PK	H	-9.51	41.43	74	-32.57
3708.00	51.88	PK	V	-9.51	42.37	74	-31.63
4635.00	52.19	PK	H	-8.19	44.00	74	-30.00
4635.00	52.34	PK	V	-8.19	44.15	74	-29.85

Note:


Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor


Corrected Amplitude/Level = Corrected Factor + Reading

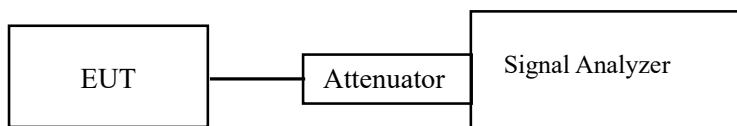
Margin = Corrected Amplitude/Level - Limit

The other spurious emission which is in the noise floor level was not recorded.

The test result of peak was less than the limit of average, so just peak values were recorded.

Listed with the worst harmonic margin test plot:

FCC §15.247(a) (2) - 6 dB EMISSION BANDWIDTH


Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

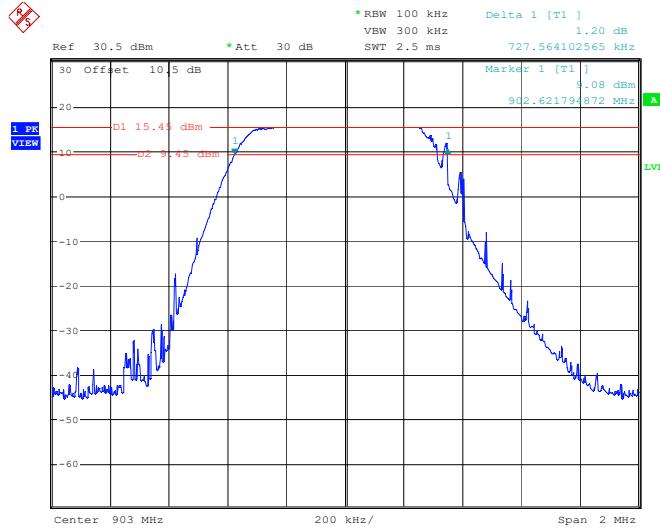
Test Method: ANSI C63.10-2013 Clause 11.8.1

- a. Set RBW = 100 kHz.
- b. Set the VBW $\geq [3 \times \text{RBW}]$.
- c. Detector = peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize.
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

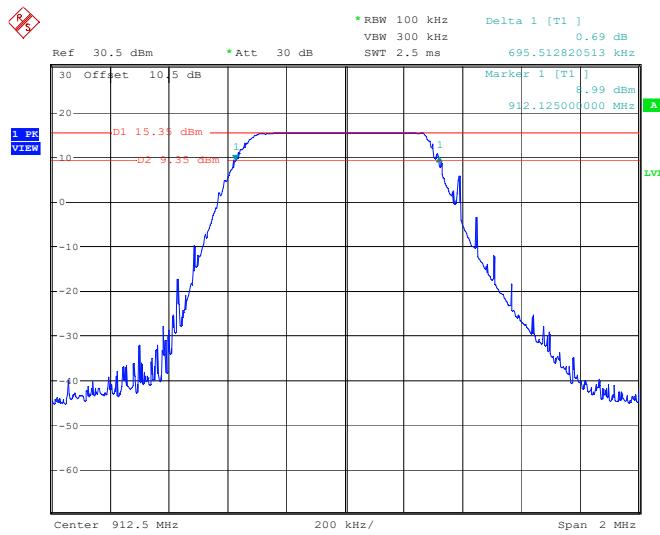
Test Data

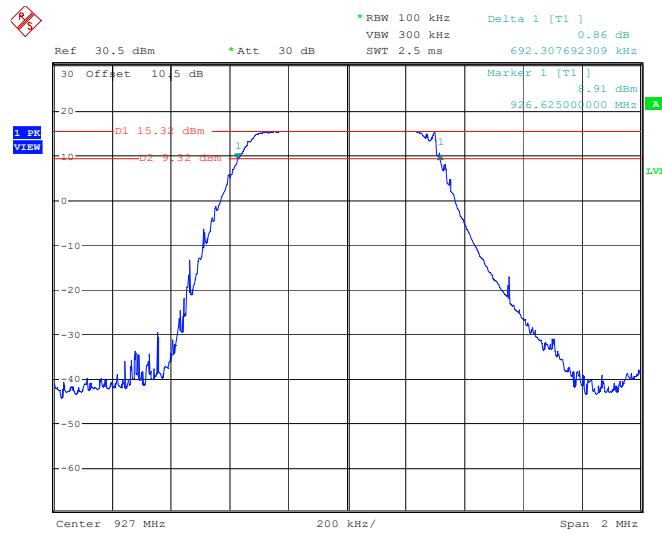
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101 kPa


The testing was performed by Brian Li on 2025-05-04.

EUT operation mode: Transmitting


Test Result: Compliant. Please refer to the following table and plots.


Test Channel	Test Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)
Low	903	0.728	≥ 0.5
Middle	912.5	0.696	≥ 0.5
High	927	0.692	≥ 0.5

Low Channel

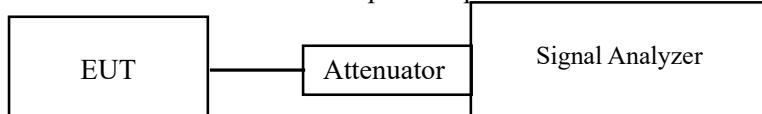
Middle Channel

High Channel

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.


Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.1

1. Place the EUT on a bench and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
3. Add a correction factor to the display.
4. Set the RBW \geq DTS bandwidth.
5. Set the VBW $\geq [3 \times \text{RBW}]$.
6. Set span $\geq [3 \times \text{RBW}]$.
7. Sweep time = auto couple.
8. Detector = peak.
9. Trace mode = max hold.
10. Allow the trace to stabilize.

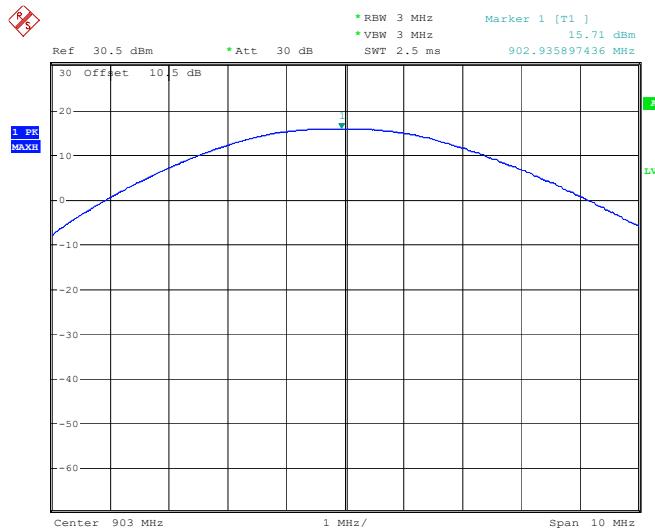
Use peak marker function to determine the peak amplitude level.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss

Test Data

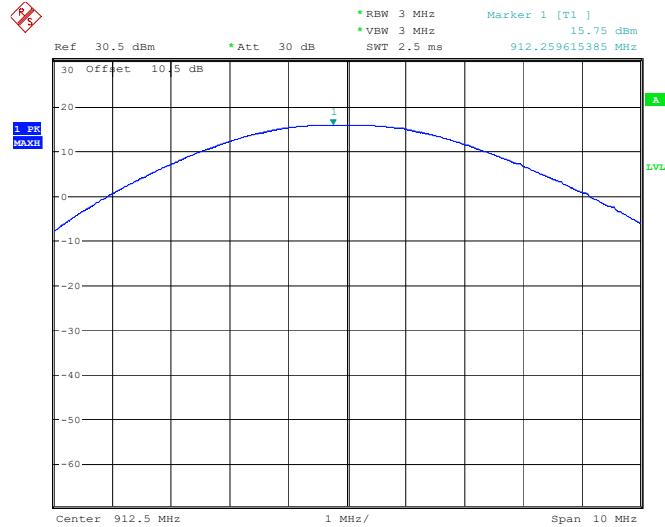
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101 kPa

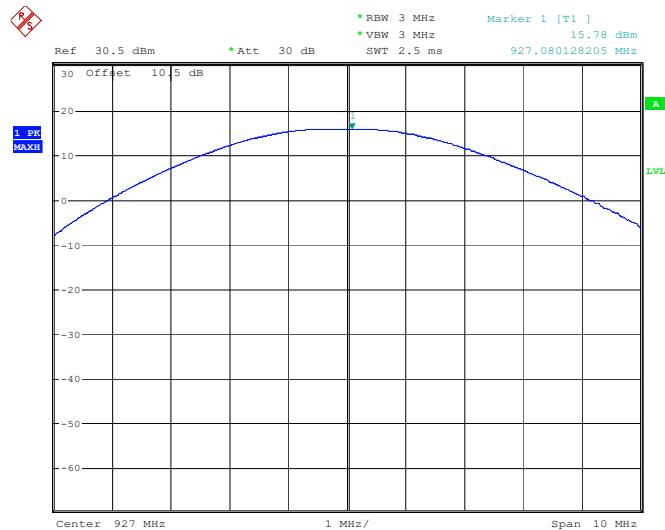

The testing was performed by Brian Li on 2025-04-21.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.


Test Channel	Test Frequency (MHz)	Maximum Peak Conducted Output Power (dBm)	Limit (dBm)
Lowest	903	15.71	≤30
Middle	912.5	15.75	≤30
Highest	927	15.78	≤30

Low Channel



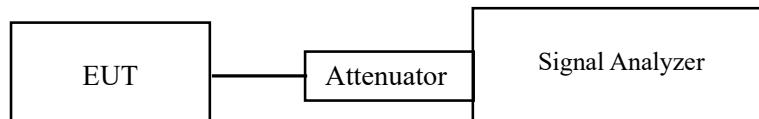
ProjectNo.:2501P02854E-RF Tester:Brian Li
Date: 21.APR.2025 21:58:08

Middle Channel

High Channel

FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

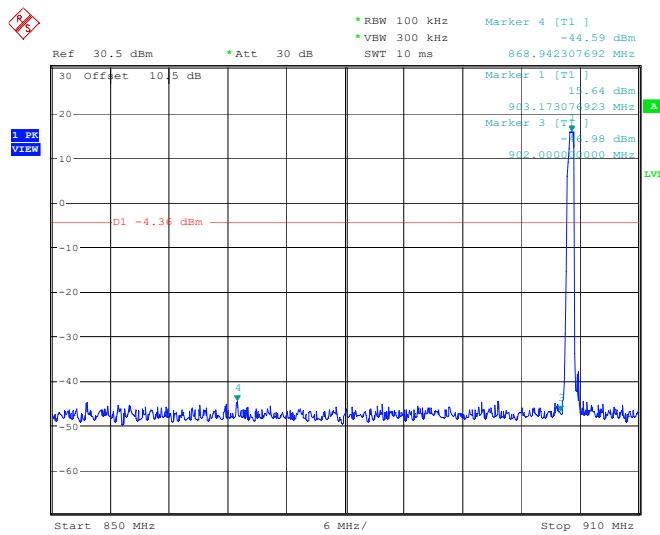
Test Method: ANSI C63.10-2013 Clause 11.11

1. Set the RBW =100 kHz.
2. Set the VBW $\geq 3 \times$ RBW.
3. Detector = peak
4. Sweep time = auto couple.
5. Trace mode=max hold
6. All trace to fully stabilize
7. Use the peak marker function to determine the maximum amplitude level.

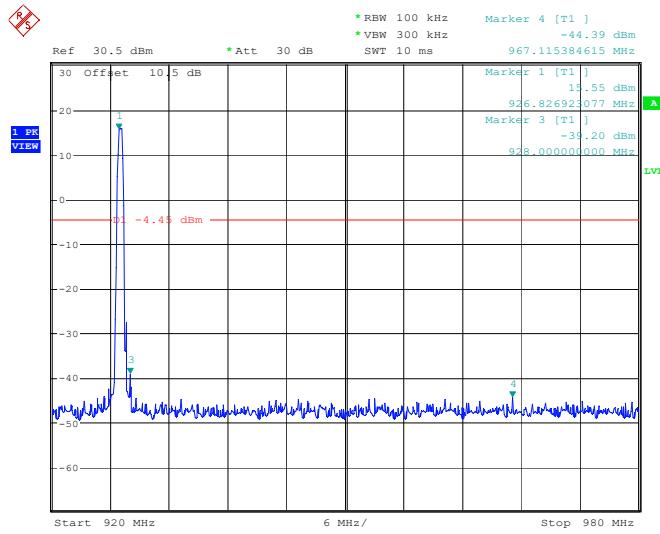
Ensure that amplitude of all unwanted emissions outside of the authorized frequency band(excluding restricted frequency bands) is attenuated by at least the minimum requirement specified in 11.11. Report the three highest emissions relative to the limit.

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101 kPa

The testing was performed by Brian Li on 2025-04-21.

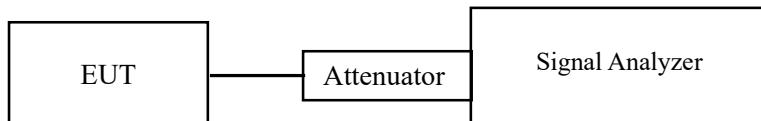

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the following plots.

Band edge, Left side

Band edge, Right side

FCC §15.247(e) - POWER SPECTRAL DENSITY


Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.5

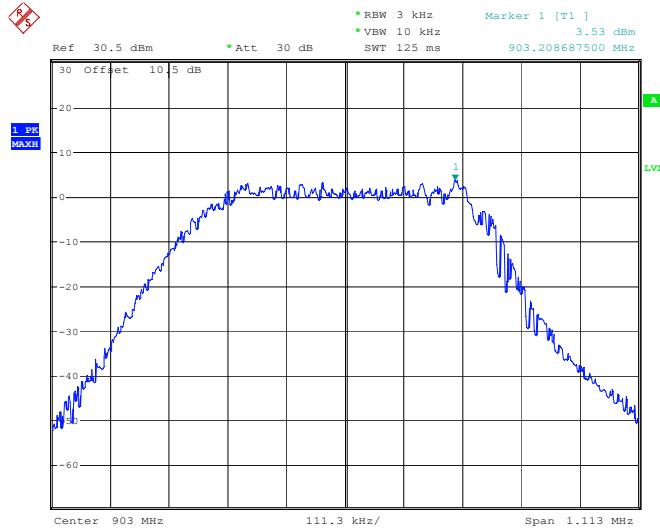
1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
2. Set analyzer center frequency to DTS channel center frequency
3. Set the span to 1.5 times the DTS bandwidth.
4. Set the RBW to: $3\text{kHz} \leq \text{RBW} \leq 100\text{ kHz}$.
5. Set the VBW $\geq 3 \times \text{RBW}$.
6. Detector = peak.
7. Sweep time = auto couple.
8. Trace mode = max hold.
9. Allow trace to fully stabilize.
10. Use the peak marker function to determine the maximum amplitude level within the RBW.
11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

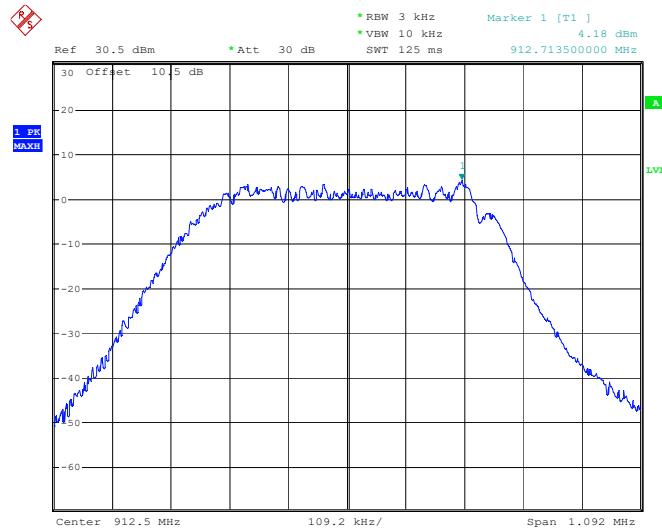
Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss

Test Data

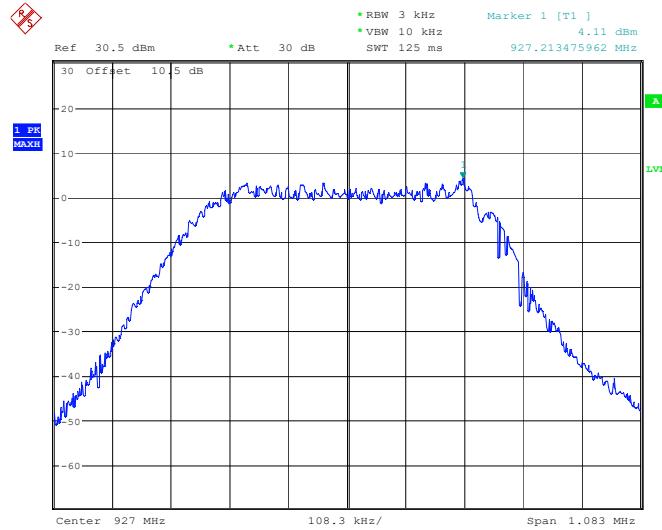
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101 kPa


The testing was performed by Brian Li on 2025-04-21.


EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.


Test Channel	Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
Low	903	3.53	≤8.00
Middle	912.5	4.18	≤8.00
High	927	4.11	≤8.00

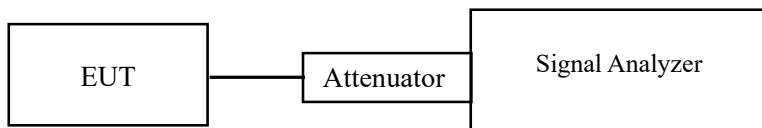
Low Channel

Middle Channel

ProjectNo.:2501P02854E-RF Tester:Brian Li
Date: 21.APR.2025 23:25:47

High Channel

ProjectNo.:2501P02854E-RF Tester:Brian Li
Date: 21.APR.2025 23:29:29


C63.10 §11.6- DUTY CYCLE

Test Procedure

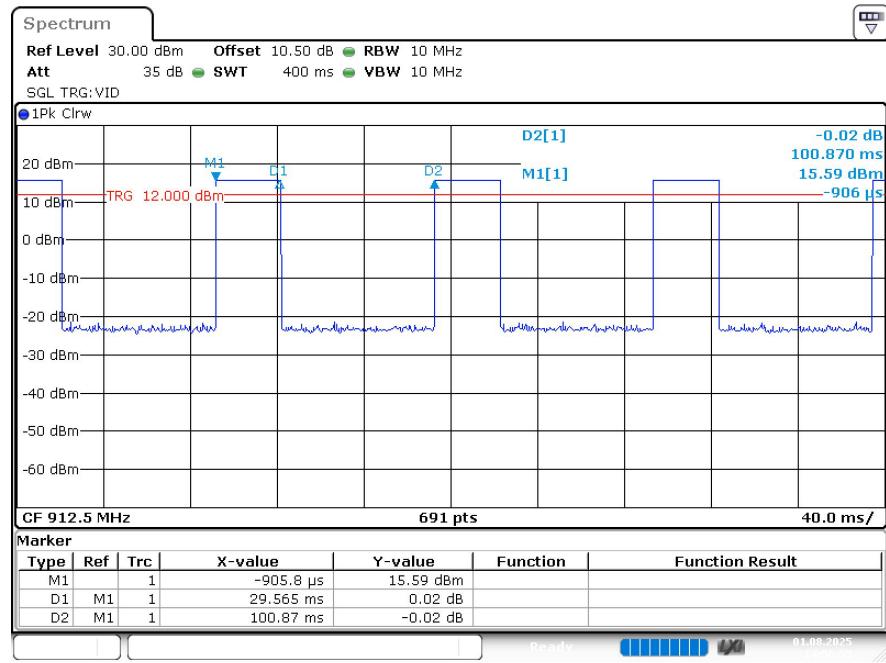
According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set $RBW \geq OBW$ if possible; otherwise, set RBW to the largest available value.
- 3) Set $VBW \geq RBW$. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are $> 50/T$ and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \leq 16.7 \mu s$.)

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101 kPa

The testing was performed by Brian Li on 2025-08-01.

EUT operation mode: Transmitting

Test Result: Compliant.

Test Channel	Ton (ms)	Ton+off (ms)	Duty cycle (%)	1/T (Hz)	VBW Setting (Hz)
912.5MHz	29.565	100.87	29.31	34	100

EUT PHOTOGRAPHS

Please refer to the attachment 2501P02854E-RF External photo and 2501P02854E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2501P02854E-RF Test Setup photo.

******* END OF REPORT *******