

Dual-band 3x3 802.11ac Wi-Fi Access Point

Configuration Manual

v2.0

Aug. 2018

Radio Frequency Interference Requirements

This device complies with Part 15 of FCC Rules.

Operation is subject to the following conditions:

1. This device may not cause harmful interference.
2. This device must accept any interference received, including interference that may cause undesired operation.
3. This device should not be co-located or operating in conjunction with any other antenna or transmitter.

Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules; these limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: To assure continued compliance, (example – use only shielded interface cables when connecting to computer or peripheral devices). Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

Warning

The user is advised to keep apart from the base-station and antenna with at least 45cm when the base-station is in operation.

Access points require professional installation.

The user is advised to keep apart from the base-station and antenna with at least 45cm when the base-station is in operation.

Please install a lightning arrestor to protect the access point for lightning dissipation during rainstorms. Lightning arrestors are mounted outside the structure and must be grounded by means of a ground wire to the nearest ground rod or item that is grounded.

Disclaimer

All specifications are subject to change without prior notice. We assume no responsibilities for any inaccuracies in this document or for any obligation to update information in this document. This document is provided for information purposes only. We reserve the right to change, modify, transfer, or otherwise revise this publication without notice.

Table of contents

1. INTRODUCTION.....	1
2. WEB ADMINISTRATION INTERFACE (WEB UI).....	2
2.1. STATUS.....	3
2.2. CONFIGURATION.....	3
2.3. ADMINISTRATION.....	4
2.4. TOOLS.....	4
2.5. ABOUT	4
3. GETTING STARTED	5
STEP 1: PREPARING THE ADMINISTRATOR COMPUTER.....	5
STEP 2: CONNECTING ACCESS POINT.....	6
<i>LED Colors and What They Mean.</i>	7
AP2458.....	7
STEP 3: LOGIN THE AP (VIA ETHERNET)	8
<i>Secondary IP Address of AP.</i>	9
STEP 4: SYSTEM INFO SETTING.....	10
STEP 5: ASSIGN AN IP ADDRESS TO AP DEVICE.....	10
<i>Assign Static IPv4 IP Address.....</i>	10
<i>Assign IPv4 IP Address from DHCP server.....</i>	11
<i>Assign Static IPv6 IP Address.....</i>	11
<i>Assign IPv6 IP Address from DHCP server.....</i>	12
STEP 6: APPLY SUBMITTED CONFIGURATIONS ON THE AP	13
4. RADIOS SETTINGS	14
4.1. ACCESS POINT MODE	14
<i>Radio0 – 2.4G</i>	14
Step 1: Configure General Wireless Setting	14
Step 2: Configure WLAN # General Setting	16
Step 3: Configure WLAN # Security Setting.....	18
Configure WLAN as Open Network.....	18
Configure WLAN as Open network with WEP encryption	19
Configure WLAN as Open network with Shared Key Authentication.....	20
Configure WLAN with WPA / WPA2 / WPA-auto Authentication	21
Configure WLAN with WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication.....	23
Configure WLAN with WAPI Authentication	24
Configure WLAN with WAPI-PSK Authentication	26
Step 4: Configure ACL Setting	27
Step 5: Configure WLAN # QoS.....	27
Step 6: Configure WLAN # Bandwidth Control	28
Step 7: Apply Submitted Configurations on the AP Device.....	28
<i>Radio1 – 5G</i>	29
Step 1: Configure General Wireless Setting	29
Step 2: Configure WLAN # General Setting	31
Step 3: Configure WLAN # Security Setting.....	32
Configure WLAN as Open Network.....	32
Configure WLAN as Open network with WEP encryption	33
Configure WLAN as Open network with Shared Key Authentication.....	34
Configure WLAN with WPA / WPA2 / WPA-auto Authentication	35
Configure WLAN with WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication.....	37
Configure WLAN with WAPI Authentication	38
Configure WLAN with WAPI-PSK Authentication	40
Step 4: Configure ACL Setting	41
Step 5: Configure WLAN # QoS.....	42
Step 6: Configure WLAN # Bandwidth Control	42
Step 7: Apply Submitted Configurations on the AP Device.....	42

Dual-band 3x3 802.11 ac WiFi Access Point

Configuration Manual

4.2. STATION / CPE MODE	43
<i>Radio0 – 2.4G</i>	43
Step 1: Configure General Wireless Setting	43
Step 2: Configure WLAN 0 General Setting	44
Step 3: Configure WLAN 0 Security Setting.....	46
Configure to associate Open WLAN.....	46
Configure to associate Open WLAN with WEP encryption	47
Configure to associate WLAN with Shared Key authentication.....	48
Configure to associate WLAN with WPA / WPA2 authentication	49
Configure to associate network with WPA-PSK / WPA2-PSK authentication	50
Step 4: Configure WLAN 0 QoS.....	51
Step 5: Apply Submitted Configurations on the AP Device.....	51
<i>Radio1 – 5G</i>	52
Step 1: Configure General Wireless Setting	52
Step 2: Configure WLAN 0 General Setting	53
Step 3: Configure WLAN 0 Security Setting.....	55
Configure to associate Open WLAN.....	55
Configure to associate Open WLAN with WEP encryption	56
Configure to associate WLAN with Shared Key authentication.....	57
Configure to associate WLAN with WPA / WPA2 authentication	57
Configure to associate WLAN with WPA-PSK / WPA2-PSK authentication.....	58
Step 4: Configure WLAN 0 QoS.....	59
Step 5: Apply Submitted Configurations on the AP Device.....	60
4.3. REPEATER MODE	61
<i>Radio0 – 2.4G</i>	61
Step 1: Configure General Wireless Setting	61
Step 2: Configure WLAN 15 General Setting (Station / CPE).....	62
Step 3: Configure WLAN15 Security Setting	64
Configure to associate Open WLAN.....	64
Configure to associate Open WLAN with WEP encryption	65
Configure to associate WLAN with Shared Key authentication.....	66
Configure to associate WLAN with WPA / WPA2 authentication	67
Configure to associate network with WPA-PSK / WPA2-PSK authentication	68
Step 4: Configure WLAN15 QoS.....	69
Step 5: Configure WLAN # General Setting	70
Step 6: Configure WLAN # Security Setting.....	72
Configure WLAN as Open Network.....	72
Configure WLAN as Open network with WEP encryption	73
Configure WLAN as Open network with Shared Key Authentication.....	74
Configure WLAN with WPA / WPA2 / WPA-auto Authentication	75
Configure WLAN with WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication	77
Configure WLAN with WAPI Authentication	78
Configure WLAN with WAPI-PSK Authentication	80
Step 7: Configure ACL Setting	81
Step 8: Configure WLAN # QoS.....	82
Step 9: Configure WLAN # Bandwidth Control	82
Step 10: Apply Submitted Configurations on the AP Device.....	82
<i>Radio1 – 5G</i>	83
Step 1: Configure General Wireless Setting	83
Step 2: Configure WLAN 15 General Setting (Station / CPE).....	83
Step 3: Configure WLAN15 Security Setting	85
Configure to associate Open WLAN.....	85
Configure to associate Open WLAN with WEP encryption	86
Configure to associate WLAN with Shared Key authentication.....	87
Configure to associate WLAN with WPA / WPA2 authentication	87
Configure to associate network with WPA-PSK / WPA2-PSK authentication	88
Step 4: Configure WLAN15 QoS.....	89
Step 5: Configure WLAN # General Setting	90
Step 6: Configure WLAN # Security Setting.....	92
Configure WLAN as Open Network.....	92
Configure WLAN as Open network with WEP encryption	92

Dual-band 3x3 802.11 ac WiFi Access Point Configuration Manual

Configure WLAN as Open network with Shared Key Authentication.....	93
Configure WLAN with WPA / WPA2 / WPA-auto Authentication	94
Configure WLAN with WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication.....	96
Configure WLAN with WAPI Authentication	97
Configure WLAN with WAPI-PSK Authentication.....	99
Step 7: Configure ACL Setting	100
Step 8: Configure WLAN # QoS.....	100
Step 9: Configure WLAN # Bandwidth Control	101
Step 10: Apply Submitted Configurations on the AP Device.....	101
4.4. BRIDGE MODE	102
5. ADVANCED RADIO SETTINGS	103
5.1. DISTANCE SETTING	103
5.2. SHORT GUARD INTERVAL	104
5.3. AIRFi	105
5.4. DATA RATE SETTING	105
Configure Data Rate	106
Configure Multicast Rate	106
5.5. FRAME AGGREGATION	107
5.6. SPATIAL STREAMING	107
5.7. DELIVERY TRAFFIC INDICATION MESSAGE (DTIM) TIME.....	108
5.8. WIFI PROTECT MECHANISM [HIDDEN NODE PROBLEM].....	109
5.9. BEACON INTERVAL OF BSS	110
5.10. NEARBY AP LIST	110
5.11. IGMP SNOOPING	111
5.12. MULTICAST TRAFFIC	111
6. VLAN CONFIGURATION.....	112
STEP 1: CONFIGURE RADIO SETTINGS	112
STEP 2: ENABLE VLAN	112
STEP 3: CREATE VLAN PROFILE	113
STEP 4: SPECIFY MANAGEMENT VLAN PROFILE	113
STEP 5: ASSIGN VLAN PROFILE ON INTERFACE AS ACCESS PORT.....	114
STEP 6: ASSIGN VLAN PROFILE ON INTERFACE AS TRUNK PORT	114
STEP 7: APPLY SUBMITTED VLAN CONFIGURATIONS ON THE AP DEVICE.....	115
7. NETWORK TIME PROTOCOL (NTP) SETTINGS.....	116
8. STP	117
9. SAFE MODE.....	118
10. QUALITY OF SERVICE (QOS)	119
11. IP GATEWAY	121
11.1. IP GATEWAY.....	121
Step 1: Configure WAN IP Setting	121
Step 2: Configure Radio Settings.....	121
Step 3: Enable Gateway Mode	121
Step 4: Configure LAN IP Setting	121
Step 5: Assign Interface(s) as WAN Interface	122
Step 6: Assign Interface(s) as LAN Interface	122
Step 7: NAT Setting	122
Step 8: Apply Submitted Configurations on the AP Device.....	123
11.2. DHCP SERVER	123
Step 1: Configure as Gateway Mode	123
Step 2: Enable DHCP Server	123
Step 3: Assign IP Address Range for Leasing on DHCP Server	124
Step 4: Apply Submitted Configurations on the AP Device	124

Dual-band 3x3 802.11 ac WiFi Access Point

Configuration Manual

11.3. PORT FORWARD	124
<i>Step 1: Configure as Gateway Mode</i>	125
<i>Step 2: Configure Port Forwarding</i>	125
<i>Step 3: Apply Submitted Configurations on the AP Device</i>	126
12. THIN AP.....	127
13. WEB UI ADMINISTRATION.....	129
13.1. AUTO REFRESHMENT	129
13.2. WEB UI PORT CONFIGURATION	129
13.3. HTTPS CERTIFICATION.....	130
13.4. USER ADMINISTRATION	131
<i>Local authentication</i>	131
Modify admin account's password	131
Modify guest account's password.....	132
<i>RADIUS authentication</i>	132
14. DEVICE CONFIGURATION & FIRMWARE MANAGEMENT.....	133
14.1. BACKUP & RESTORE DEVICE CONFIGURATION	133
<i>Backup Device Configuration</i>	133
<i>Restore Device Configuration</i>	133
14.2. FIRMWARE UPDATE.....	134
14.3. FACTORY DEFAULT	135
14.4. FACTORY DEFAULT CONFIGURATION CUSTOMIZATION	135
15. SNMP	137
16. LOGGING CONFIGURATION	138
16.1. SYSTEM LOGS.....	138
16.2. HISTORICAL STATISTIC	139
17. MONITOR YOUR AP DEVICE.....	140
17.1. SYSTEM STATUS OVERVIEW.....	140
<i>System Status</i>	141
<i>Thin AP</i>	141
<i>Networks</i>	142
Switch Mode.....	142
Gateway Mode	142
<i>Interfaces</i>	143
Ethernet (eth0) / Ethernet (eth1).....	143
Radio0 (2.4G) / Radio1 (5G).....	143
17.2. RADIO0 (2.4G) / RADIO1 (5G) STATUS	145
<i>Radio0 (2.4G) / Radio1 (5G) Status Information</i>	145
Radio Settings.....	145
Channel Usage List	145
Nearby AP List	146
Tx/Rx Statistics	146
<i>Radio0 (2.4G) / Radio1 (5G) Association List</i>	146
WAN.....	146
Station List	146
Rouge Station List.....	147
<i>Radio0 (2.4G) / Radio1 (5G) Connection Info</i>	147
STA Info.....	147
AP Info	147
17.3. ETHERNET STATUS	148
18. TOOLS FOR DEPLOYMENT / OPERATION / TROUBLESHOOTING.....	149
18.1. SYSTEM LOGS.....	149

<i>Download system logs</i>	149
18.2. HISTORICAL STATISTIC	150
<i>Download historical statistical data</i>	150
18.3. CHANNEL SCAN	150
18.4. PING TEST	151
18.5. TRACEROUTE TEST	151
18.6. TCPDUMP	152
18.7. WATCHDOG	153
<i>Schedule Reboot</i>	153
Periodic reboot	153
Periodic log upload	153
<i>Ping Watchdog</i>	154
19. PRODUCT INFORMATION	155

1. Introduction

This guide covers the initial configuration of 3x3 802.11 ac Wireless Access Point via Web Administration Interface (Web UI). Web Administration Interface is the built-in and user-friendly graphic interface on all this Series products. It allows you to configure, monitor, and manage the devices using web browser. Mozilla Firefox, Google Chrome, and Internet Explorer 8+ are recommended.

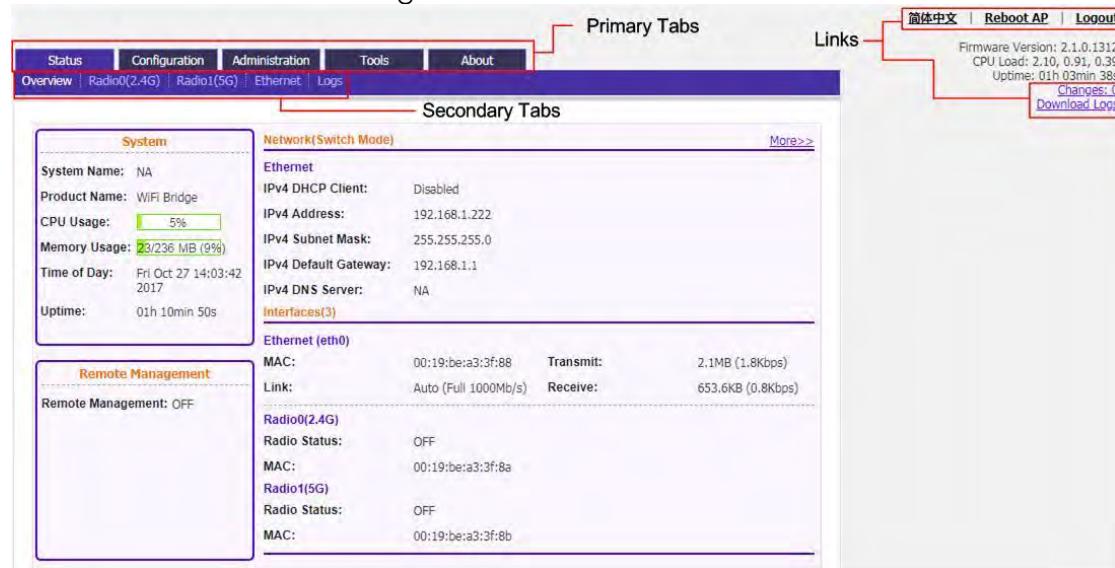

This guide is applicable with firmware version 2.0.1.300 or above for hardware platforms with the following models:

Table 1 – AP products

Product Name	AP
Model Number	GK-AP2458-AC-PTE

2. Web Administration Interface (Web UI)

Figure 1 - AP Status Overview

Web Administration Interface (Web UI) consists of:

Primary Tabs:

Status

Configuration

Administration

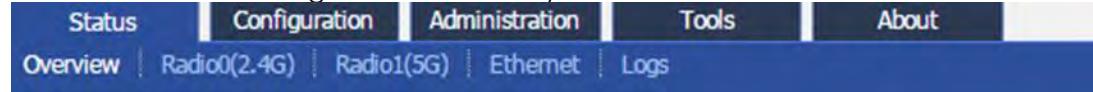
Tools

About

Links:

简体中文/English – swap Web UI language between simplified Chinese and English.

Reboot AP – reboot AP.


Logout – log out from Web UI.

Change: 0 – list out all unsaved configuration changes.

Download Logs – download the system log from AP.

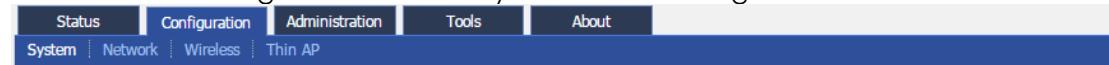
2.1. Status

Figure 2 – Secondary tabs under Status tab

Status tab collects the information about AP's system status, interfaces status, and system logs. The following tabs can be found under status tab:

Overview – display vital information on the device's status. Information includes system status, thin AP status, network status, and interfaces status.

Radio0 (2.4G) – display 2.4G radio's information including radio settings, radio transmission and reception statistics, and connection information.


Radio1 (5G) – display 5G radio's information including radio settings, radio transmission and reception statistics, and connection information.

Ethernet - shows the current status of Ethernet interfaces. The information includes Port, MAC Address, Auto-negotiation, Speed, Duplex, Link Detected, instant throughput of uplink and downlink and traffic of uplink and downlink.

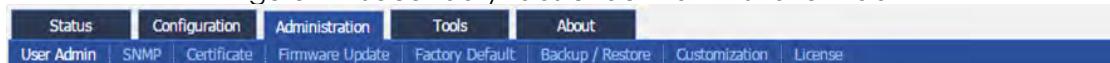
Logs - display log files for system information, association activity, and alarm event.

2.2. Configuration

Figure 3 – Secondary tabs under Configuration tab

Configuration tab contains various configuration attributes about the device. The following tabs can be found under configuration tab:

System – the configuration attributes about system information, logging, Network Time Protocol (NTP), and web setting can be found in this tab.


Network – the configuration attributes about IP address, interface assignment, VLAN, built-in DHCP server, port forward, and safe mode can be found under this tab

Wireless – the configuration attributes about both 2.4G radio and 5G radio can be found under this tab

Thin AP - the configuration attributes about thin AP mode can be found under this tab

2.3. Administration

Figure 4 – Secondary tabs under Administration tab

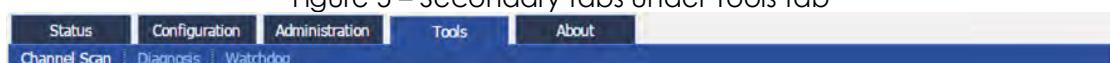
Administration tab contains various configuration attributes for managing the device. The following tabs can be found under configuration tab:

User Admin – collects the configuration attributes about user administration of the device

SNMP – collects the configuration attributes about Simple Network Management Protocol (SNMP)

Certificate – upload certification file and key file for HTTPS connection of the device

Firmware Update – update the firmware of the device


Factory Default – perform factory reset for the device

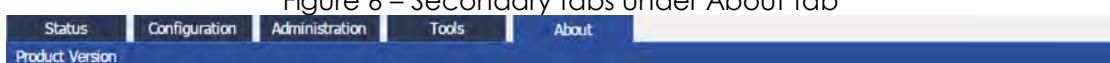
Backup/Restore – backup the current configuration from the device or restore the desire configuration to the device

Customization – upload customized configuration as factory default settings for the device

2.4. Tools

Figure 5 – Secondary tabs under Tools tab

Administration tab collects various tools for deployment and troubleshooting. The following tabs can be found under Tools tab:


Channel Scan - collect the information of all WiFi channel on 2.4GHz frequency and 5GHz frequency in the surrounding area. The information includes noise floor, percentage of channel busy, and the number of BSS in particular radio channels.

Diagnosis – provide tools for testing the reachability, route, and packet capture for troubleshooting

Watchdog – provide various timers used to detect and recover from system malfunctions

2.5. About

Figure 6 – Secondary tabs under About tab

About tab collects the information about product information, hardware, firmware and company information.

3. Getting Started

This chapter covers the procedures for logging into / out AP Products Web Administration Interface (Web UI) via Ethernet, and restarting the device via Web UI.

Step 1: Preparing the Administrator Computer

1. On your Windows XP or Windows 7 computer, open the Network Connections (or Change adapter settings) control panel according to how the Start menu is set up:

On **Windows XP**, click **Start > Control Panel > Network Connections**.

On **Windows 7**, click **Start > Control Panel > Network and Internet > Network and Sharing Center > Change adapter settings**.

2. Right-click the icon for **Local Area Connection**, and then click **Properties**.
3. When the Local Area Connection Properties dialog box appears, select **Internet Protocol (TCP/IP)** (or **Internet Protocol Version 4 (TCP/IPv4)**) from the scrolling list, and then click **Properties**. The Internet Protocol (TCP/IP) Properties dialog box appears.
4. Write down all of the currently active network settings. You will need this information later when you restore your computer to its current network configuration.

Configure the IP address settings with the values listed in

5. Table 2.

Table 2 - Configure administrative computer's IP address settings

IP Address	Any address in the 192.168.1.x, except 192.168.1.222 and 192.168.1.255 Example: 192.168.1.2
Subnet Mask	255.255.255.0
Default Gateway	Blank
DNS	Blank

6. Click **OK** to save the changes and close the TCP/IP Properties dialog box.
7. Click **OK** again to close the Local Area Connection Properties dialog box.

Step 2: Connecting Access Point

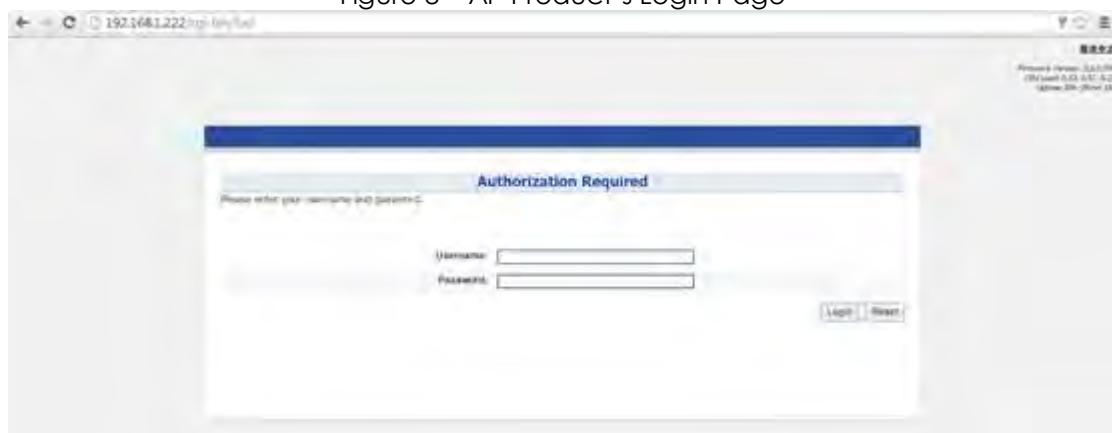
1. Connect your laptop to **Data/IN** port on the PoE Injector provided in the product's package using Ethernet cable
2. Connect the Ethernet port of AP to **P+D/Out** port on the PoE Injector provided in the product's package using Ethernet cable.
3. Connect the power cord to the power port on the PoE Injector. Connect the other end of the power cord to a power outlet.

Figure 7 – AP 2458 Connection Diagram

4. Verify the AP's Power LED is steady orange (Thick AP) or steady green (Thin AP) after a minute

LED Colors and What They Mean

AP2458


Table 3 - AP operation LED indicators

LED	Mode	LED Status (Color)	Meaning
Power LED	Thick AP	Off	Power off
		Blinking slowly (Orange)	Booting
		Solid (Orange)	Operating
	Thin AP	Off	Power off
		Blinking slowly (Orange)	Booting
		Blinking slowly (Green)	Discovery / Connect to Access Controller
		Solid (Green)	Connect to Access Controller successfully and operating
Ethernet LED	--	Off	Link Down
	100Mbps	Solid (Green)	Link Up
		Blinking (Green)	Activity
	1000Mbps	Solid (Blue)	Link Up
		Blinking (Blue)	Activity
Remarks: <ol style="list-style-type: none"> 1. All LED will be off once pressing down the reset button 2. Pressing and holding the reset button until Power LED blinks once, the device reboots. 3. Pressing and holding the reset button until Power LED blinks twice consecutively, the device restores the factory default setting. 			

Step 3: Login the AP (via Ethernet)

1. Verify the AP's Power LED is steady orange (Thick AP) or steady green (Thin AP)
2. Open a Web browser from the computer.
Type <http://192.168.1.222> in the address bar or location bar (see Figure 8).
3. Type admin (default username) in **Username**
4. Type admin (default password) in **Password**
5. Click **Login**

Figure 8 – AP Product's Login Page

Secondary IP Address of AP

The default IP address of access points is 192.168.1.222/24. AP support a fixed IP address on the Ethernet connection called Secondary IP Address. This secondary IP address is 192.168.99.x/24 where x denotes as the decimal value of the last byte of the Ethernet MAC address on the access point.

Example 1:

Device Ethernet MAC address: 00:19:BE:20:03:**8C**

Secondary IP Address of this device:

192.168.99.**140** (**8C** (HEX) → **140** (DEC))

The secondary IP address uses IP range from 192.168.99.5/24 to 192.168.99.254/24. The rest of IP addresses are reserved. If the last byte of a MAC address matches any of the reserved IP addresses, the supported device shall follow the MAC to IP address mapping shown in Table :

Table 4 - Product Secondary IP Address

Ethernet MAC address	Reserved Purpose	Replaced MAC byte	Secondary IP address
XX:XX:XX:XX:XX:00	Invalid IP	A0	192.168.99.160
XX:XX:XX:XX:XX:01	For gateway	A1	192.168.99.161
XX:XX:XX:XX:XX:02	For operator computer	A2	192.168.99.162
XX:XX:XX:XX:XX:03	For operator computer	A3	192.168.99.163
XX:XX:XX:XX:XX:04	For operator computer	A4	192.168.99.164
XX:XX:XX:XX:XX:FF	Invalid IP	AF	192.168.99.175

Example 2

Device Ethernet MAC address: 00:19:BE:20:03:**FF**

Secondary IP Address of this device:

192.168.99.**175** (**FF** (HEX) → **AF** (HEX) → **175** (DEC))

Step 4: System Info Setting

Figure 9 – System Info Setting

System Info Setting

System Name:	<input type="text"/>
System NE ID:	<input type="text"/>
System Location:	<input type="text"/>
Power Save PoE:	<input type="checkbox"/>

1. Click **Configuration > System**
2. Type in a string up to 255 characters in **System Name**; this entry is optional
3. Type in a string up to 64 characters in **System NE ID**; this entry is optional
4. Type in a string up to 255 characters in **System Location**; this entry is optional
5. Select **Power Save PoE** checkbox if AP is powered by a PoE switch that is compliant with 802.3af only.
6. Click **Submit**

Note:

- In 802.3af power save mode, AP will operate in 2x3 MIMO with maximum transmission power 24 dBm.

Step 5: Assign an IP Address to AP Device

Assign Static IPv4 IP Address

Figure 10 – IPv4 WAN Setting (Static IP Address)

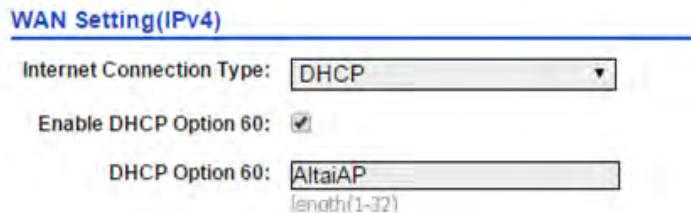
WAN Setting(IPv4)

Internet Connection Type:	<input type="button" value="Static"/>
IPv4 Address:	<input type="text"/> 10 . <input type="text"/> 6 . <input type="text"/> 122 . <input type="text"/> 101
IPv4 Subnet Mask:	<input type="text"/> 255 . <input type="text"/> 255 . <input type="text"/> 255 . <input type="text"/> 0
IPv4 Default Gateway:	<input type="text"/> 10 . <input type="text"/> 6 . <input type="text"/> 122 . <input type="text"/> 1
IPv4 DNS Server IP Address:	<input type="text"/> 10.6.127.4 <input type="button" value=""/>

1. Go to **Configuration > Network > General > WAN Settings (IPv4)**
2. Select **Static** on **Internet Connection Type**
3. Enter valid IP Address on **IPv4 Address**; 192.168.1.222 is the default setting
4. Enter valid IP subnet mask on **IPv4 Subnet Mask**; 255.255.255.0 is default setting

5. Enter valid IP address of default gateway on **IPv4 Default Gateway**
6. Enter valid IP address of DNS server on **IPv4 DNS Server Address**

Note:


- Click for adding more DNS;
- Click to remove existing DNS server entry

7. Click **Submit**

Assign IPv4 IP Address from DHCP server

Figure 11 – IPv4 WAN Setting (DHCP Client)

WAN Setting (IPv4)

Internet Connection Type: **DHCP**

Enable DHCP Option 60:

DHCP Option 60: **AltaiAP**
length(1-32)

1. Go to **Configuration > Network > General > WAN Settings (IPv4)**
2. Select **DHCP** on **Internet Connection Type**
3. Click **Enable DHCP Option 60** checkbox to specify vendor class identifier. This entry is optional.
4. Enter a string between 1 and 32 characters long on **DHCP Option 60**. This entry is optional.
5. Click **Submit**

Assign Static IPv6 IP Address

Figure 12 – Enable IPv6 option

Network Setting

Network Setting: **Switch Mode**

Enable IPv6:

1. Go to **Configuration > Network > General > Network Setting**
2. Click **Enable IPv6** checkbox

Figure 13 – IPv6 WAN Setting

WAN Setting(IPv6)

Internet Connection Type: **Static**

IPv6 Address:

IPv6 Default Gateway:

IPv6 DNS Server:

3. Go to **Configuration > Network > General > WAN Setting (IPv6)**
4. Select **Static** on **Internet Connection Type**
5. Enter valid IP Address on **IPv6 Address**
6. Enter valid IP subnet mask on **IPv6 Subnet Mask**
7. Enter valid IP address of default gateway on **IPv6 Default Gateway**
8. Enter valid IP address of DNS server on **IPv6 DNS Server Address**

Note:

- Click for adding more IPv6 Address and IPv6 DNS Server;
- Click to remove existing IPv6 Address and IPv6 DNS Server entry

9. Click **Submit**

Assign IPv6 IP Address from DHCP server

Figure 14 – Enable IPv6 option

Network Setting

Network Setting: **Switch Mode**

Enable IPv6:

1. Go to **Configuration > Network > General > Network Setting**
2. Click **Enable IPv6** checkbox

Figure 15 – IPv6 WAN Setting

WAN Setting(IPv6)

Internet Connection Type: **DHCP**

3. Go to **Configuration > Network > General > WAN Setting (IPv6)**
4. Select **DHCP** on **Internet Connection Type**
5. Click **Submit**

Step 6: Apply Submitted Configurations on the AP

1. Click **Save & Apply** from the top on the right.

4. Radios Settings

3x3 AC series products have both a high capacity 2.4 GHz (3x3:3 802.11b/g/n) radio and a 5 GHz (3x3:3 802.11a/n/ac) radio. It can play as different role in your network. This chapter shows the typical deployment scenarios and configuration procedures.

4.1. Access Point Mode

Access Point (AP) allows wireless devices to connect to a wired network using 802.11 a/b/g/n/ac standards. Wireless clients connect the AP to join the network, such as laptops, smart phones etc.

Radio0 – 2.4G

Step 1: Configure General Wireless Setting

Figure 16 – 2.4G Radio General Setting

Radio0(2.4G) Setting

General WLAN Advanced QoS

Enable Radio:

Radio Mode: AP

Country Code: HONG KONG

Wireless Mode: 2.4GHz 450Mbps(802.11ng HT40+)

Legacy 11b Data Rate Support: 1/2/5.5/11M (Best compatibility/Poor performance)

Radio Frequency: Auto

Transmit Power: 1

Maximum Clients: 256 (1-256)

Disable HT20/HT40 Auto Switch:

User Isolation in different WLAN (SSID):

Periodic Auto channel Selection:

Schedule Mode: Sun Mon Tues Wed Thur
 Fri Sat 00:00

Periodic Mode: 0 (Mins) 0-1440Mins, 0 means Periodic mode disabled.

Submit

1. Go to **Configuration > Wireless > Radio0 (2.4G) > General**
2. Select **Enable Radio** checkbox to enable radio interface
3. Select AP on **Radio Mode**

4. Select the correct country code on **Country Code**; this option ensures that the AP device uses only the radio channels allowed in your country or region
5. Select suitable wireless mode on **Wireless Mode**; the options include:
2.4G 11Mbps (802.11 b)
2.4G 54Mbps (802.11 bg)
2.4G 54Mbps (802.11 g-only)
2.4G 216.7Mbps (802.11 ng HT20); **Default Setting**
2.4G 216.7Mbps (802.11 n-only HT20)
2.4G 450Mbps (802.11 ng HT40+)
2.4G 450Mbps (802.11 n-only HT40+)
2.4G 450Mbps (802.11 ng HT40-)
2.4G 450Mbps (802.11 n-only HT40-)
6. Select suitable option on **Legacy 11b Data Rate Support** for legacy client compatibility. In order to enhance the spectrum efficiency, low data rates (1/2/5.5/11M) should be eliminated. This entry is optional. Options include:

1/2/5.5/11M (Best compatibility /Poor performance)	All legacy clients will be supported
5.5/11M (Good compatibility /Good performance)	Clients only capable of 1/2Mbps will not be supported
Disable All (Poor compatibility/ Best performance)	Clients only capable of 802.11b standard will not be supported

Note:

- 2.4G 11Mbps (802.11 b) is not applicable.

7. Select suitable operating channel on **Radio Frequency**;

Note:

- You should select the suitable operating channel based on the on-site channel scan result.

8. Select suitable transmission power on **Transmission Power**;

Note:

- You should follow the regulation from local Communications Authority

9. Enter the maximum associated client between 1 and 256 on **Maximum Client** that the radio interface serves. 256 is the default setting. This entry is optional.

10. Select **Disable HT20/HT40 Auto Switch** checkbox that AP device will NOT switch the channel width between 20 MHz and 40 MHz automatically. This entry is optional and only available for the following wireless modes:

- 2.4G 450Mbps (802.11 ng HT40+)
- 2.4G 450Mbps (802.11 n-only HT40+)
- 2.4G 450Mbps (802.11 ng HT40-)
- 2.4G 450Mbps (802.11 n-only HT40-)

11. Select **Enable Inter-WLAN User Isolation** checkbox that AP device block the users' communication across different SSID on the same AP directly. This entry is optional.

12. Select **Periodic Auto Channel Section** checkbox to enable scheduled channel selection task on the radio interface. This entry is optional and only available if auto is selected on **Radio Frequency**. The available schedule modes are:

Schedule Mode Select exact time and day(s) for selecting radio frequency for the interface

Periodic Mode Select a countdown timer (minute) for selecting radio frequency for the interface; 0 denotes disable.

13. Click **Submit**

Step 2: Configure WLAN # General Setting

Figure 17 – 2.4G WLAN # General Setting

Radio0(2.4G) WLAN0 Setting

WLAN General WLAN Security Rogue Station List QoS Bandwidth Control

Enable WLAN:

Hide SSID:

SSID: Superwifi Network 0

User Isolation:

DHCP Trusted Port:

Access Traffic Right: Full Access

Max Clients: 256 (1-256)

Station Association Requirement

Reject Station Association if SNR less than 0 dB. (0-100dB, 0:Disable)

Disassociate Station if SNR drops more than 0 dB for consecutive 10 packets. (0-100dB)

Back to WLAN List Submit

1. Go to **Configuration > Wireless > Radio0 (2.4G) > WLAN # > [More...](#)**
2. Select **Enable WLAN** checkbox to enable WLAN
3. Select **Hide SSID** checkbox to hide SSID name from its beacon frame. This entry is optional.

4. Enter a unique name for the particular WLAN on **SSID**.

Note:

- If you want to configure the same SSID on two different WLANs; their security setting MUST be different from each other.

5. Select **User Isolation** checkbox to block user communication within the same SSID in the AP directly. This entry is optional.

6. Deselect the **DHCP Trust Port** checkbox to prevent illegal DHCP servers offering IP address to DHCP clients via this WLAN. This entry is optional.

7. Specify the suitable privilege of associated clients on **Access Traffic Right**; the options include

Full Access	Associated client can access Internet and manage AP
AP Management Only	Associated client can manage AP only, but not able to access the Internet
AP Management Disable	Associated client can access the Internet, but not able to manage AP

8. Enter the maximum associated clients between 1 and 256 on **Max Clients** for this WLAN. 256 is the default setting.

Note:

- **Max Clients** in WLAN 0 – 15 MUST be smaller than or equal to (\geq) the **Max Clients** setting on Radio General Setting

9. Enter an additional requirement on Signal Strength to Noise Ratio (SNR) for associated clients under **Station Association Requirement**. These entries are optional. Network ad may fill up the following fields:

Reject Station Association if SNR less than X dB	X denotes the minimum SNR level which allow clients to associate; You can select any integer between 0dB and 100dB; 0 denotes as disable; 0 is default setting
Disassociate Station if SNR drops more than Y dB for consecutive Z packets	Y denotes the SNR tolerance; Z denotes the number of consecutive packets their SNR are below the difference of X - Y.

Notes:

- Example for Station Association Requirement with the following settings:

Reject Station Association if SNR less than 30 dB (X = 30); Disassociate Station if SNR drops more than 20 dB for consecutive 10 packets (Y = 20; Z = 10)

Consequence:

AP accepts the clients to associate if the SNR of packets from

the clients is high than (>) 30dB;
 AP kicks out the associated client if the SNR of 10 consecutive packets is below (<) 10 dB (30 dB – 20 dB)

10. Click **Submit**

Step 3: Configure WLAN # Security Setting

Configure WLAN as Open Network

This setting is typically only used in a guest network. No security measure is enforced.

Figure 18 – 2.4G WLAN # Security Setting: Open Network

Figure 18 shows the configuration interface for Radio0(2.4G) WLAN0 Setting. The WLAN Security tab is selected. The Authentication Mode is set to Open and the Cipher Mode is set to Disabled. The Access Control List is set to Enabled - Default Allow and the ACL Input Method is set to Manual Input. The Denied MAC Address field is empty. Buttons for Back to WLAN List and Submit are at the bottom.

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select Disabled on **Cipher Mode**
4. Click **Submit**

Configure WLAN as Open network with WEP encryption
 This setting provides minimal security as it allows all requesting devices to join a given network.

Figure 19 – 2.4G WLAN # Security Setting: Open Network with WEP

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure WLAN as Open network with Shared Key Authentication
 Shared Key authentication is one of the authentication methods with WEP encryption. It verifies that station has knowledge of a shared secret.

Figure 20 – 2.4G WLAN # Security Setting: Shared Key Authentication

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure WLAN with WPA / WPA2 / WPA-auto Authentication

WPA (Wi-Fi Protected Access) or WPA2 provides enhanced security over WEP, and allows client authentication based on an external authentication server such as a RADIUS server, for corporate networks. WPA-auto is a mixed security mode which supports multiple implementations of the WPA standard, such as WPA and WPA2.

Figure 21 - 2.4G WLAN # Security Setting: WPA / WPA2 / WPA-auto Authentication

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select WPA / WPA2 / WPA-auto on **Authentication Mode**
3. Select suitable encryption mode on **Cipher Mode**

If Authentication Mode is WPA:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA-auto:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

Note:

- TKIP is not supported by 802.11n standard. If selected TKIP, the 802.11n's devices will be limited to 802.11g transfer rate, i.e. up to 54 Mbps

4. Enter suitable identification on **NAS identifier**. Remote RADIUS server uses this ID to identify its clients. This entry is available for WPA and WPA2 only.
5. Enter transmission timeout interval between 0 and 86400s on **RADIUS Retry Timeout**. 300 is default setting. This entry is optional.
6. Enter IP address of remote RADIUS server for authentication in **IP Address of RADIUS Server**
7. Enter service port of remote RADIUS server in **Port of RADIUS Server**. 1812 is default setting.
8. Enter suitable secrets in **Secret of RADIUS Server**. It is used along with the MD5 hashing algorithm to obfuscate passwords. This secret MUST be as the same as that in RADIUS server.
9. Repeat step 6-8 if the backup RADIUS server is available. It is optional.
10. Enter interval between each interim update in seconds on **Accounting interim Interval**. 300 is default setting. This entry is optional.
11. Enter IP address of remote RADIUS Accounting Server on **IP Address of RADIUS Accounting Server**. This entry is optional.
12. Enter service port of remote RADIUS server in **Port of RADIUS Accounting Server**. 1813 is default setting. This entry is optional.
13. Enter suitable secrets in **Secret of RADIUS Accounting Server**. It is used along with the MD5 hashing algorithm to obfuscate passwords. This secret MUST be as the same as that in RADIUS server. This entry is optional.
14. Repeat step 11-13 if the backup RADIUS Accounting server is available. It is optional.
15. Click **Submit**

Configure WLAN with WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication

Use of WPA or WPA2 provides enhanced security over WEP, and allows client authentication based on either a pre-shared key (PSK), for home or small office networks. WPA-auto-PSK is a mixed security mode which supports multiple implementations of the WPA standard, such as WPA-PSK and WPA2-PSK.

Figure 22 - 2.4G WLAN # Security Setting: WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication

Radio0(2.4G) WLAN0 Setting

WLAN General WLAN Security Rogue Station List QoS Bandwidth Control

WLAN Security Setting

Authentication Mode: WPA2-PSK

Cipher Mode: AES

Group Key Update Interval: 86400 (s)

Pass Phrase: Show
Length:8-63(ASCII Characters); Length:64(HEX Characters)

ACL Setting

Access Control List: Enabled - Default Allow

ACL Input Method: Manual Input File

Denied MAC Address:

Back to WLAN List Submit

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**

2. Select WPA-PSK / WPA2-PSK / WPA-auto-PSK on **Authentication Mode**

3. Select suitable encryption mode on **Cipher Mode**

If Authentication Mode is WPA:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA-auto:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

Note:

- TKIP is not supported by 802.11n standard. If selected TKIP, the 802.11n's devices will be limited to 802.11g transfer rate, i.e. up to 54 Mbps

4. Enter interval time in second in **Group Key Update Interval**. 86400 is default setting. This entry is optional.
5. Enter an ASCII string between 8 and 63 characters long or a HEX string with 64 characters long on **Pass Phrase** that users will use to connect to the wireless network.
6. Click **Submit**

Configure WLAN with WAPI Authentication

WLAN Authentication and Privacy Infrastructure (WAPI) is a Chinese National Standard for Wireless LANs (GB 15629.11-2003).

Figure 23 - 2.4G WLAN # Security Setting: WAPI Authentication

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select **WAPI** on **Authentication Mode**
3. Select **SMS4** in **Cipher Mode**

4. Select suitable option in **Certificate Mode**; the options includes:

Two-Cert	Wi-Fi client is verified by the certification from authentication server (AS) and Access Point (AP)
Three-Cert	Wi-Fi client is verified by the certification from authentication server (AS), access point (AP), and certificate authority (CA)
5. Click **Install Certificate**; a window for installing certificate is shown on Figure 24 and Figure 25.

Figure 24 - Two-Cert Mode Certification Installation

AS Certificate:	<input type="file"/>	<input type="button" value="Browse..."/>	<input type="button" value="Upload"/>
AP Certificate:	<input type="file"/>	<input type="button" value="Browse..."/>	<input type="button" value="Upload"/>
<input type="button" value="Install"/>			

Figure 25 - Three-Cert Mode Certification Installation

AS Certificate:	<input type="file"/>	<input type="button" value="Browse..."/>	<input type="button" value="Upload"/>
AP Certificate:	<input type="file"/>	<input type="button" value="Browse..."/>	<input type="button" value="Upload"/>
CA Certificate:	<input type="file"/>	<input type="button" value="Browse..."/>	<input type="button" value="Upload"/>
<input type="button" value="Install"/>			

6. Click **Browse** to select suitable certifications
7. Click **Upload** to upload the selected certifications to AP
8. Click **Install** to install certifications
9. Enter IP address of AS server on **AS IP Address**
10. Enter service port of AS server in **AS Port**
11. Enter interval time between 60 and 2147483647s in **Unicast Key Update Interval**; 86400 is default setting. This entry is optional.
12. Enter interval time between 60 and 2147483647s in **Multicast Key Update Interval**; 86400 is default setting. This entry is optional.
13. Click **Submit**

Configure WLAN with WAPI-PSK Authentication

Figure 26 - 2.4G WLAN # Security Setting: WAPI-PSK Authentication

The screenshot shows the 'Radio0(2.4G) WLAN0 Setting' page. The 'WLAN Security' tab is selected. The 'Authentication Mode' dropdown is set to 'WAPI-PSK'. The 'Cipher Mode' dropdown is set to 'SMS4'. The 'PassPhrase' field contains '86400'. Below it, a note says 'Length:8-63(ASCII Characters); Length:64(HEX Characters)'. The 'Unicast Key Update Interval' field is set to '86400' with the note '(60-2147483647)'. The 'Multicast Key Update Interval' field is also set to '86400' with the same note. The 'ACL Setting' tab is also visible, showing 'Access Control List: Enabled - Default Allow' and 'ACL Input Method: Manual Input'. There is a 'Denied MAC Address' input field with a browse icon. At the bottom are 'Back to WLAN List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select **WAPI** on **Authentication Mode**
3. Select **SMS4** in **Cipher Mode**
4. Enter in an ASCII string between 8 and 63 characters or a HEX string with 64 characters long in **Pass Phrase** that users will use to connect to the wireless network.
5. Enter interval time between 60 and 2147483647s in **Unicast Key Update Interval**; 86400 is default setting. This entry is optional.
6. Enter interval time between 60 and 2147483647s in **Multicast Key Update Interval**; 86400 is default setting. This entry is optional.
7. Click **Submit**

Step 4: Configure ACL Setting

Figure 27 – 2.4G WLAN # ACL Setting

ACL Setting

Access Control List:

ACL Input Method: Manual Input File

Denied MAC Address:

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > ACL Setting**
2. Select appropriate option on **Access Control List**; options include

<i>Disable</i>	ACL is disabled
<i>Enabled – Default Allow</i>	ACL is enabled. The MAC addresses which are specified in the ACL will consider as Deny. Every wireless client can associate to the AP unless its MAC address is on the list
<i>Enabled – Default Deny</i>	ACL is enabled. The MAC addresses which are specified in the ACL will consider as Allow. Every wireless client CANNOT associate to the AP unless its MAC address is on the list
3. Select *Manual Input* on **ACL Input Method** if network administrator prefers input the entry one by one manually
Or select *File* on **ACL Input Method** if network administrator prefers upload a MAC address list (.txt file)
4. Enter MAC address entry one by one or upload the corresponding file to AP; it is optional
5. Click **Submit**

Note:

- Network Administrator shall select *Disable* or *Enabled – Default Allow* if no ACL entry will be input on AP

Step 5: Configure WLAN # QoS

Please refer to Quality of Service (QoS) on page 119

Step 6: Configure WLAN # Bandwidth Control

Figure 28 – 2.4G WLAN # Bandwidth Control

The screenshot shows the 'Radio0(2.4G) WLAN0 Setting' page. At the top, there are tabs for WLAN General, WLAN Security, Rogue Station List, QoS, and Bandwidth Control. The 'Bandwidth Control' tab is selected. Below the tabs, there are two sections: 'Based On WLAN' and 'Based On Station'. Under 'Based On WLAN', there are fields for Uplink and Downlink, both set to 0. Under 'Based On Station', there are also fields for Uplink and Downlink, both set to 0. At the bottom right, there are 'Back to WLAN List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > Bandwidth Control**
2. Specify the uplink and downlink limitation under **Based on WLAN** for the particular WLAN
Or specify the uplink and downlink limitation under **Based on Station** for each associated station. 0 is default value and denotes as disable
3. Click **Submit**

Step 7: Apply Submitted Configurations on the AP Device

1. Click **Save & Apply** from the top on the right.

Radio1 – 5G

Step 1: Configure General Wireless Setting

Figure 29 - Radio1 (5G) General Setting

The screenshot shows the 'Radio1(5G) Setting' configuration page. The 'General' tab is selected. Key settings include:

- Enable Radio:** Checked
- Radio Mode:** AP
- Country Code:** HONG KONG
- Wireless Mode:** 5GHz 450Mbps(802.11na HT40+)
- Dynamic Radio Frequency Selection(DFS):** Enabled
- Radio Frequency:** Auto
- Transmit Power:** 5
- Maximum Clients:** 256 (1-256)
- Disable HT20/HT40 Auto Switch:** Enabled
- User Isolation in different WLAN (SSID):** Enabled
- Periodic Auto channel Selection:** Checked
- Schedule Mode:** Sun, Mon, Tues, Wed, Thur, Fri, Sat, 00:00
- Periodic Mode:** 0 (Mins) (0-1440Mins, 0 means Periodic mode disabled)

1. Go to **Configuration > Wireless > Radio1(5G) > General**
2. Select **Enable Radio** checkbox to enable radio interface
3. Select AP in **Radio Mode**
4. Select the correct country code on **Country Code**; this option ensures that the AP device uses only the radio channels allowed in your country or region
5. Select suitable wireless mode on **Wireless Mode**; the options include:
 - 5G 54Mbps (802.11 a)
 - 5G 216.7Mbps (802.11 na HT20)
 - 5G 216.7Mbps (802.11 n-only HT20)
 - 5G 450Mbps (802.11 n-only HT40+)
 - 5G 450Mbps (802.11 na HT40+)
 - 5G 450Mbps (802.11 na HT40-)
 - 5G 450Mbps (802.11 n-only HT40-)
 - 5G 289Mbps (802.11 ac HT20)
 - 5G 600Mbps (802.11 ac HT40+)
 - 5G 600Mbps (802.11 ac HT40-)
 - 5G 1.3Gbps (802.11 ac HT80); **Default Setting**

6. Select **Dynamic Radio Frequency Selection (DFS)** checkbox to enable automatic channel selection that selects the least congested channel where radar is not detected during booting up.

Note:

- **Radio Frequency** is set as auto automatically if DFS is enabled

7. Select suitable operating channel on **Radio Frequency**:

Note:

- You should select the suitable operating channel based on the on-site channel scan result.

8. Select suitable transmission power on **Transmission Power**:

Note:

- You should follow the regulation from local Communications Authority

9. Enter the maximum associated client between 1 and 256 on **Maximum Client** that the radio interface serves. 256 is the default setting. This entry is optional.

10. Select **Disable HT20/HT40 Auto Switch** checkbox that AP device will NOT switch the channel width between 20 MHz and 40 MHz automatically. This entry is optional and only available for the following wireless modes:

5G 450Mbps (802.11 n-only HT40+)

5G 450Mbps (802.11 na HT40+)

5G 450Mbps (802.11 na HT40-)

5G 450Mbps (802.11 n-only HT40-)

11. Select **Enable Inter-WLAN User Isolation** checkbox that AP device block the users' communication across different SSID in the AP directly. This entry is optional.

12. Select **Periodic Auto Channel Section** checkbox to enable scheduled channel selection task on the radio interface. This entry is optional and only available if auto is selected on **Radio Frequency**. The available schedule modes are:

Schedule Mode Select exact time and day(s) for selecting radio frequency for the interface

Periodic Mode Select a countdown timer (minute) for selecting radio frequency for the interface; 0 denotes disable.

13. Click **Submit**

Step 2: Configure WLAN # General Setting

Figure 30 – 5G WLAN # General Setting

1. Go to **Configuration > Wireless > Radio1 (5G) > WLAN # > [More...](#)**
2. Select **Enable WLAN** checkbox to enable WLAN
3. Select **Hide SSID** checkbox to hide SSID name from its beacon frame. This entry is optional.
4. Enter a unique name for the particular WLAN on **SSID**.

Note:

- If you want to configure the same SSID on two different WLAN; their security setting MUST be different from each other.

5. Select **User Isolation** checkbox to block user communication within the same SSID in the AP directly. This entry is optional.
6. Deselect the **DHCP Trust Port** checkbox to prevent illegal DHCP servers offering IP address to DHCP clients via this WLAN. This entry is optional.
7. Specify the suitable privilege of associated clients on **Access Traffic Right**; the options include

Full Access	Associated client can access Internet and manage AP
AP Management Only	Associated client can manage AP only, but not able to access the Internet
AP Management Disable	Associated client can access the Internet, but not able to manage AP
8. Specify the maximum associated clients between 1 and 256 on **Max Clients** for this WLAN. 256 is the default setting.

Note:

- **Max Clients** in WLAN 0 – 15 MUST be smaller than or equal to (\geq) the **Max Clients** setting on Radio General Setting

9. Specify an additional requirement on Signal Strength to Noise Ratio (SNR) for associated clients under **Station Association Requirement**. This requirement is optional. You may fill up the following fields:

Reject Station Association if SNR less than X dB

X denote the minimum SNR level which allow clients to associate; You can select any integer between 0dB and 100dB; 0 denotes as disable; 0 is default setting

Disassociate Station if SNR drops more than Y dB for consecutive Z packets

Y denotes the SNR tolerance; Z denotes the number of consecutive packets their SNR are below the difference of X - Y.

Notes:

- Example for Station Association Requirement with the following settings:

Reject Station Association if SNR less than 30 dB (X = 30); Disassociate Station if SNR drops more than 20 dB for consecutive 10 packets (Y = 20; Z = 10)

Consequence:

AP accepts the clients to associate if the SNR of packets from the clients is high than (>) 30dB;

AP kicks out the associated client if the SNR of 10 consecutive packets is below (<) 10 dB (30 dB – 20 dB)

10. Click **Submit**

Step 3: Configure WLAN # Security Setting

Configure WLAN as Open Network

This setting is typically only used in a guest network. No security measure is enforced.

Figure 31 – 5G WLAN # Security Setting: Open Network

Radio1(5G) WLAN Setting

WLAN General WLAN Security Rogue-Station List QoS Bandwidth Control

WLAN Security Setting

Authentication Mode: Open

Cipher Mode: Disabled

ACL Setting

Access Control List: Enabled - Default Allow

ACL Input Method: Manual Input File

Denied MAC Address:

Back to WLAN List

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select Disabled on **Cipher Mode**
4. Click **Submit**

Configure WLAN as Open network with WEP encryption

This setting provides minimal security as it allows all requesting devices to join a given network.

Figure 32 – 5G WLAN # Security Setting: Open Network with WEP

Radio1(5G) WLAN0 Setting

WLAN General WLAN Security Rogue Station List QoS Bandwidth Control

WLAN Security Setting

Authentication Mode: Open

Cipher Mode: WEP

Default WEP Key: 1 (1-4)

Key Entry Method: Ascii Text Hexadecimal

WEP Key 1: Show

WEP Key 2: Show

WEP Key 3: Show

WEP Key 4: Show

ACL Setting

Access Control List: Enabled - Default Allow

ACL Input Method: Manual Input File

Denied MAC Address:

Back to WLAN List

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure WLAN as Open network with Shared Key Authentication
 Shared Key authentication is one of the authentication methods with WEP encryption. It verifies that station has knowledge of a shared secret.

Figure 33 – 5G WLAN # Security Setting: Shared Key Authentication

The screenshot shows the configuration interface for Radio1(5G). The top navigation bar includes Status, Configuration, Administration, Tools, and About. Under Configuration, Network, Wireless, and Thin AP are listed. The main content area is titled "Radio1(5G) WLAN0 Setting" with tabs for WLAN General, WLAN Security, Rogue Station List, QoS, and Bandwidth Control. The WLAN Security tab is selected. The configuration fields include:

- Authentication Mode: Shared
- Cipher Mode: WEP
- Default WEP Key: 1 (1-4)
- Key Entry Method: Ascii Text (radio button selected)
- WEP Key 1, 2, 3, 4: Input fields with "Show" checkboxes

The ACL Setting section includes:

- Access Control List: Enabled - Default Allow
- ACL Input Method: Manual Input (radio button selected)
- Denied MAC Address: Input field with a file browser icon

At the bottom are "Back to WLAN List" and "Submit" buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select Shared on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 - Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 - Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 ASCII characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure WLAN with WPA / WPA2 / WPA-auto Authentication

WPA (Wi-Fi Protected Access) or WPA2 provides enhanced security over WEP, and allows client authentication based on an external authentication server such as a RADIUS server, for corporate networks. WPA-auto is a mixed security mode which supports multiple implementations of the WPA standard, such as WPA and WPA2.

Figure 34 - 5G WLAN # Security Setting: WPA / WPA2 / WPA-auto Authentication

Radio0(2.4G) WLAN0 Setting

WLAN Security Setting

- Authentication Mode: WPA2
- Cipher Mode: AES
- Group Key Update Interval: 6400 (s)

RADIUS Server Setting

- NAS Identifier: (0-32)
- RADIUS Server IP Address Type: IPv4
- RADIUS Retry Timeout: 300 (0-65535 s)

	IP Address	Port	Secret(1-128)
RADIUS Server	0 . 0 . 0 . 0	1812	
Secondary RADIUS Server	0 . 0 . 0 . 0	1812	

RADIUS Accounting Server Setting

- RADIUS Accounting Server IP Address Type: IPv4
- Accounting interim Interval: 300 (60-86400s, 0:Disable)

	IP Address	Port	Secret(1-128)
RADIUS Accounting Server	0 . 0 . 0 . 0	1813	
Secondary RADIUS Accounting Server	0 . 0 . 0 . 0	1813	

ACL Setting

- Access Control List: Enabled - Default Allow
- ACL Input Method: Manual Input
- Denied MAC Address: (input field with a plus icon)

[Back to WLAN List](#) [Submit](#)

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select WPA / WPA2 / WPA-auto on **Authentication Mode**
3. Select suitable encryption mode on **Cipher Mode**
4. If Authentication Mode is WPA:
 - TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
 - TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
 - AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

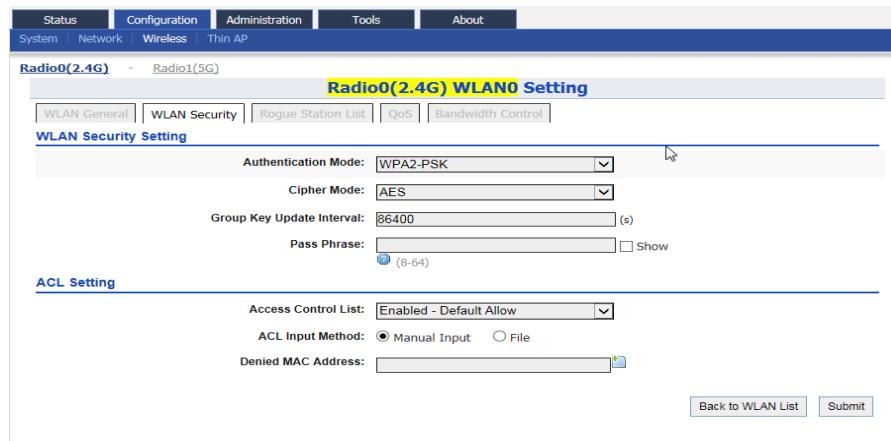
AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA-auto:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

Note:

- TKIP is not supported by 802.11n standard. If selected TKIP, the 802.11n's devices will be limited to 802.11g transfer rate, i.e. up to 54 Mbps



5. Enter suitable identification on **NAS identifier**. Remote RADIUS server uses this ID to identify its clients. This entry is available for WPA and WPA2 only.
6. Enter transmission timeout interval between 0 and 86400s on **RADIUS Retry Timeout**. 300 is default setting. This entry is optional.
7. Enter IP address of remote RADIUS server for authentication in **IP Address of RADIUS Server**
8. Enter service port of remote RADIUS server in **Port of RADIUS Server**. 1812 is default setting.
9. Enter suitable secrets in **Secret of RADIUS Server**. It is used along with the MD5 hashing algorithm to obfuscate passwords. This secret MUST be as the same as that in RADIUS server.
10. Repeat step 6-8 if the backup RADIUS server is available. It is optional.
11. Enter interval between each interim update in seconds on **Accounting interim Interval**. 300 is default setting. This entry is optional.
12. Enter IP address of remote RADIUS Accounting Server on **IP Address of RADIUS Accounting Server**. This entry is optional.
13. Enter service port of remote RADIUS server in **Port of RADIUS Accounting Server**. 1813 is default setting. This entry is optional.
14. Enter suitable secrets in **Secret of RADIUS Accounting Server**. It is used along with the MD5 hashing algorithm to obfuscate passwords. This secret MUST be as the same as that in RADIUS server. This entry is optional.
15. Repeat step 11-13 if the backup RADIUS Accounting server is available. It is optional.
16. Click **Submit**

Configure WLAN with WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication

Use of WPA or WPA2 provides enhanced security over WEP, and allows client authentication based on either a pre-shared key (PSK), for home or small office networks. WPA-auto-PSK is a mixed security mode which supports multiple implementations of the WPA standard, such as WPA-PSK and WPA2-PSK.

Figure 35 - 5G WLAN # Security Setting: WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**

2. Select WPA-PSK / WPA2-PSK / WPA-auto-PSK on **Authentication Mode**

3. Select suitable encryption mode on **Cipher Mode**

If Authentication Mode is WPA:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA-auto:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

Note:

- TKIP is not supported by 802.11n standard. If selected TKIP, the 802.11n's devices will be limited to 802.11g transfer rate, i.e. up to 54 Mbps

4. Enter interval time in second in **Group Key Update Interval**. 86400 is default setting. This entry is optional.
5. Enter an ASCII string between 8 and 63 characters long or a HEX string with 64 characters long on **Pass Phrase** that users will use to connect to the wireless network.
6. Click **Submit**

Configure WLAN with WAPI Authentication

WLAN Authentication and Privacy Infrastructure (WAPI) is a Chinese National Standard for Wireless LANs (GB 15629.11-2003).

Figure 36 - 5G WLAN # Security Setting: WAPI Authentication

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select **WAPI** on **Authentication Mode**
3. Select **SMS4** in **Cipher Mode**
4. Select suitable option in **Certificate Mode**; the options includes:
 Two-Cert Wi-Fi client is verified by the certification from authentication server (AS) and Access Point (AP)

Three-Cert Wi-Fi client is verified by the certification from authentication server (AS), access point (AP), and certificate authority (CA)

5. Click **Install Certificate**; a window for installing certificate is shown on

6. Figure 37 and Figure 38.

Figure 37 - Two-Cert Mode Certification Installation

AS Certificate:

AP Certificate:

Figure 38 - Three-Cert Mode Certification Installation

AS Certificate:

AP Certificate:

CA Certificate:

7. Click **Browse** to select suitable certifications
8. Click **Upload** to upload the selected certifications to AP
9. Click **Install** to install certifications
10. Enter IP address of AS server on **AS IP Address**
11. Enter service port of AS server in **AS Port**
12. Enter interval time between 60 and 2147483647s in **Unicast Key Update Interval**; 86400 is default setting. This entry is optional.
13. Enter interval time between 60 and 2147483647s in **Multicast Key Update Interval**; 86400 is default setting. This entry is optional.
14. Click **Submit**

Configure WLAN with WAPI-PSK Authentication

Figure 39 - 5G WLAN # Security Setting: WAPI-PSK Authentication

System | Network | Wireless | Thin AP

Radio0(2.4G) - Radio1(5G)

Radio1(5G) WLAN0 Setting

[WLAN General](#) [WLAN Security](#) [Fogue Station List](#) [QoS](#) [Bandwidth Control](#)

WLAN Security Setting

Authentication Mode:

Cipher Mode:

PassPhrase: Show
Length:8-63(ASCII Characters); Length:64(HEX Characters)

Unicast Key Update Interval:
(60-2147483647)

Multicast Key Update Interval:
(60-2147483647)

ACL Setting

Access Control List:

ACL Input Method: Manual Input File

Denied MAC Address:

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select **WAPI** on **Authentication Mode**
3. Select **SMS4** in **Cipher Mode**
4. Enter in an ASCII string between 8 and 63 characters or a HEX string with 64 characters long in **Pass Phrase** that users will use to connect to the wireless network.
5. Enter interval time between 60 and 2147483647s in **Unicast Key Update Interval**; 86400 is default setting. This entry is optional.
6. Enter interval time between 60 and 2147483647s in **Multicast Key Update Interval**; 86400 is default setting. This entry is optional.
7. Click **Submit**

Step 4: Configure ACL Setting

Figure 40 - 5G WLAN #ACL Setting

Access Control List:

ACL Input Method: Manual Input File

Denied MAC Address:

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > ACL Setting**
2. Select appropriate option on **Access Control List**; options include

Disable	ACL is disabled
Enabled – Default Allow	ACL is enabled. The MAC addresses which are specified in the ACL will consider as Deny. Every wireless client can associate to the AP unless its MAC address is on the list
Enabled – Default Deny	ACL is enabled. The MAC addresses which are specified in the ACL will consider as Allow. Every wireless client CANNOT associate to the AP unless its MAC address is on the list
3. Select **Manual Input** on **ACL Input Method** if network administrator prefers input the entry one by one manually
Or select **File** on **ACL Input Method** if network administrator prefers upload a MAC address list (.txt file)
4. Enter MAC address entry one by one or upload the corresponding file to AP; it is optional
5. Click **Submit**

Note:

- Network Administrator shall select **Disable** or **Enabled – Default Allow** if no ACL entry will be input on AP

Step 5: Configure WLAN # QoS

Please refer to Quality of Service (QoS) on page 119

Step 6: Configure WLAN # Bandwidth Control

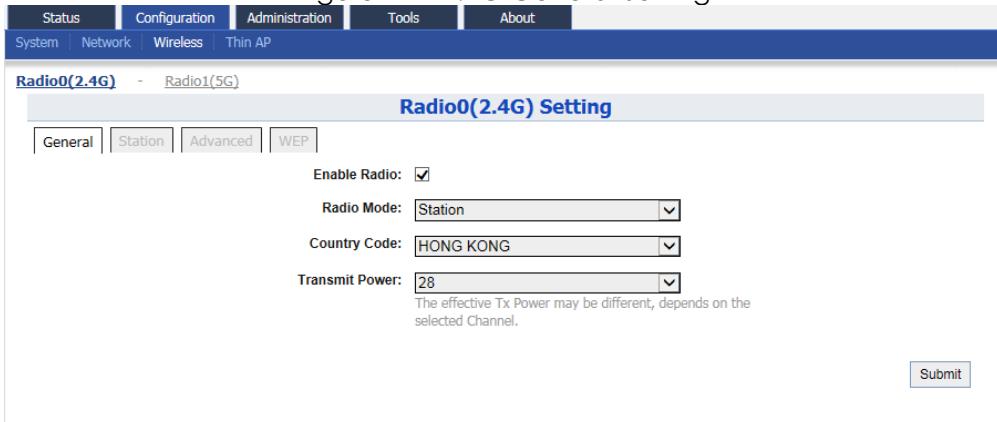
Figure 41 – 5G WLAN # Bandwidth Control

The screenshot shows a web-based configuration interface for a WiFi Access Point. The top navigation bar includes 'Status', 'Configuration' (selected), 'Administration', 'Tools', and 'About'. Below this, a secondary navigation bar shows 'System', 'Network', 'Wireless' (selected), and 'Thin AP'. A breadcrumb trail indicates 'Radio0(2.4G) - Radio1(5G)'. The main content area is titled 'Radio1(5G) WLAN0 Setting' and contains tabs for 'WLAN General', 'WLAN Security', 'Rogue Station List', 'QoS', and 'Bandwidth Control' (selected). The 'Bandwidth Control' section is divided into two main sections: 'Based On WLAN' and 'Based On Station'. Under 'Based On WLAN', there are input fields for 'Uplink' and 'Downlink' bandwidth limits, both currently set to 0. Under 'Based On Station', there are also input fields for 'Uplink' and 'Downlink' bandwidth limits, both currently set to 0. At the bottom right are 'Back to WLAN List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > Bandwidth Control**
2. Specify the uplink and downlink limitation under **Based on WLAN** for the particular WLAN
Or specify the uplink and downlink limitation under **Based on Station** for each associated station. 0 is default value and denotes as disable
3. Click **Submit**

Step 7: Apply Submitted Configurations on the AP Device

1. Click **Save & Apply** from the top on the right.


4.2. Station / CPE Mode

Station / CPE acts as a terminal and associated equipment located at a subscriber's premises and connected with a carrier's telecommunication channel at the demarcation point.

Radio0 – 2.4G

Step 1: Configure General Wireless Setting

Figure 42 – 2.4G General Setting

The screenshot shows the 'Radio0(2.4G) Setting' page. At the top, there are tabs for General, Station, Advanced, and WEP. The General tab is selected. Below the tabs, there are four configuration fields: 'Enable Radio' with a checked checkbox, 'Radio Mode' set to 'Station', 'Country Code' set to 'HONG KONG', and 'Transmit Power' set to '28'. A note below the power setting states: 'The effective Tx Power may be different, depends on the selected Channel.' At the bottom right is a 'Submit' button.

1. Go to **Configuration > Wireless > Radio0(2.4G) > General**
2. Select **Enable Radio** checkbox to enable radio interface
3. Select **Station** in **Radio Mode**
4. Select maximum transmission power on **Transmission Power**
5. Click **Submit**

Step 2: Configure WLAN 0 General Setting

Figure 43 – 2.4G WLAN 0 General Setting

1. Go to **Configuration > Wireless > Radio0(2.4G) > Station > WLAN0 > More...**
2. Select **Lock AP Mac** checkbox to force station that associate the AP with MAC address in **Remote AP MAC** only. This entry is optional.
3. Enter the desired SSID on **Remote SSID** that station is going to associate or click **[Scan]** to look for the surrounding SSID.

Figure 44 – 2.4G WLAN 0 AP scan result

	SSID	MAC Address	Encryption	Signal Level(dBm)	SNR(dB)	Frequency(GHz)	Channel
<input type="checkbox"/>	HKSPpublicWPA	00:0b:85:80:a5:5b	aes	-66	31	2.412	1
<input type="checkbox"/>	HKSPpublic	00:0b:85:80:a5:5a	invalid	-66	31	2.412	1
<input type="checkbox"/>	Wi-Fi.HK via HKSTP	00:0b:85:80:a5:57	invalid	-66	31	2.412	1
<input type="checkbox"/>	Superwifi Network 0	00:19:be:28:00:ee	invalid	-78	19	2.472	13
<input type="checkbox"/>	jason-test-2	02:19:be:80:d7:a8	invalid	-77	20	2.472	13
<input type="checkbox"/>	Superwifi Network 0	00:19:be:30:96:8b	invalid	-77	20	2.472	13
<input type="checkbox"/>	asBoBo	22:19:be:30:4c:1e	aes	-73	24	2.412	1

4. Select any one SSID checkbox shown on AP Scan Result, and then click **Select**.
5. Enter up to three preferred AP MAC addresses on **Preferred AP0 / AP1 / AP2 Mac** that station associates them preferentially. **Preferred AP0** is the highest priority. These entries are optional.

6. Select **Enable Roaming** checkbox to enable roaming on station. This entry is optional.
7. Enter SNR value from 0dB to 100dB on **Scan SNR Threshold** that station performs channel scanning if the SNR of received signal from serving AP is less than (<) this threshold; 35 is default setting.
8. Enter SNR value from 0dB to 100dB on **Roaming SNR Threshold** that station triggers roaming from the serving AP to other AP if the SNR of received signal from serving AP is less than (<) this threshold; 30 is default setting.

Note:

- **Scan SNR Threshold** MUST be higher than (>) **Roaming SNR Threshold**

9. Specify the duration from 1s to 3600s on **Max Scan Interval** for channel scanning; 60s is default setting. AP device conducts at least one scanning within this interval.
10. Specify the duration from 1s to 60s on **Min Scan Interval** for channel scanning; 10s is default setting. No more than one scanning will be conducted within this interval. This parameter is to prevent too often channel scanning from affecting the data transmission.

Note:

- **Max Scan Interval** MUST be higher than (>) **Min Scan Interval**

11. Enter SNR value from 0dB to 10dB on **Scan SNR Fluctuation Threshold**. AP device perform channel scan when the fluctuation of received signal level from a serving AP is larger than (>) this value. 5dB is default setting.
12. Select **Roaming Hysteresis** checkbox to prevent AP jumping between two APs due to the received signal level fluctuation. It is known as Ping-Pong effect. This entry is optional.
13. Select desired channel(s) on **Background Scan Channel**. AP scan the selected channel if the channel scan for roaming is triggered. If no any channels are checked in a list, all channels are scanned. This entry is optional.
14. Click **Submit**

Step 3: Configure WLAN 0 Security Setting

Figure 45 – WLAN0 Security Setting

Figure 45 shows the WLAN0 Security Setting page for Radio0(2.4G). The page has a header with tabs: Status, Configuration, Administration, Tools, and About. Below the header, there are sub-tabs: System, Network, Wireless, and Thin AP. The main content area is titled "Radio0(2.4G):WLAN0 Setting". It contains three tabs: WLAN General (selected), WLAN Security, and QoS. Under the WLAN Security tab, there are two dropdown menus: "Authentication Mode" set to "Open" and "Cipher Mode" set to "Disabled". At the bottom right are two buttons: "Back to Station List" and "Submit".

Configure to associate Open WLAN

Figure 46 – WLAN 0 Security Setting – Associating Open Network

Figure 46 shows the WLAN0 Security Setting page for Radio0(2.4G), similar to Figure 45. The main difference is a message "Associating Open Network" displayed prominently in the center of the page. The rest of the interface, including the tabs, dropdowns, and buttons, is identical to Figure 45.

1. Go to **Configuration > Wireless > Radio0(2.4G) > Station > WLAN0 > WLAN Security**
2. Select **Open** in **Authentication Mode**
3. Select **Disabled** in **Cipher Mode**
4. Click **Submit**

Configure to associate Open WLAN with WEP encryption

Figure 47 – 2.4G WLAN 0 Security Setting: Open Network with WEP

The screenshot shows the 'Radio0(2.4G):WLAN0 Setting' page. The 'WLAN Security' tab is selected. The configuration includes:

- Authentication Mode: Open
- Cipher Mode: WEP
- Default WEP Key: 1 (1-4)
- Key Entry Method: Ascii Text (radio button selected)
- WEP Key 1, 2, 3, 4: Input fields for keys, each with a 'Show' button.

At the bottom are 'Back to Station List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN0 > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 - Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 - Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure to associate WLAN with Shared Key authentication

Figure 48 – WLAN 0 Security Setting – Associating WLAN with Shared Key authentication

Radio0(2.4G):WLAN0 Setting

WLAN General WLAN Security QoS

Authentication Mode: Shared

Cipher Mode: WEP

Default WEP Key: 1 (1-4)

Key Entry Method: Ascii Text Hexadecimal

WEP Key 1: Show

WEP Key 2: Show

WEP Key 3: Show

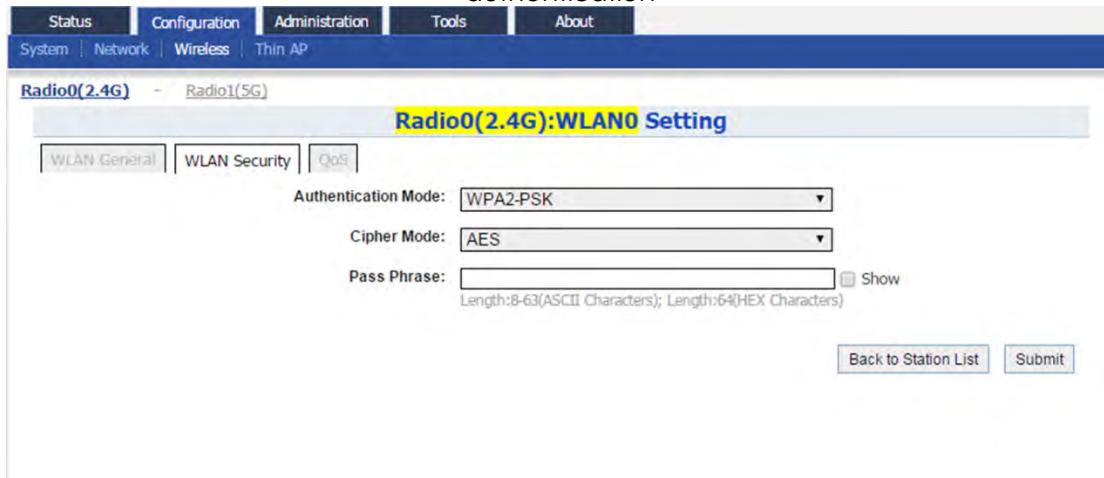
WEP Key 4: Show

Back to Station List Submit

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN0 > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:

Ascii Text	key is encoded as ASCII characters (0–9, a–z, A–Z)
Hexadecimal	key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure to associate WLAN with WPA / WPA2 authentication


Figure 49 - WLAN 0 Security Setting – Associating WLAN with WPA / WPA2 authentication

The screenshot shows the 'Radio0(2.4G):WLAN0 Setting' page. At the top, there are tabs for 'WLAN General', 'WLAN Security' (which is selected), and 'DSS'. Below these are dropdown menus for 'Authentication Mode' (set to 'WPA2'), 'Cipher Mode' (set to 'AES'), and 'EAP Method' (set to 'PEAP-MSCHAPV2'). There are also fields for 'Username' and 'Password' with length restrictions (0-128 ASCII characters). At the bottom are 'Back to Station List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio0(2.4G) > Station > WLAN0 > WLAN Security**
2. Select WPA / WPA2 in **Authentication Mode**
3. Select suitable encryption mode in **Cipher Mode** as the followings:
 If Authentication Mode is WPA:
 - TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
 - TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
 - AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
 If Authentication Mode is WPA2:
 - AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
 If Authentication Mode is WPA-auto:
 - TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
4. Select suitable EAP method mode in **EAP Method**; the options include:
 PEAP-MSCHAPV2
 TTLS-MSCHAPV2
 TTLS-PAP
 TTLS-CHAP
5. Enter correct username in **Username** for authentication.
6. Enter correct password in **Password** for authentication.
7. Click **Submit**

Configure to associate network with WPA-PSK / WPA2-PSK authentication

Figure 50 - WLAN 0 Security Setting – Associating WLAN with WPA-PSK / WPA2-PSK authentication

1. Go to **Configuration > Wireless > Radio0(2.4G) > Station > WLAN0 > WLAN Security**
2. Select WPA-PSK / WPA2-PSK in **Authentication Mode**
3. Select suitable encryption mode in **Cipher Mode** as the followings:
 If Authentication Mode is WPA:
 TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
 TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
 AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
 If Authentication Mode is WPA2:
 AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
 If Authentication Mode is WPA-auto:
 TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
4. Enter an ASCII string between 8 and 63 characters long or a HEX string with 64 characters long on **Pass Phrase** that matches with remote AP
5. Click **Submit**

Step 4: Configure WLAN 0 QoS

Figure 51 – 2.4G WLAN 0 QoS

	DSCP (0-63, cannot be in the same value)
BestEffort (BE)	24
Background(BK)	16
Video(VI)	40
Voice(VO)	56

1. Go to **Configuration > Wireless > Radio0(2.4G) > Station > WLAN0 > QoS**
2. Select **Enable DSCP-to-WMM Mapping** checkbox that AP provides different QoS to the incoming packet with the corresponding DSCP value
3. Enter DSCP value on **Best Effort (BE)**, **Background (BK)**, **Video (VI)**, and **Voice (VO)**; these entry is optional
4. Click **Submit**

Note:

- AP classify the packet without DSCP marking as Best Effort (BE) traffic

Step 5: Apply Submitted Configurations on the AP Device

1. Click **Save & Apply** from the top on the right.

Radio1 – 5G

Step 1: Configure General Wireless Setting

Figure 52 - 5G General Setting

The screenshot shows a web-based configuration interface for a WiFi Access Point. The top navigation bar includes links for Status, Configuration, Administration, Tools, and About. Below this is a secondary navigation bar with links for System, Network, Wireless, and Thin AP. The main content area is titled "Radio1(5G) Setting" and has tabs for General, WLAN, Advanced, and QoS. The General tab is selected. It contains the following configuration options:

- Enable Radio:
- Radio Mode:
- Country Code:
- Dynamic Radio Frequency Selection(DFS):
- Transmit Power:

A "Submit" button is located at the bottom right of the form.

1. Go to **Configuration > Wireless > Radio1(5G) > General**
2. Select **Enable Radio** checkbox to enable radio interface
3. Select **Station** in **Radio Mode**
4. Select **Dynamic Radio Frequency Selection (DFS)** checkbox to enable automatic channel selection that selects the least congested channel where radar is not detected during booting up.
5. Select maximum transmission power on **Transmission Power**
6. Click **Submit**

Step 2: Configure WLAN 0 General Setting

Figure 53 - WLAN 0 General Setting

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN0 > More...**
2. Select **Lock AP Mac** checkbox to force station that associate the AP with MAC address in **Remote AP MAC** only. This entry is optional.
3. Enter the desired SSID on **Remote SSID** that station is going to associate or click **[Scan]** to look for the surrounding SSID.
4. Select any one SSID checkbox shown on AP Scan Result, and then click Select.

Figure 54 - AP scan result

	SSID	MAC Address	Encryption	Signal Level(dBm)	SNR(dB)	Frequency(GHz)	Channel
<input type="checkbox"/>	aswifi_5G	02:19:be:74:4c:1e	aes	-88	13	5.18	36
<input type="checkbox"/>	3HKWI-FIService	a8:54:b2:69:37:28	invalid	-89	12	5.18	36
<input type="checkbox"/>	Superwifi Network 0	00:19:be:82:08:31	invalid	-79	22	5.18	36
<input type="checkbox"/>	altai_guest	12:19:be:a3:06:2b	wep	-60	41	5.745	149
<input type="checkbox"/>	a2n_5_chilli	00:19:be:74:92:22	invalid	-58	45	5.785	157

5. Enter up to three preferred AP MAC addresses on **Preferred AP0 / AP1 / AP2 Mac** that station associates them preferentially. **Preferred AP0** is the highest priority. These entries are optional.
6. Select **Enable Roaming** checkbox to enable roaming on station. This entry is optional.

7. Enter SNR value from 0dB to 100dB on **Scan SNR Threshold** that station performs channel scanning if the SNR of received signal from serving AP is less than (<) this threshold; 35 is default setting.
8. Enter SNR value from 0dB to 100dB on **Roaming SNR Threshold** that station triggers roaming from the serving AP to other AP if the SNR of received signal from serving AP is less than (<) this threshold; 30 is default setting.

Note:

- **Scan SNR Threshold** MUST be higher than (>) **Roaming SNR Threshold**

9. Specify the duration from 1s to 3600s on **Max Scan Interval** for channel scanning; 60s is default setting. AP device conducts at least one scanning within this interval.
10. Specify the duration from 1s to 60s on **Min Scan Interval** for channel scanning; 10s is default setting. No more than one scanning will be conducted within this interval. This parameter is to prevent too often channel scanning from affecting the data transmission.

Note:

- **Max Scan Interval** MUST be higher than (>) **Min Scan Interval**

11. Enter SNR value from 0dB to 10dB on **Scan SNR Fluctuation Threshold**. AP device perform channel scan when the fluctuation of received signal level from a serving AP is larger than (>) this value. 5dB is default setting.
12. Select **Roaming Hysteresis** checkbox to prevent AP jumping between two APs due to the received signal level fluctuation. It is known as Ping-Pong effect. This entry is optional.
13. Select desired channel(s) on **Background Scan Channel**. AP scan the selected channel if the channel scan for roaming is triggered. If no any channels are checked in a list, all channels are scanned. This entry is optional.
14. Click **Submit**

Step 3: Configure WLAN 0 Security Setting

Figure 55 - WLAN0 Security Setting

Figure 55 shows the 'Radio1(5G):WLAN0 Setting' page. The 'WLAN Security' tab is selected. The 'Authentication Mode' dropdown is set to 'Open' and the 'Cipher Mode' dropdown is set to 'Disabled'. At the bottom are 'Back to Station List' and 'Submit' buttons.

Configure to associate Open WLAN

Figure 56 - WLAN 0 Security Setting – Associating Open Network

Figure 56 shows the 'Radio1(5G):WLAN0 Setting' page. The 'WLAN Security' tab is selected. The 'Authentication Mode' dropdown is set to 'Open' and the 'Cipher Mode' dropdown is set to 'Disabled'. At the bottom are 'Back to Station List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN0 > WLAN Security**
2. Select **Open** in **Authentication Mode**
3. Select **Disabled** in **Cipher Mode**
4. Click **Submit**

Configure to associate Open WLAN with WEP encryption

Figure 57 – WLAN0 Security Setting – Associating Open Network with WEP encryption

Radio1(5G):WLAN0 Setting

WLAN General WLAN Security QoS

Authentication Mode: Open

Cipher Mode: WEP

Default WEP Key: 1 (1-4)

Key Entry Method: Ascii Text Hexadecimal

WEP Key 1: Show

WEP Key 2: Show

WEP Key 3: Show

WEP Key 4: Show

Back to Station List Submit

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN0 > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 - Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 - Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure to associate WLAN with Shared Key authentication

Figure 58 - WLAN 0 Security Setting – Associating WLAN with Shared Key authentication

WLAN General WLAN Security QoS

Radio1(5G):WLAN0 Setting

Authentication Mode: Shared

Cipher Mode: WEP

Default WEP Key: 1 (1-4)

Key Entry Method: Ascii Text Hexadecimal

WEP Key 1: Show

WEP Key 2: Show

WEP Key 3: Show

WEP Key 4: Show

Back to Station List Submit

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN0 > WLAN Security**
2. Select **Shared** in **Authentication Mode**
3. Select **WEP** in **Cipher Mode**
4. Select key number **1 – 4** in **Default WEP Key**
5. Click **Submit**

Configure to associate WLAN with WPA / WPA2 authentication

Figure 59 - WLAN 0 Security Setting – Associating WLAN with WPA / WPA2 authentication

WLAN General WLAN Security QoS

Radio1(5G):WLAN0 Setting

Authentication Mode: WPA2

Cipher Mode: AES

EAP Method: PEAP-MSCHAPV2

Username: Length:0-128(Ascii Characters)

Password: Show Length:0-128(Ascii Characters)

Back to Station List Submit

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN0 > WLAN Security**
2. Select **WPA / WPA2** in **Authentication Mode**

3. Select suitable encryption mode in **Cipher Mode** as the followings:
4. If Authentication Mode is WPA:

TKIP + AES	This algorithm automatically selects TKIP or AES based on the client's capabilities
TKIP	This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
AES	This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

AES	This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
-----	--

If Authentication Mode is WPA-auto:

TKIP + AES	This algorithm automatically selects TKIP or AES based on the client's capabilities
------------	---

5. Select suitable EAP method mode in **EAP Method**; the options include:

PEAP-MSCHAPV2
TLS-MSCHAPV2
TTPS-PAP
TTLS-CHAP
6. Enter correct username in **Username** for authentication.
7. Enter correct password in **Password** for authentication.
8. Click **Submit**

Configure to associate WLAN with WPA-PSK / WPA2-PSK authentication

Figure 60 - WLAN 0 Security Setting – Associating WLAN with WPA-PSK / WPA2-PSK authentication

The screenshot shows the 'Radio1(5G):WLAN0 Setting' page. The 'WLAN Security' tab is selected. The 'Authentication Mode' dropdown is set to 'WPA2-PSK'. The 'Cipher Mode' dropdown is set to 'AES'. A 'Pass Phrase' text field is present, with a note below it stating 'Length:8-63(ASCII Characters); Length:64(HEX Characters)'. At the bottom are 'Back to Station List' and 'Submit' buttons.

1. Go to **Configuration** > **Wireless** > **Radio1(5G)** > **WLAN0** > **WLAN Security**
2. Select WPA-PSK / WPA2-PSK in **Authentication Mode**

3. Select suitable encryption mode in **Cipher Mode** as the followings:

If Authentication Mode is WPA:

 - TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
 - TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
 - AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

 - AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA-auto:

 - TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
4. Enter an ASCII string between 8 and 63 characters long or a HEX string with 64 characters long on **Pass Phrase** that matches with remote AP
5. Click **Submit**

Step 4: Configure WLAN 0 QoS

Figure 61 – 5G WLAN 0 QoS

	DSCP (0-63, cannot be in the same value)
BestEffort (BE)	24
Background (BK)	16
Video (VI)	40
Voice (VO)	56

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN0 > QoS**
2. Select **Enable DSCP-to-WMM Mapping** checkbox that AP provides different QoS to the incoming packet with the corresponding DSCP value
3. Enter DSCP value on **Best Effort (BE)**, **Background (BK)**, **Video (VI)**, and **Voice (VO)**; these entry is optional
4. Click **Submit**

Note:

- AP classify the packet without DSCP marking as Best Effort (BE) traffic

Step 5: Apply Submitted Configurations on the AP Device

1. Click **Save & Apply** from the top on the right.

4.3. Repeater Mode

Radio0 – 2.4G

Step 1: Configure General Wireless Setting

Figure 62 - 2.4G General Setting

The screenshot shows the 'Radio0(2.4G) Setting' page. At the top, there are tabs for General, WLAN, Advanced, and QoS. The General tab is selected. The configuration includes:

- Enable Radio:
- Radio Mode: Repeater
- Country Code: HONG KONG
- Transmit Power: 1
- Maximum Clients: 256 (1-256)
- User Isolation in different WLAN (SSID):

At the bottom right is a 'Submit' button.

1. Go to **Configuration > Wireless > Radio0(2.4G) > General**
2. Select **Enable Radio** checkbox to enable radio interface
3. Select Repeater in **Radio Mode**
4. Select the correct country code on **Country Code**; this option ensures that the AP device uses only the radio channels allowed in your country or region
5. Select suitable transmission power on **Transmission Power**;

Note:

- You should follow the regulation from local Communications Authority

6. Enter the maximum associated client between 1 and 256 on **Maximum Client** that the radio interface serves. 256 is the default setting. This entry is optional.
7. Select **Enable Inter-WLAN User Isolation** checkbox that AP device block the users' communication across different SSID in the AP directly. This entry is optional.
8. Click **Submit**

Step 2: Configure WLAN 15 General Setting (Station / CPE)

Figure 63 – 2.4G WLAN15 General Setting

1. Go to **Configuration > Wireless > Radio0 (2.4G) > Station Configuration > WLAN 15 > More...**
2. Select **Lock AP Mac** checkbox to force station that associate the AP with MAC address in **Remote AP MAC** only. This entry is optional.
3. Enter the desired SSID on **Remote SSID** that station is going to associate or click **[Scan]** to look for the surrounding SSID.

Figure 64 - 2.4G WLAN 0 AP scan result

	SSID	MAC Address	Encryption	Signal Level(dBm)	SNR(dB)	Frequency(GHz)	Channel
<input type="checkbox"/>	HKSPpublicWPA	00:0b:85:80:a5:5b	aes	-66	31	2.412	1
<input type="checkbox"/>	HKSPpublic	00:0b:85:80:a5:5a	invalid	-66	31	2.412	1
<input type="checkbox"/>	Wi-Fi.HK via HKSTP	00:0b:85:80:a5:57	invalid	-66	31	2.412	1
<input type="checkbox"/>	Superwifi Network 0	00:19:be:28:00:ee	invalid	-78	19	2.472	13
<input type="checkbox"/>	jason-test-2	02:19:be:80:d7:a8	invalid	-77	20	2.472	13
<input type="checkbox"/>	Superwifi Network 0	00:19:be:30:96:8b	invalid	-77	20	2.472	13
<input type="checkbox"/>	asBoBo	22:19:be:30:4c:1e	aes	-73	24	2.412	1

4. Select any one SSID checkbox shown on AP Scan Result, and then click Select.
5. Enter up to three preferred AP MAC addresses on **Preferred AP0 / AP1 / AP2 Mac** that station associates them preferentially. **Preferred AP0** is the highest priority. These entries are optional.
6. Select **Enable Roaming** checkbox to enable roaming on station. This entry is optional.
7. Enter SNR value from 0dB to 100dB on **Scan SNR Threshold** that station performs channel scanning if the SNR of received signal from serving AP is less than (<) this threshold; 35 is default setting.
8. Enter SNR value from 0dB to 100dB on **Roaming SNR Threshold** that station triggers roaming from the serving AP to other AP if the SNR of received signal from serving AP is less than (<) this threshold; 30 is default setting.

Note:

- **Scan SNR Threshold** MUST be higher than (>) **Roaming SNR Threshold**

9. Specify the duration from 1s to 3600s on **Max Scan Interval** for channel scanning; 60s is default setting. AP device conducts at least one scanning within this interval.
10. Specify the duration from 1s to 60s on **Min Scan Interval** for channel scanning; 10s is default setting. No more than one scanning will be conducted within this interval. This parameter is to prevent too often channel scanning from affecting the data transmission.

Note:

- **Max Scan Interval** MUST be higher than (>) **Min Scan Interval**

11. Enter SNR value from 0dB to 10dB on **Scan SNR Fluctuation Threshold**. AP device perform channel scan when the fluctuation of received signal level from a serving AP is larger than (>) this value. 5dB is default setting.
12. Select **Roaming Hysteresis** checkbox to prevent AP jumping between two APs due to the received signal level fluctuation. It is known as Ping-Pong effect. This entry is optional.
13. Select desired channel(s) on **Background Scan Channel**. AP scan the selected channel if the channel scan for roaming is triggered. If no any channels are checked in a list, all channels are scanned. This entry is optional.
14. Click **Submit**

Step 3: Configure WLAN15 Security Setting

Figure 65 – WLAN15 Security Setting

Figure 65 shows the WLAN15 Security Setting page for Radio0(2.4G). The 'WLAN Security' tab is selected. The 'Authentication Mode' dropdown is set to 'Open' and the 'Cipher Mode' dropdown is set to 'Disabled'. There are 'Back to Station List' and 'Submit' buttons at the bottom.

Configure to associate Open WLAN

Figure 66 - WLAN15 Security Setting – Associating Open Network

Figure 66 shows the WLAN15 Security Setting page for Radio0(2.4G) after configuration. The 'WLAN Security' tab is selected. The 'Authentication Mode' dropdown is set to 'Open' and the 'Cipher Mode' dropdown is set to 'Disabled'. There are 'Back to Station List' and 'Submit' buttons at the bottom.

1. Go to **Configuration > Wireless > Radio0(2.4G) > Station Configuration > WLAN15 > WLAN Security**
2. Select **Open** in **Authentication Mode**
3. Select **Disabled** in **Cipher Mode**
4. Click **Submit**

Configure to associate Open WLAN with WEP encryption

Figure 67 - 2.4G WLAN15 Security Setting: Open Network with WEP

The screenshot shows the 'Radio0(2.4G):WLAN0 Setting' page. The 'WLAN Security' tab is selected. The configuration includes:

- Authentication Mode: Open
- Cipher Mode: WEP
- Default WEP Key: 1 (1-4)
- Key Entry Method: Ascii Text (radio button selected)
- WEP Key 1, 2, 3, 4: Input fields for WEP keys, each with a 'Show' checkbox.

At the bottom are 'Back to Station List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio0(2.4G) > Station Configuration > WLAN15 > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 - Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 - Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure to associate WLAN with Shared Key authentication

Figure 68 – WLAN15 Security Setting – Associating WLAN with Shared Key authentication

Radio0(2.4G):WLAN0 Setting

WLAN General WLAN Security **WPS**

Authentication Mode: Shared

Cipher Mode: WEP

Default WEP Key: 1 (1-4)

Key Entry Method: Ascii Text Hexadecimal

WEP Key 1: Show

WEP Key 2: Show

WEP Key 3: Show

WEP Key 4: Show

[Back to Station List](#) [Submit](#)

1. Go to **Configuration** > **Wireless** > **Radio0(2.4G)** > **Station Configuration** > **WLAN15** > **WLAN Security**
2. Select Shared on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure to associate WLAN with WPA / WPA2 authentication

Figure 69 – WLAN15 Security Setting – Associating WLAN with WPA / WPA2 authentication

Radio0(2.4G):WLAN0 Setting

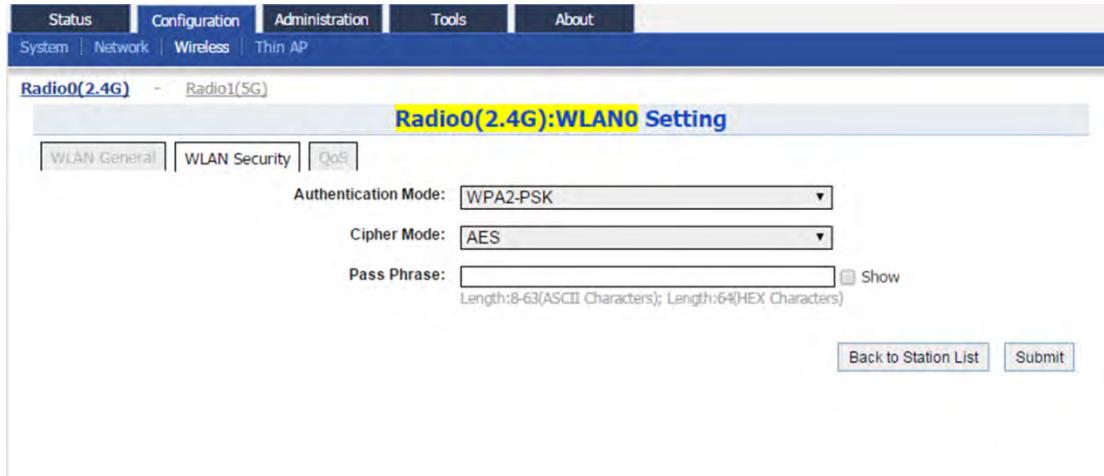
WLAN General WLAN Security DSS

Authentication Mode: WPA2

Cipher Mode: AES

EAP Method: PEAP-MSCHAPV2

Username: Length:0-128(Ascii Characters)


Password: Length:0-128(Ascii Characters) Show

Back to Station List Submit

1. Go to **Configuration** > **Wireless** > **Radio0(2.4G)** > **Station Configuration** > **WLAN15** > **WLAN Security**
2. Select WPA / WPA2 in **Authentication Mode**
3. Select suitable encryption mode in **Cipher Mode** as the followings:
 If Authentication Mode is WPA:
 TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
 TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
 AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
 If Authentication Mode is WPA2:
 AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
 If Authentication Mode is WPA-auto:
 TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
4. Select suitable EAP method mode in **EAP Method**; the options include:
 PEAP-MSCHAPV2
 TTLS-MSCHAPV2
 TTLS-PAP
 TTLS-CHAP
5. Enter correct username in **Username** for authentication.
6. Enter correct password in **Password** for authentication.
7. Click **Submit**

Configure to associate network with WPA-PSK / WPA2-PSK authentication

Figure 70 – WLAN15 Security Setting – Associating WLAN with WPA-PSK / WPA2-PSK authentication

1. Go to **Configuration** > **Wireless** > **Radio0(2.4G)** > **Station Configuration** > **WLAN15** > **WLAN Security**
2. Select WPA-PSK / WPA2-PSK in **Authentication Mode**
3. Select suitable encryption mode in **Cipher Mode** as the followings:
 If Authentication Mode is WPA:
 TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
 TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
 AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
 If Authentication Mode is WPA2:
 AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
 If Authentication Mode is WPA-auto:
 TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
4. Enter an ASCII string between 8 and 63 characters long or a HEX string with 64 characters long on **Pass Phrase** that matches with remote AP
5. Click **Submit**

Step 4: Configure WLAN15 QoS

Figure 71 – 2.4G WLAN15 QoS

Radio0(2.4G):WLAN0 Setting

WLAN General | WLAN Security | QoS

Enable DSCP-to-WMM Mapping:

	DSCP	(0-63, cannot be in the same value)
BestEffort (BE)	24	
Background (BK)	16	
Video (VI)	40	
Voice (VO)	56	

Back to Station List | Submit

1. Go to **Configuration > Wireless > Radio0(2.4G) > Station > WLAN15 > QoS**
2. Select **Enable DSCP-to-WMM Mapping** checkbox that AP provides different QoS to the incoming packet with the corresponding DSCP value
3. Enter DSCP value on **Best Effort (BE)**, **Background (BK)**, **Video (VI)**, and **Voice (VO)**; these entry is optional
4. Click **Submit**

Note:

- AP classify the packet without DSCP marking as Best Effort (BE) traffic

Step 5: Configure WLAN # General Setting

Figure 72 - WLAN # General Setting

1. Go to **Configuration** > **Wireless** > **Radio0 (2.4G)** > **WLAN Configuration** > **WLAN #** > [More...](#)
2. Select **Enable WLAN** checkbox to enable WLAN
3. Select **Hide SSID** checkbox to hide SSID name from its beacon frame. This entry is optional.
4. Enter a unique name for the particular WLAN on **SSID**.

Note:

- If you want to configure the same SSID on two different WLAN; their security setting MUST be different from each other.

5. Select **User Isolation** checkbox to block user communication within the same SSID in the AP directly. This entry is optional.
6. Deselect the **DHCP Trust Port** checkbox to prevent illegal DHCP servers offering IP address to DHCP clients via this WLAN. This entry is optional.
7. Specify the suitable privilege of associated clients on **Access Traffic Right**; the options include
 - Full Access - Associated client can access Internet and manage AP
 - AP Management Only - Associated client can manage AP only, but not able to access the Internet
 - AP Management Disable - Associated client can access the Internet, but not able to manage AP

- Specify the maximum associated clients between 1 and 256 on **Max Clients** for this WLAN. 256 is the default setting.

Note:

- **Max Clients** in WLAN 0 – 15 MUST be smaller than or equal to (\geq) the **Max Clients** setting on Radio General Setting

- Specify an additional requirement on Signal Strength to Noise Ratio (SNR) for associated clients under **Station Association Requirement**. This requirement is optional. You may fill up the following fields:

Reject Station Association if SNR less than X dB X denote the minimum SNR level which allow clients to associate; You can select any integer between 0dB and 100dB; 0 denotes as disable; 0 is default setting

Disassociate Station if SNR drops more than Y dB for consecutive Z packets Y denotes the SNR tolerance; Z denotes the number of consecutive packets their SNR are below the difference of X - Y.

Notes:

- Example for Station Association Requirement with the following settings:

Reject Station Association if SNR less than 30 dB (X = 30);
Disassociate Station if SNR drops more than 20 dB for consecutive 10 packets (Y = 20; Z = 10)

Consequence:

AP accepts the clients to associate if the SNR of packets from the clients is high than ($>$) 30dB;

AP kicks out the associated client if the SNR of 10 consecutive packets is below ($<$) 10 dB (30 dB – 20 dB)

- Click **Submit**

Step 6: Configure WLAN # Security Setting

Configure WLAN as Open Network

Figure 73 - WLAN # General Setting

Figure 73 - WLAN # General Setting

Radio0(2.4G) - Radio1(5G)

Radio0(2.4G) WLAN0 Setting

WLAN General WLAN Security Rogue Station List QoS Bandwidth Control

WLAN Security Setting

Authentication Mode: Open

Cipher Mode: Disabled

ACL Setting

Access Control List: Enabled - Default Allow

ACL Input Method: Manual Input File

Denied MAC Address:

Back to WLAN List Submit

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select Disabled on **Cipher Mode**
4. Click **Submit**

Configure WLAN as Open network with WEP encryption

Figure 74 – WLAN # Security Setting: Open Network with WEP

Radio0(2.4G) WLAN0 Setting

WLAN General WLAN Security Rogue Station List QoS Bandwidth Control

WLAN Security Setting

Authentication Mode: Open

Cipher Mode: WEP

Default WEP Key: 1 (1-4)

Key Entry Method: Ascii Text Hexadecimal

WEP Key 1: Show

WEP Key 2: Show

WEP Key 3: Show

WEP Key 4: Show

ACL Setting

Access Control List: Enabled - Default Allow

ACL Input Method: Manual Input File

Denied MAC Address:

Back to WLAN List

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure WLAN as Open network with Shared Key Authentication

Figure 75 – WLAN # Security Setting: Shared Key Authentication

Radio0(2.4G) WLAN0 Setting

WLAN General WLAN Security Rogue Station List DAS Bandwidth Control Submit

WLAN Security Setting

Authentication Mode: Shared

Cipher Mode: WEP

Default WEP Key: 1 (1-4)

Key Entry Method: Ascii Text Hexadecimal

WEP Key 1: Show

WEP Key 2: Show

WEP Key 3: Show

WEP Key 4: Show

ACL Setting

Access Control List: Enabled - Default Allow

ACL Input Method: Manual Input File

Denied MAC Address:

Back to WLAN List Submit

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure WLAN with WPA / WPA2 / WPA-auto Authentication

Figure 76 - WLAN # Security Setting: WPA / WPA2 / WPA-auto Authentication

Radio0(2.4G) WLAN0 Setting

WLAN Security Setting

Authentication Mode: WPA2

Cipher Mode: AES

Group Key Update Interval: 86400 (s)

RADIUS Server Setting

NAS Identifier: (0-32)

RADIUS Server IP Address Type: IPv4 IPv6

RADIUS Retry Timeout: 300 (0-65535 s)

	IP Address	Port	Secret(1-128)
RADIUS Server	0 . 0 . 0 . 0	1812	<input type="text"/> <input type="checkbox"/> Show
Secondary RADIUS Server	0 . 0 . 0 . 0	1812	<input type="text"/> <input type="checkbox"/> Show

RADIUS Accounting Server Setting

RADIUS Accounting Server IP Address Type: IPv4 IPv6

Accounting interim Interval: 300 (60-86400s, 0:Disable)

	IP Address	Port	Secret(1-128)
RADIUS Accounting Server	0 . 0 . 0 . 0	1813	<input type="text"/> <input type="checkbox"/> Show
Secondary RADIUS Accounting Server	0 . 0 . 0 . 0	1813	<input type="text"/> <input type="checkbox"/> Show

ACL Setting

Access Control List: Enabled - Default Allow

ACL Input Method: Manual Input File

Denied MAC Address:

Buttons: Back to WLAN List, Submit

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select WPA / WPA2 / WPA-auto on **Authentication Mode**
3. Select suitable encryption mode on **Cipher Mode**

If Authentication Mode is WPA:

- TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
- TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
- AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA-auto:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

Note:

- TKIP is not supported by 802.11n standard. If selected TKIP, the 802.11n's devices will be limited to 802.11g transfer rate, i.e. up to 54 Mbps

4. Enter suitable identification on **NAS identifier**. Remote RADIUS server uses this ID to identify its clients. This entry is available for WPA and WPA2 only.
5. Enter transmission timeout interval between 0 and 86400s on **RADIUS Retry Timeout**. 300 is default setting. This entry is optional.
6. Enter IP address of remote RADIUS server for authentication in **IP Address of RADIUS Server**
7. Enter service port of remote RADIUS server in **Port of RADIUS Server**. 1812 is default setting.
8. Enter suitable secrets in **Secret of RADIUS Server**. It is used along with the MD5 hashing algorithm to obfuscate passwords. This secret MUST be as the same as that in RADIUS server.
9. Repeat step 6-8 if the backup RADIUS server is available. It is optional.
10. Enter interval between each interim update in seconds on **Accounting interim Interval**. 300 is default setting. This entry is optional.
11. Enter IP address of remote RADIUS Accounting Server on **IP Address of RADIUS Accounting Server**. This entry is optional.
12. Enter service port of remote RADIUS server in **Port of RADIUS Accounting Server**. 1813 is default setting. This entry is optional.
13. Enter suitable secrets in **Secret of RADIUS Accounting Server**. It is used along with the MD5 hashing algorithm to obfuscate passwords. This secret MUST be as the same as that in RADIUS server. This entry is optional.
14. Repeat step 11-13 if the backup RADIUS Accounting server is available. It is optional.
15. Click **Submit**

Configure WLAN with WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication

Figure 77 - WLAN # Security Setting: WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication

Radio0(2.4G) WLAN Setting

WLAN General | WLAN Security | Rogue Station List | QoS | Bandwidth Control

WLAN Security Setting

Authentication Mode: WPA2-PSK
Cipher Mode: AES
Group Key Update Interval: 86400 (s)
Pass Phrase: (B-64)

ACL Setting

Access Control List: Enabled - Default Allow
ACL Input Method: Manual Input
Denied MAC Address:

Back to WLAN List | Submit

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select WPA-PSK / WPA2-PSK / WPA-auto-PSK on **Authentication Mode**
3. Select suitable encryption mode on **Cipher Mode**

If Authentication Mode is WPA:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA-auto:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

Note:

- TKIP is not supported by 802.11n standard. If selected TKIP, the 802.11n's devices will be limited to 802.11g transfer rate, i.e. up to 54 Mbps

4. Enter interval time in second in **Group Key Update Interval**. 86400 is default setting. This entry is optional.
5. Enter a string between 8 and 64 characters long in **Pass Phrase** that users will use to connect to the wireless network.
6. Click **Submit**

Configure WLAN with WAPI Authentication

Figure 78 - WLAN # Security Setting: WAPI Authentication

The screenshot shows the 'Radio0(2.4G) WLAN Setting' page. The 'WLAN Security' tab is selected. Key configuration parameters include:

- Authentication Mode:** WAPI
- Cipher Mode:** SMS4
- Certificate Type:** X.509
- Certificate Status:** Ready to Install
- Certificate Mode:** Two-Cert
- Certificate Management:** Install Certificate
- AS IP Address:** 0.0.0.0
- AS Port:** 8810 (0-65535)
- Unicast Key Update Interval:** 86400 (60-2147483647)
- Multicast Key Update Interval:** 86400 (60-2147483647)
- ACL Setting:**
 - Access Control List:** Enabled - Default Allow
 - ACL Input Method:** Manual Input (radio button selected)
 - Denied MAC Address:** (empty)

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select WAPI on **Authentication Mode**
3. Select SMS4 in **Cipher Mode**
4. Select suitable option in **Certificate Mode**; the options includes:

Two-Cert	Wi-Fi client is verified by the certification from authentication server (AS) and Access Point (AP)
Three-Cert	Wi-Fi client is verified by the certification from authentication server (AS), access point (AP), and certificate authority (CA)
5. Click **Install Certificate**; a window for installing certificate is shown on Figure 79 and Figure 80.

Figure 79 - Two-Cert Mode Certification Installation

AS Certificate:

AP Certificate:

Figure 80 - Three-Cert Mode Certification Installation

AS Certificate:

AP Certificate:

CA Certificate:

6. Click **Browse** to select suitable certifications
7. Click **Upload** to upload the selected certifications to AP
8. Click **Install** to install certifications
9. Enter IP address of AS server on **AS IP Address**
10. Enter service port of AS server in **AS Port**
11. Enter interval time between 60 and 2147483647s in **Unicast Key Update Interval**; 86400 is default setting. This entry is optional.
12. Enter interval time between 60 and 2147483647s in **Multicast Key Update Interval**; 86400 is default setting. This entry is optional.
13. Click **Submit**

Configure WLAN with WAPI-PSK Authentication

Figure 81 - WLAN # Security Setting: WAPI-PSK Authentication

→

Radio0(2.4G) WLAN0 Setting

[WLAN Security](#) [Rogue Station List](#) [QoS](#) [Bandwidth Control](#)

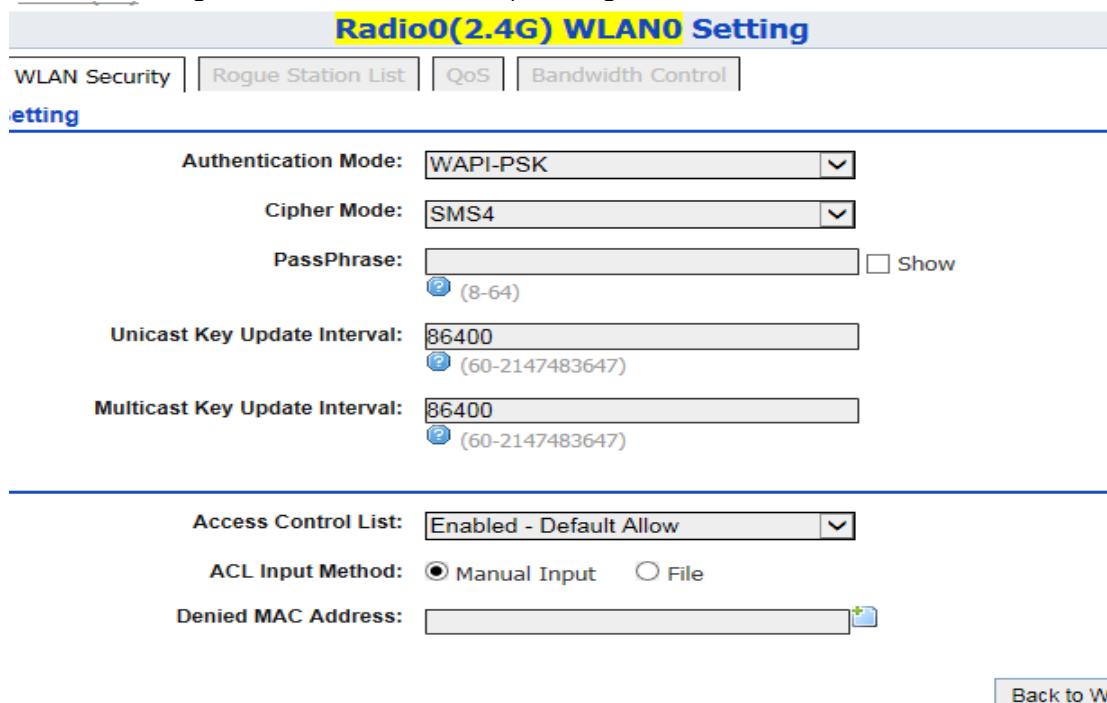
etting

Authentication Mode:

Cipher Mode:

PassPhrase: Show
(8-64)

Unicast Key Update Interval: (60-2147483647)


Multicast Key Update Interval: (60-2147483647)

Access Control List:

ACL Input Method: Manual Input File

Denied MAC Address:

[Back to WI](#)

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > WLAN Security**
2. Select **WAPI** on **Authentication Mode**
3. Select **SMS4** in **Cipher Mode**
4. Enter in a string between 8 and 64 characters long in **Pass Phrase** that users will use to connect to the wireless network.
5. Enter interval time between 60 and 2147483647s in **Unicast Key Update Interval**; 86400 is default setting. This entry is optional.
6. Enter interval time between 60 and 2147483647s in **Multicast Key Update Interval**; 86400 is default setting. This entry is optional.
7. Click **Submit**

Step 7: Configure ACL Setting

Figure 82 – 5G WLAN # ACL Setting

ACL Setting

Access Control List:

ACL Input Method: Manual Input File

Denied MAC Address:

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > ACL Setting**
2. Select appropriate option on **Access Control List**; options include

<i>Disable</i>	ACL is disabled
<i>Enabled – Default Allow</i>	ACL is enabled. The MAC addresses which are specified in the ACL will consider as Deny. Every wireless client can associate to the AP unless its MAC address is on the list
<i>Enabled – Default Deny</i>	ACL is enabled. The MAC addresses which are specified in the ACL will consider as Allow. Every wireless client CANNOT associate to the AP unless its MAC address is on the list
3. Select *Manual Input* on **ACL Input Method** if network administrator prefers input the entry one by one manually
Or select *File* on **ACL Input Method** if network administrator prefers upload a MAC address list (.txt file)
4. Enter MAC address entry one by one or upload the corresponding file to AP; it is optional
5. Click **Submit**

Note:

- Network Administrator shall select *Disable* or *Enabled – Default Allow* if no ACL entry will be input on AP

Step 8: Configure WLAN # QoS

Please refer to Quality of Service (QoS) on page 119

Step 9: Configure WLAN # Bandwidth Control

Figure 83 – 2.4G WLAN # Bandwidth Control

Radio0(2.4G) WLAN0 Setting

WLAN General | WLAN Security | Rogue Station List | QoS | **Bandwidth Control**

Based On WLAN		Based On Station	
(0-1000000 Kbps, 0: Disable)		(0-1000000 Kbps, 0: Disable)	
Uplink	<input type="text" value="0"/>	<input type="text" value="0"/>	<input type="text" value="0"/>
Downlink	<input type="text" value="0"/>	<input type="text" value="0"/>	<input type="text" value="0"/>

Back to WLAN List | Submit

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > Bandwidth Control**
2. Specify the uplink and downlink limitation under **Based on WLAN** for the particular WLAN
Or specify the uplink and downlink limitation under **Based on Station** for each associated station. 0 is default value and denotes as disable
3. Click **Submit**

Step 10: Apply Submitted Configurations on the AP Device

1. Click **Save & Apply** from the top on the right.

Radio1 – 5G

Step 1: Configure General Wireless Setting

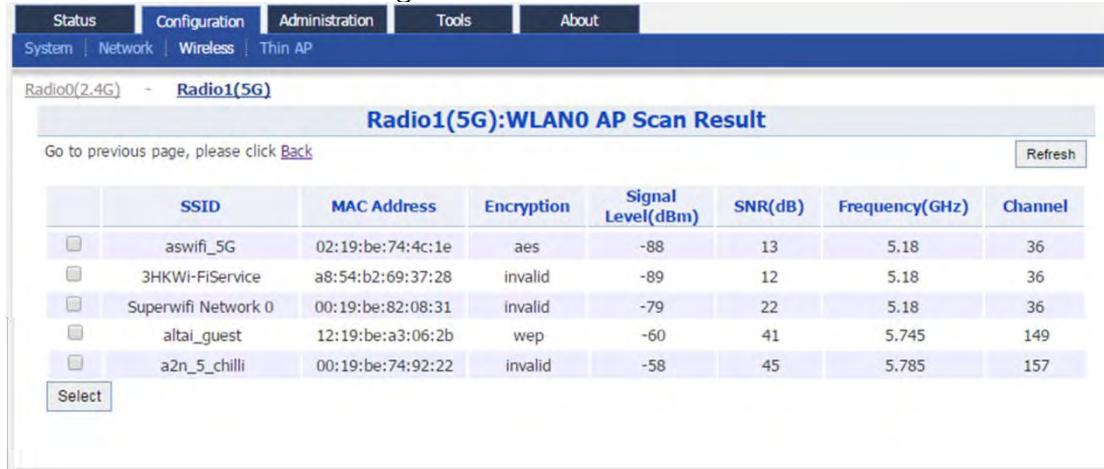
Figure 84 – 5G General Setting

The screenshot shows the 'Radio1(5G) Setting' page. At the top, there are tabs for General, WLAN, and Advanced. Under General, the 'Enable Radio' checkbox is checked. The 'Radio Mode' dropdown is set to 'Repeater'. The 'Country Code' dropdown is set to 'HONG KONG'. The 'Transmit Power' dropdown is set to '5'. A note below it says: 'The effective Tx Power may be different, depends on the selected Channel.' The 'Maximum Clients' input field is set to '256' with a note '(1-256)'. There is a checkbox for 'User Isolation in different WLAN (SSID)' which is unchecked. At the bottom right is a 'Submit' button.

1. Go to **Configuration > Wireless > Radio1(5G) > General**
2. Select **Enable Radio** checkbox to enable radio interface
3. Select Repeater in **Radio Mode**
4. Select the correct country code on **Country Code**; this option ensures that the AP device uses only the radio channels allowed in your country or region
5. Select suitable transmission power on **Transmission Power**;

Note:

- You should follow the regulation from local Communications Authority


6. Enter the maximum associated client between 1 and 256 on **Maximum Client** that the radio interface serves. 256 is the default setting. This entry is optional.
7. Select **Enable Inter-WLAN User Isolation** checkbox that AP device block the users' communication across different SSID in the AP directly. This entry is optional.
8. Click **Submit**

Step 2: Configure WLAN 15 General Setting (Station / CPE)

1. Go to **Configuration > Wireless > Radio1 (5G) > WLAN 15 > More...**
2. Select **Lock AP Mac** checkbox to force station that associate the AP with MAC address in **Remote AP MAC** only. This entry is optional.

3. Enter the desired SSID on **Remote SSID** that station is going to associate or click **[Scan]** to look for the surrounding SSID.

Figure 85 – 5G AP scan result

The screenshot shows a table with the following data:

	SSID	MAC Address	Encryption	Signal Level(dBm)	SNR(dB)	Frequency(GHz)	Channel
<input type="checkbox"/>	aswifi_5G	02:19:be:74:4c:1e	aes	-88	13	5.18	36
<input type="checkbox"/>	3HKWi-FiService	a8:54:b2:69:37:28	invalid	-89	12	5.18	36
<input type="checkbox"/>	Superwifi Network 0	00:19:be:82:08:31	invalid	-79	22	5.18	36
<input type="checkbox"/>	altai_guest	12:19:be:a3:06:2b	wep	-60	41	5.745	149
<input type="checkbox"/>	a2n_5_chilli	00:19:be:74:92:22	invalid	-58	45	5.785	157

4. Select any one SSID checkbox shown on AP Scan Result, and then click Select.
5. Enter up to three preferred AP MAC addresses on **Preferred AP0 / AP1 / AP2 Mac** that station associates them preferentially. **Preferred AP0** is the highest priority. These entries are optional.
6. Select **Enable Roaming** checkbox to enable roaming on station. This entry is optional.
7. Enter SNR value from 0dB to 100dB on **Scan SNR Threshold** that station performs channel scanning if the SNR of received signal from serving AP is less than (<) this threshold; 35 is default setting.
8. Enter SNR value from 0dB to 100dB on **Roaming SNR Threshold** that station triggers roaming from the serving AP to other AP if the SNR of received signal from serving AP is less than (<) this threshold; 30 is default setting.

Note:

- **Scan SNR Threshold** MUST be higher than (>) **Roaming SNR Threshold**

9. Specify the duration from 1s to 3600s on **Max Scan Interval** for channel scanning; 60s is default setting. AP device conducts at least one scanning within this interval.
10. Specify the duration from 1s to 60s on **Min Scan Interval** for channel scanning; 10s is default setting. No more than one scanning will be conducted within this interval. This parameter is to prevent too often channel scanning from affecting the data transmission.

Note:

- **Max Scan Interval** MUST be higher than (>) **Min Scan Interval**

11. Enter SNR value from 0dB to 10dB on **Scan SNR Fluctuation Threshold**. AP device perform channel scan when the fluctuation of received signal level from a serving AP is larger than (>) this value. 5dB is default setting.
12. Select **Roaming Hysteresis** checkbox to prevent AP jumping between two APs due to the received signal level fluctuation. It is known as Ping-Pong effect. This entry is optional.
13. Select desired channel(s) on **Background Scan Channel**. AP scan the selected channel if the channel scan for roaming is triggered. If no any channels are checked in a list, all channels are scanned. This entry is optional.
14. Click **Submit**

Step 3: Configure WLAN15 Security Setting

Figure 86 – WLAN15 Security Setting

Figure 86 – WLAN15 Security Setting

Radio1(5G) - Radio1(5G)

Radio1(5G):WLAN0 Setting

WLAN General WLAN Security QoS

Authentication Mode: Open

Cipher Mode: Disabled

Back to Station List Submit

Configure to associate Open WLAN

Figure 87 - WLAN15 Security Setting – Associating Open Network

Figure 87 - WLAN15 Security Setting – Associating Open Network

Radio1(5G) - Radio1(5G)

Radio1(5G):WLAN0 Setting

WLAN General WLAN Security QoS

Authentication Mode: Open

Cipher Mode: Disabled

Back to Station List Submit

1. Go to **Configuration > Wireless > Radio1(5G) > Repeater > WLAN15 > WLAN Security**
2. Select Open in **Authentication Mode**
3. Select **Disabled** in **Cipher Mode**
4. Click **Submit**

Configure to associate Open WLAN with WEP encryption

Figure 88 – WLAN15 Security Setting – Associating Open Network with WEP encryption

Radio0(2.4G):WLAN0 Setting

WLAN General WLAN Security QoS

Authentication Mode: Open

Cipher Mode: WEP

Default WEP Key: 1 (1-4)

Key Entry Method: Ascii Text Hexadecimal

WEP Key 1: Show

WEP Key 2: Show

WEP Key 3: Show

WEP Key 4: Show

Back to Station List

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN0 > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 Ascii characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure to associate WLAN with Shared Key authentication

Figure 89 – WLAN15 Security Setting – Associating WLAN with Shared Key authentication

The screenshot shows the 'Radio1(5G):WLAN0 Setting' page. The 'WLAN Security' tab is selected. The 'Authentication Mode' dropdown is set to 'Shared'. The 'Cipher Mode' dropdown is set to 'WEP'. The 'Default WEP Key' field contains '1'. The 'Key Entry Method' radio buttons are set to 'Hexadecimal'. There are four 'WEP Key' input fields, each with a 'Show' checkbox. At the bottom are 'Back to Station List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN0 > WLAN Security**
2. Select **Shared** on **Authentication Mode**
3. Select **WEP** on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 ASCII characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure to associate WLAN with WPA / WPA2 authentication

Figure 90 - WLAN15 Security Setting – Associating WLAN with WPA / WPA2 authentication

The screenshot shows the 'Radio1(5G):WLAN0 Setting' page. The 'WLAN Security' tab is selected. The 'Authentication Mode' dropdown is set to 'WPA2'. The 'Cipher Mode' dropdown is set to 'AES'. The 'EAP Method' dropdown is set to 'PEAP-MSCHAPV2'. The 'Username' and 'Password' fields are present with their respective length restrictions. At the bottom are 'Back to Station List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > Station > WLAN0 > WLAN Security**
2. Select WPA / WPA2 in **Authentication Mode**
3. Select suitable encryption mode in **Cipher Mode** as the followings:
 If Authentication Mode is WPA:
 TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
 TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
 AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
4. If Authentication Mode is WPA2:
 AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
5. If Authentication Mode is WPA-auto:
 TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities
6. Select suitable EAP method mode in **EAP Method**; the options include:
 PEAP-MSCHAPV2
 TTLS-MSCHAPV2
 TTLS-PAP
 TTLS-CHAP
7. Enter correct username in **Username** for authentication.
8. Enter correct password in **Password** for authentication.
9. Click **Submit**

Configure to associate network with WPA-PSK / WPA2-PSK authentication

Figure 91 - WLAN15 Security Setting – Associating WLAN with WPA-PSK / WPA2-PSK authentication

The screenshot shows the configuration interface for Radio1(5G). The top navigation bar includes Status, Configuration, Administration, Tools, and About. Below that is a secondary navigation bar with System, Network, Wireless (which is selected), and Thin AP. The main content area has tabs for WLAN General, WLAN Security (which is active), and QoS. The WLAN Security tab displays the following settings:

- Authentication Mode: WPA2-PSK
- Cipher Mode: AES
- Pass Phrase: (A text input field with a 'Show' checkbox and a note: Length:8-63(ASCII Characters); Length:64(HEX Characters))

At the bottom of the page are 'Back to Station List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > Repeater > WLAN15 > WLAN Security**
2. Select WPA-PSK / WPA2-PSK in **Authentication Mode**
3. Select suitable encryption mode in **Cipher Mode** as the followings:

If Authentication Mode is WPA:

TKIP + AES	This algorithm automatically selects TKIP or AES based on the client's capabilities
TKIP	This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.
AES	This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

AES	This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.
-----	--

If Authentication Mode is WPA-auto:

TKIP + AES	This algorithm automatically selects TKIP or AES based on the client's capabilities
------------	---
4. Enter an ASCII string between 8 and 63 characters long or a HEX string with 64 characters long on **Pass Phrase** that matches with remote AP
5. Click **Submit**

Step 4: Configure WLAN15 QoS

Figure 92 – 5G WLAN # QoS

DSCP	
(0-63, cannot be in the same value)	
BestEffort (BE)	24
Background (BK)	16
Video (VI)	40
Voice (VO)	56

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > QoS**

2. Select **Enable DSCP-to-WMM Mapping** checkbox that AP provides different QoS to the incoming packet with the corresponding DSCP value
3. Enter DSCP value on **Best Effort (BE)**, **Background (BK)**, **Video (VI)**, and **Voice (VO)**; these entry is optional
4. Click **Submit**

Note:

- AP classify the packet without DSCP marking as Best Effort (BE) traffic

Step 5: Configure WLAN # General Setting

Figure 93 - 5G WLAN # General Setting

1. Go to **Configuration > Wireless > Radio1 (5G) > WLAN # > [More...](#)**
2. Select **Enable WLAN** checkbox to enable WLAN
3. Select **Hide SSID** checkbox to hide SSID name from its beacon frame. This entry is optional.
4. Enter a unique name for the particular WLAN on **SSID**.

Note:

- If you want to configure the same SSID on two different WLAN; their security setting MUST be different from each other.

5. Select **User Isolation** checkbox to block user communication within the same SSID in the AP directly. This entry is optional.
6. Deselect the **DHCP Trust Port** checkbox to prevent illegal DHCP servers offering IP address to DHCP clients via this WLAN. This entry is optional.

7. Specify the suitable privilege of associated clients on **Access Traffic Right**; the options include
Full Access - Associated client can access Internet and manage AP
AP Management Only - Associated client can manage AP only, but not able to access the Internet
AP Management Disable - Associated client can access the Internet, but not able to manage AP
8. Specify the maximum associated clients between 1 and 256 on **Max Clients** for this WLAN. 256 is the default setting.

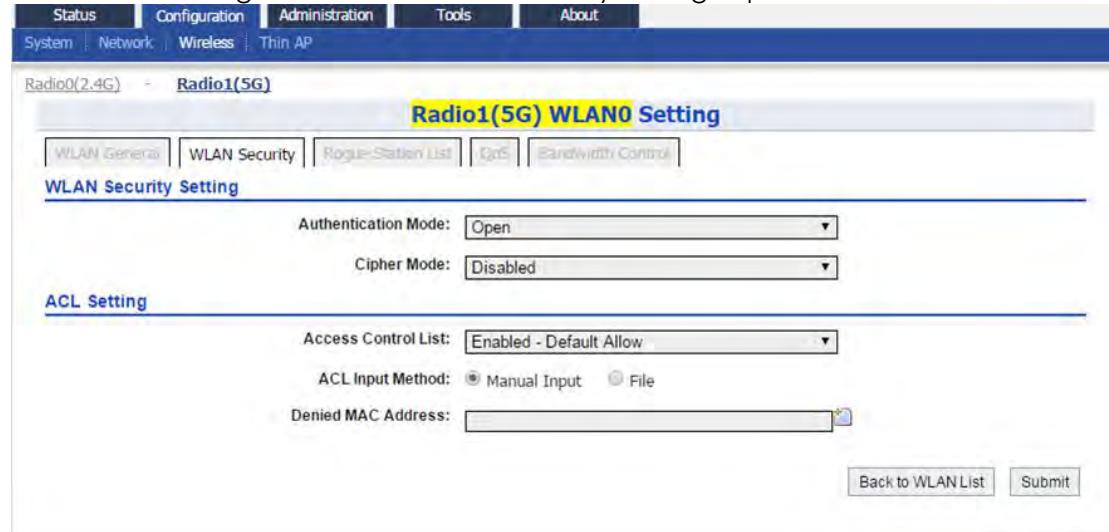
Note:

- **Max Clients** in WLAN 0 – 15 MUST be smaller than or equal to (\geq) the **Max Clients** setting on Radio General Setting

9. Specify an additional requirement on Signal Strength to Noise Ratio (SNR) for associated clients under **Station Association Requirement**. This requirement is optional. You may fill up the following fields:
Reject Station Association if SNR less than X dB X denote the minimum SNR level which allow clients to associate; You can select any integer between 0dB and 100dB; 0 denotes as disable; 0 is default setting
Disassociate Station if SNR drops more than Y dB for consecutive Z packets Y denotes the SNR tolerance; Z denotes the number of consecutive packets their SNR are below the difference of X - Y.

Notes:

- Example for Station Association Requirement with the following settings:
Reject Station Association if SNR less than 30 dB (X = 30);
Disassociate Station if SNR drops more than 20 dB for consecutive 10 packets (Y = 20; Z = 10)
Consequence:
AP accepts the clients to associate if the SNR of packets from the clients is high than ($>$) 30dB;
AP kicks out the associated client if the SNR of 10 consecutive packets is below ($<$) 10 dB (30 dB – 20 dB)

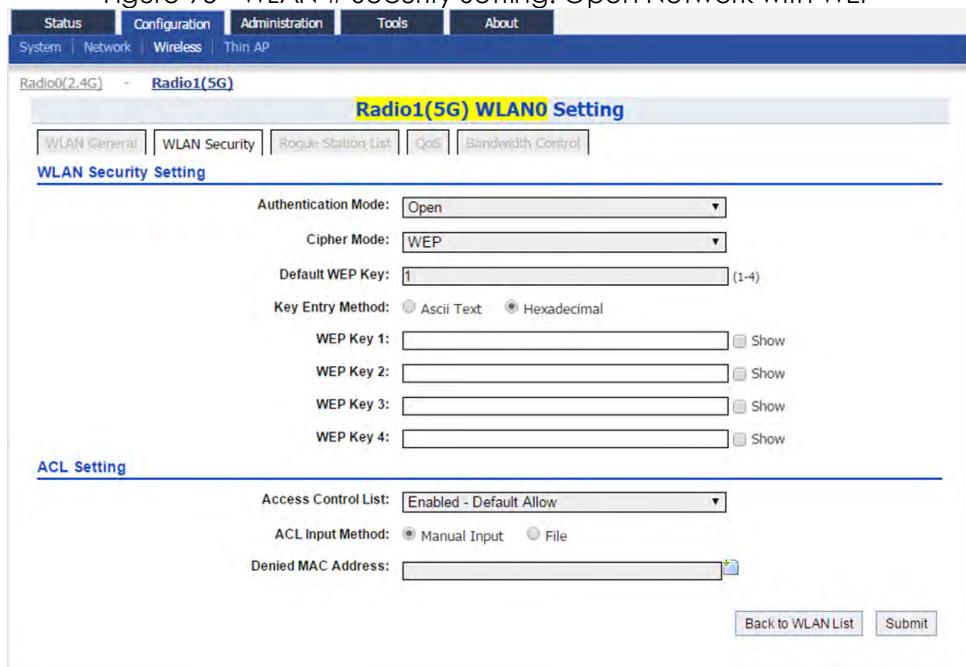


10. Click **Submit**

Step 6: Configure WLAN # Security Setting

Configure WLAN as Open Network

Figure 94 - 5G WLAN # Security Setting: Open Network



The screenshot shows the 'Radio1(5G) WLAN0 Setting' page. The 'WLAN Security' tab is selected. Under 'WLAN Security Setting', the 'Authentication Mode' is set to 'Open' and 'Cipher Mode' is set to 'Disabled'. In the 'ACL Setting' section, 'Access Control List' is set to 'Enabled - Default Allow', 'ACL Input Method' is set to 'Manual Input', and 'Denied MAC Address' is empty. At the bottom are 'Back to WLAN List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select Disabled on **Cipher Mode**
4. Click **Submit**

Configure WLAN as Open network with WEP encryption

Figure 95 - WLAN # Security Setting: Open Network with WEP

The screenshot shows the 'Radio1(5G) WLAN0 Setting' page. The 'WLAN Security' tab is selected. Under 'WLAN Security Setting', the 'Authentication Mode' is set to 'Open' and 'Cipher Mode' is set to 'WEP'. The 'Default WEP Key' is set to '1' and 'Key Entry Method' is set to 'Hexadecimal'. Below are fields for 'WEP Key 1' through 'WEP Key 4', each with a 'Show' checkbox. In the 'ACL Setting' section, 'Access Control List' is set to 'Enabled - Default Allow', 'ACL Input Method' is set to 'Manual Input', and 'Denied MAC Address' is empty. At the bottom are 'Back to WLAN List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select Open on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 - Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 - Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)
6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 ASCII characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure WLAN as Open network with Shared Key Authentication

Figure 96 - 5G WLAN # Security Setting: Shared Key Authentication

The screenshot shows the configuration interface for Radio1(5G). The top navigation bar includes Status, Configuration, Administration, Tools, and About. Below that is a secondary navigation bar with System, Network, Wireless, and Thin AP. The main content area has tabs for WLAN General, WLAN Security, Rogue Station List, QoS, and Bandwidth Control. The WLAN Security tab is selected. The page title is Radio1(5G) WLAN0 Setting. The WLAN Security Setting section contains the following fields:

- Authentication Mode: Shared
- Cipher Mode: WEP
- Default WEP Key: 1 (1-4)
- Key Entry Method: Ascii Text (radio button selected)
- WEP Key 1, 2, 3, 4: Input fields with Show checkboxes

The ACL Setting section includes:

- Access Control List: Enabled - Default Allow
- ACL Input Method: Manual Input (radio button selected)
- Denied MAC Address: Input field with a browse icon

At the bottom are Back to WLAN List and Submit buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select Shared on **Authentication Mode**
3. Select WEP on **Cipher Mode**
4. Select key number 1 – 4 on **Default WEP Key**
5. Select suitable key type in **Key Entry Mode**; the options include:
 - Ascii Text key is encoded as ASCII characters (0–9, a–z, A–Z)
 - Hexadecimal key is encoded as Hexadecimal characters (0–9, A–F)

6. Enter up to four keys in WEP Key 1, WEP Key 2, WEP Key 3 and WEP Key 4 respectively. You can type either up to 5 ASCII characters or up to 10 Hexadecimal characters as WEP Key.
7. Click **Submit**

Configure WLAN with WPA / WPA2 / WPA-auto Authentication

Figure 97 - 5G WLAN # Security Setting: WPA / WPA2 / WPA-auto Authentication

Radio0(2.4G) WLAN0 Setting

WLAN Security Setting

- Authentication Mode: WPA2
- Cipher Mode: AES
- Group Key Update Interval: 86400 (s)

RADIUS Server Setting

- NAS Identifier: (0-32)
- RADIUS Server IP Address Type: IPv4
- RADIUS Retry Timeout: 300 (0-65535 s)

	IP Address	Port	Secret(1-128)
RADIUS Server	0 . 0 . 0 . 0	1812	<input type="checkbox"/> Show
Secondary RADIUS Server	0 . 0 . 0 . 0	1812	<input type="checkbox"/> Show

RADIUS Accounting Server Setting

- RADIUS Accounting Server IP Address Type: IPv4
- Accounting interim Interval: 300 (60-86400s, 0:Disable)

	IP Address	Port	Secret(1-128)
RADIUS Accounting Server	0 . 0 . 0 . 0	1813	<input type="checkbox"/> Show
Secondary RADIUS Accounting Server	0 . 0 . 0 . 0	1813	<input type="checkbox"/> Show

ACL Setting

- Access Control List: Enabled - Default Allow
- ACL Input Method: Manual Input
- Denied MAC Address:

Buttons: Back to WLAN List, Submit

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select WPA / WPA2 / WPA-auto on **Authentication Mode**
3. Select suitable encryption mode on **Cipher Mode**

If Authentication Mode is WPA:

- TKIP + AES** This algorithm automatically selects TKIP or AES based on the client's capabilities
- TKIP** This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA-auto:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

Note:

- TKIP is not supported by 802.11n standard. If selected TKIP, the 802.11n's devices will be limited to 802.11g transfer rate, i.e. up to 54 Mbps

4. Enter suitable identification on **NAS identifier**. Remote RADIUS server uses this ID to identify its clients. This entry is available for WPA and WPA2 only.
5. Enter transmission timeout interval between 0 and 86400s on **RADIUS Retry Timeout**. 300 is default setting. This entry is optional.
6. Enter IP address of remote RADIUS server for authentication in **IP Address of RADIUS Server**
7. Enter service port of remote RADIUS server in **Port of RADIUS Server**. 1812 is default setting.
8. Enter suitable secrets in **Secret of RADIUS Server**. It is used along with the MD5 hashing algorithm to obfuscate passwords. This secret MUST be as the same as that in RADIUS server.
9. Repeat step 6-8 if the backup RADIUS server is available. It is optional.
10. Enter interval between each interim update in seconds on **Accounting interim Interval**. 300 is default setting. This entry is optional.
11. Enter IP address of remote RADIUS Accounting Server on **IP Address of RADIUS Accounting Server**. This entry is optional.
12. Enter service port of remote RADIUS server in **Port of RADIUS Accounting Server**. 1813 is default setting. This entry is optional.
13. Enter suitable secrets in **Secret of RADIUS Accounting Server**. It is used along with the MD5 hashing algorithm to obfuscate passwords. This secret MUST be as the same as that in RADIUS server. This entry is optional.
14. Repeat step 11-13 if the backup RADIUS Accounting server is available. It is optional.
15. Click **Submit**

Configure WLAN with WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication

Figure 98 - 5G WLAN # Security Setting: WPA-PSK / WPA2-PSK / WPA-auto-PSK Authentication

Radio0(2.4G) WLAN Setting

WLAN General | WLAN Security | Rogue Station List | QoS | Bandwidth Control

WLAN Security Setting

Authentication Mode: WPA2-PSK
Cipher Mode: AES
Group Key Update Interval: 86400 (s)
Pass Phrase: (B-64)

ACL Setting

Access Control List: Enabled - Default Allow
ACL Input Method: Manual Input
Denied MAC Address:

Back to WLAN List | Submit

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select WPA-PSK / WPA2-PSK / WPA-auto-PSK on **Authentication Mode**
3. Select suitable encryption mode on **Cipher Mode**

If Authentication Mode is WPA:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

TKIP This algorithm provides greater compatibility with older client devices, but is not supported by the 802.11n standard.

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA2:

AES This algorithm provides enhanced security over TKIP, and is the only encryption algorithm supported by the 802.11i standard.

If Authentication Mode is WPA-auto:

TKIP + AES This algorithm automatically selects TKIP or AES based on the client's capabilities

Note:

- TKIP is not supported by 802.11n standard. If selected TKIP, the 802.11n's devices will be limited to 802.11g transfer rate, i.e. up to 54 Mbps

4. Enter interval time in second in **Group Key Update Interval**. 86400 is default setting. This entry is optional.
5. Enter an ASCII string between 8 and 63 characters long or a HEX string with 64 characters long on **Pass Phrase** that users will use to connect to the wireless network.
6. Click **Submit**

Configure WLAN with WAPI Authentication

Figure 99 - 5G WLAN # Security Setting: WAPI Authentication

Radio0(2.4G) WLAN0 Setting

WLAN Security Setting

Authentication Mode: WAPI

Cipher Mode: SMS4

Certificate Type: X.509

Certificate Status: Ready to Install

Certificate Mode: Two-Cert

Certificate Management: Install Certificate

AS IP Address: 0.0.0.0

AS Port: 3810 (0-65535)

Unicast Key Update Interval: 86400 (60-2147483647)

Multicast Key Update Interval: 86400 (60-2147483647)

ACL Setting

Access Control List: Enabled - Default Allow

ACL Input Method: Manual Input

Denied MAC Address:

Back to WLAN List | Submit

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select **WAPI** on **Authentication Mode**
3. Select **SMS4** in **Cipher Mode**
4. Select suitable option in **Certificate Mode**; the options includes:
Two-Cert – Wi-Fi client is verified by the certification from authentication server (AS) and Access Point (AP)
Three-Cert - Wi-Fi client is verified by the certification from authentication server (AS), access point (AP), and certificate authority (CA)
5. Click **Install Certificate**; a window for installing certificate is shown on Figure 100 and Figure 101.

Figure 100 - Two-Cert Mode Certification Installation

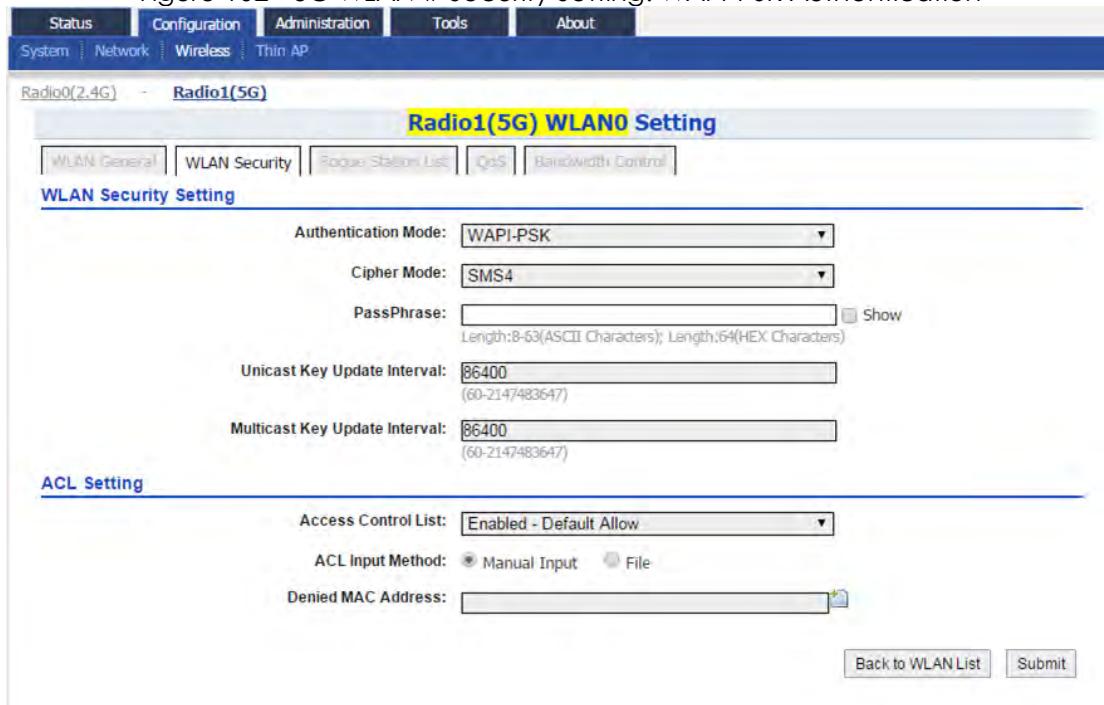
AS Certificate:

AP Certificate:

Figure 101 - Three-Cert Mode Certification Installation

AS Certificate:

AP Certificate:


CA Certificate:

6. Click **Browse** to select suitable certifications
7. Click **Upload** to upload the selected certifications to AP
8. Click **Install** to install certifications
9. Enter IP address of AS server on **AS IP Address**
10. Enter service port of AS server in **AS Port**
11. Enter interval time between 60 and 2147483647s in **Unicast Key Update Interval**; 86400 is default setting. This entry is optional.
12. Enter interval time between 60 and 2147483647s in **Multicast Key Update Interval**; 86400 is default setting. This entry is optional.
13. Click **Submit**

Configure WLAN with WAPI-PSK Authentication

Figure 102 - 5G WLAN # Security Setting: WAPI-PSK Authentication

The screenshot shows the 'Radio1(5G) WLAN0 Setting' page. At the top, there are tabs for WLAN General, WLAN Security, Rogue Station List, QoS, and Bandwidth Control. The WLAN Security tab is selected. Under 'WLAN Security Setting', the 'Authentication Mode' is set to 'WAPI-PSK', 'Cipher Mode' is set to 'SMS4', and the 'PassPhrase' field contains '86400'. Below these, 'Unicast Key Update Interval' and 'Multicast Key Update Interval' are both set to '86400'. Under 'ACL Setting', the 'Access Control List' is set to 'Enabled - Default Allow', 'ACL Input Method' is set to 'Manual Input', and the 'Denied MAC Address' field is empty. At the bottom right are 'Back to WLAN List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > WLAN Security**
2. Select **WAPI** on **Authentication Mode**
3. Select **SMS4** in **Cipher Mode**
4. Enter in an ASCII string between 8 and 63 characters or a HEX string with 64 characters long in **Pass Phrase** that users will use to connect to the wireless network.
5. Enter interval time between 60 and 2147483647s in **Unicast Key Update Interval**; 86400 is default setting. This entry is optional.
6. Enter interval time between 60 and 2147483647s in **Multicast Key Update Interval**; 86400 is default setting. This entry is optional.
7. Click **Submit**

Step 7: Configure ACL Setting

Figure 103 – 5G WLAN # ACL Setting

ACL Setting

Access Control List:

ACL Input Method: Manual Input File

Denied MAC Address:

1. Go to **Configuration > Wireless > Radio0(2.4G) > WLAN > WLAN # > ACL Setting**
2. Select appropriate option on **Access Control List**; options include

<i>Disable</i>	ACL is disabled
<i>Enabled – Default Allow</i>	ACL is enabled. The MAC addresses which are specified in the ACL will consider as Deny. Every wireless client can associate to the AP unless its MAC address is on the list
<i>Enabled – Default Deny</i>	ACL is enabled. The MAC addresses which are specified in the ACL will consider as Allow. Every wireless client CANNOT associate to the AP unless its MAC address is on the list
3. Select *Manual Input* on **ACL Input Method** if network administrator prefers input the entry one by one manually
Or select *File* on **ACL Input Method** if network administrator prefers upload a MAC address list (.txt file)
4. Enter MAC address entry one by one or upload the corresponding file to AP; it is optional
5. Click **Submit**

Note:

- Network Administrator shall select *Disable* or *Enabled – Default Allow* if no ACL entry will be input on AP

Step 8: Configure WLAN # QoS

Please refer to Quality of Service (QoS) on page 119

Step 9: Configure WLAN # Bandwidth Control

Figure 104 – 5G WLAN # Bandwidth Control

The screenshot shows a web-based configuration interface for a WiFi Access Point. The top navigation bar includes 'Status', 'Configuration', 'Administration', 'Tools', and 'About'. Below this, a secondary navigation bar shows 'System', 'Network', 'Wireless', and 'Thin AP'. The main content area is titled 'Radio1(5G) WLAN0 Setting' and includes tabs for 'WLAN General', 'WLAN Security', 'Rogue Station List', 'QoS', and 'Bandwidth Control'. The 'Bandwidth Control' tab is selected. It contains two sections: 'Based On WLAN' and 'Based On Station', both with 'Uplink' and 'Downlink' fields. The 'Based On WLAN' section has a note '(0-1000000 Kbps, 0: Disable)' and the 'Uplink' field is set to '0'. The 'Based On Station' section has a note '(0-1000000 Kbps, 0: Disable)' and both 'Uplink' and 'Downlink' fields are set to '0'. At the bottom right are 'Back to WLAN List' and 'Submit' buttons.

1. Go to **Configuration > Wireless > Radio1(5G) > WLAN > WLAN # > Bandwidth Control**
2. Specify the uplink and downlink limitation under **Based on WLAN** for the particular WLAN
Or specify the uplink and downlink limitation under **Based on Station** for each associated station. 0 is default value and denotes as disable
3. Click **Submit**

Step 10: Apply Submitted Configurations on the AP Device

1. Click **Save & Apply** from the top on the right.

4.4. Bridge Mode

Firmware 2.0.1.300 does not support bridge mode on AP

5. Advanced Radio Settings

Advanced radio settings are available on each radio interface; these settings include Frame Aggregation, Data Rate setting, Medium Access Protection Mechanism, Spatial Stream, and Throughput Optimization mechanism.

Caution:

- Inappropriate configuration may bring negative impact on the network performance
- Only technically advanced users who have sufficient knowledge about WLAN technology should use the advanced wireless settings.
- **Default setting is recommended**

5.1. Distance Setting

Distance setting is the estimate distance of target area (round to the nearest km); AP adjusts the round-trip time latency according to this setting.

Figure 105 – PTMP Example

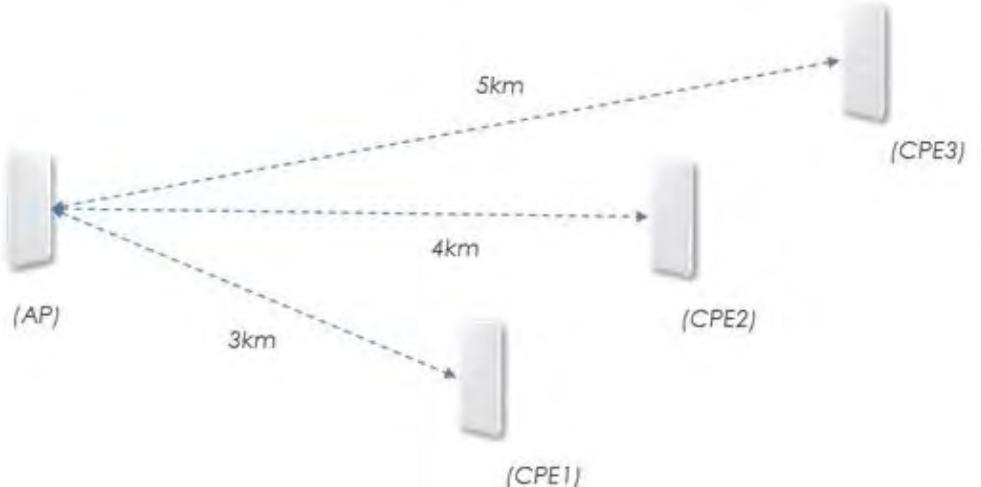


Figure 105 illustrates a typical example of point-to-multipoint connection with our devices. Network administrator shall adjust the distance setting with the longest distance (round to the nearest km) of this setup, i.e. 5km.

Figure 106 – Distance Setting

Protection Mode: CTS-only

RTS/CTS Threshold: 2346 (0-2347)

Distance: 2 (0-50km)

IGMP Snooping: Enable

Multicast Traffic:

Enable Nearby AP List: [\[Nearby AP List\]](#)

1. 2.4G Radio: Go to **Configuration > Wireless > Radio0(2.4G) > Advanced > Advanced Settings**
5G Radio: Go to **Configuration > Wireless > Radio1(5G) > Advanced > Advanced Settings**
2. Enter estimate distance of target area between 1 and 50 km in **Distance**; 2 km is default setting.
3. Click **Submit**
4. Click **Save & Apply** from the top on the right.

5.2. Short Guard Interval

Guard Intervals (GI) are used to ensure that distinct transmissions do not interfere with one another. The standard symbol guard interval used in 802.11 OFDM is 800ms. To increase data rate, 802.11n/ac added optional supports for a 400ms guard interval. It is known as Short Guard Interval. This provides an 11% increase in data rate.

Figure 107 - Short GI Setting

AMPDU:

AMPDU Limit: 64 (1-64)

AMSDU:

ShortGI:

Max Tx Streams: 3

Max Rx Streams: 3

1. 2.4G Radio: Go to **Configuration > Wireless > Radio0(2.4G) > Advanced > Advanced Settings**
5G Radio: Go to **Configuration > Wireless > Radio1(5G) > Advanced > Advanced Settings**
2. Click **ShortGI** checkbox
3. Click **Submit**
4. Click **Save & Apply** from the top on the right.

5.3. AirFi

AirFi technology is an advanced software control wireless algorithm developed by us for optimizing network throughput capacity performance. Using the our AirFi control algorithm can optimize the wireless bandwidth for the high speed clients as well as the low speed clients (i.e. 11b and 11g clients), and as a result the system throughput can be improved substantially.

Figure 108 - AirFi Setting

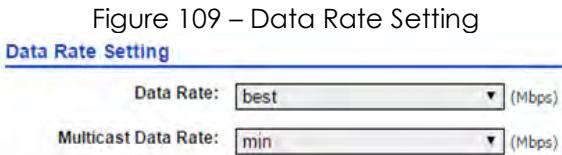
AirFi Setting

AirFi Mode:

AirFi Level:

1. Go to **Configuration > Wireless > Radio0 > Advanced > AirFi Setting**
2. Select **AirFi** checkbox to enable AirFi
3. Select suitable level in **AirFi Level**; Options include:

Level I (Recommended)	favor the fast (802.11n) client most
Level II	favor the fast (802.11n) client moderate
Level III	favor the fast (802.11n) client less
4. Click **Submit**
5. Click **Save & Apply** from the top on the right.


Note:

- Radio1 (5G) is not applicable.

5.4. Data Rate Setting

The fact is that low data rate transmissions consume more air time than high data rates. It may affect the system performance. By disabling low data rates, AP rules out some remote clients with poor signal strength and hence low link data rate, preventing them from consuming too much air time and leaves the air time for higher data rates transmissions. In this way, overall system performance can be improved. The most common way we use it is to disable low data rates (e.g., 1M, 2M) when the AP performance is reported poor.

AP has two (2) configurable parameters about data rate setting; they are **Data Rate** and **Multicast Data Rate**. **Data Rate** stands for the data rate setting for unicast data packet; while **Multicast Data Rate** stands for the data rate setting for multicast data packet.

Configure Data Rate

1. 2.4G Radio: Go to **Configuration** > **Wireless** > **Radio0(2.4G)** > **Advanced** > **Data Rate Setting**
5G Radio: Go to **Configuration** > **Wireless** > **Radio1(5G)** > **Advanced** > **Data Rate Setting**
2. Select appropriate data rate on **Data Rate**; *best* is default setting. This option lets AP device to determine the best data rate for transferring data time by time. Otherwise, AP uses the selected data rate for unicast packet transmission under any condition.
3. Click **Submit**
4. Click **Save & Apply** from the top on the right.

Configure Multicast Rate

1. 2.4G Radio: Go to **Configuration** > **Wireless** > **Radio0(2.4G)** > **Advanced** > **Data Rate Setting**
5G Radio: Go to **Configuration** > **Wireless** > **Radio1(5G)** > **Advanced** > **Data Rate Setting**
2. Select appropriate data rate on **Multicast Rate**; *min* is default setting. This option lets AP device to use the minimum data rate for transferring multicast packets. Otherwise, AP uses the selected data rate for multicast packet transmission under any condition.
3. Click **Submit**
4. Click **Save & Apply** from the top on the right.

5.5. Frame Aggregation

Frame aggregation allows the device to send multiple frames per single access to the medium by combining frames together into one larger frame.

Figure 110 – Frame Aggregation Configuration

AMPDU:

AMPDU Limit: (1-64)

AMSDU:

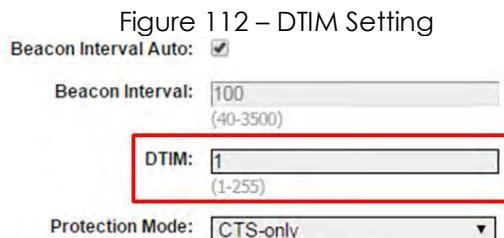
1. 2.4G Radio: Go to **Configuration > Wireless > Radio0(2.4G) > Advanced > Advanced Settings**
5G Radio: Go to **Configuration > Wireless > Radio1(5G) > Advanced > Advanced Settings**
2. Click **AMPDU** checkbox to enable aggregation of MAC protocol data unit (MPDU)
3. Enter the maximum number of data frame between 1 and 64 on **AMPDU Limit** that AP pushes MPDUs into single PPDU; 64 is default setting
4. Select **AMSDU** checkbox to enable aggregation of MAC service data unit; AP pushes aggregated MSDU (MAC service data units) into a single MPDU
5. Click **Submit**
6. Click **Save & Apply** from the top on the right.

5.6. Spatial Streaming

With multiple-input and multiple-output (MIMO) technique, AP can use one or more individual stream for data transmission and reception. In general, more available streams increase spatial efficiency.

Figure 111 – Spatial Streaming Configuration

Max Tx Streams:


Max Rx Streams:

1. 2.4G Interface: Go to **Configuration > Wireless > Radio0 > Advanced > Advanced Settings**
5G Interface: Go to **Configuration > Wireless > Radio1 > Advanced > Advanced Settings**
2. Select the maximum number of transmission between 1 and 3 on **Max Tx Streams**
3. Select the maximum number of transmission between 1 and 3 on **Max Rx Streams**
4. Click **Submit**
5. Click **Save & Apply** from the top on the right.

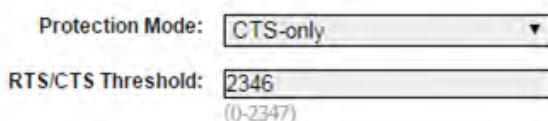
5.7. Delivery Traffic Indication Message (DTIM)

time

According to the 802.11 standards, a Delivery Traffic Indication Map (DTIM) period value is a number that determines how often a beacon frame includes a Delivery Traffic Indication Message, and this number is included in each beacon frame. The 802.11 standards define a power-save mode for client devices. In power-save mode, a client device may choose to sleep for one or more beacon intervals waking for beacon frames that include DTIMs. When the DTIM period is 2, a client device in power-save mode will awaken to receive every other beacon frame. Upon entering power-save mode, a client device will transmit a notification to the access point, so that the access point will know how to handle unicast traffic destined for the client device.

1. 2.4G Interface: Go to **Configuration > Wireless > Radio0 > Advanced > Advanced Settings**
5G Interface: Go to **Configuration > Wireless > Radio1 > Advanced > Advanced Settings**
2. Specify the interval time between 1 and 255 in **DTIM**.
3. Click **Submit**
4. Click **Save & Apply** from the top on the right.

Note:


- The higher the DTIM period, the longer a client device may sleep and therefore the more power that particular client device may potentially save.

5.8. WiFi Protect mechanism [Hidden node problem]

In wireless networking, the hidden node problem or hidden terminal problem occurs when a node is visible from a wireless access point (AP), but not from other nodes communicating with that AP. This leads to difficulties in media access control sublayer. IEEE 802.11 uses 802.11 RTS/CTS acknowledgment and handshake packets to partly overcome the hidden node problem.

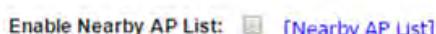
Figure 113 – Protection Mode Setting

1. 2.4G Interface: Go to **Configuration > Wireless > Radio0 > Advanced > Advanced Settings**
5G Interface: Go to **Configuration > Wireless > Radio1 > Advanced > Advanced Settings**
2. Select suitable mechanism on **Protection Mode**; options include:
None - no protect mechanism is used. It is the default setting.
CTS-only - also known as CTS-to-Self; AP issues a CTS frame to itself before sending data. All clients will not transmit during the time.
RTS-CTS - AP sends a RTS frame, waits for the clients CTS frame and then sends the data packet. It allow more robust operation, but at the expense of additional overheads.
3. Specify frame size in byte between 0 and 2347 bytes on **RTS/CTS Threshold**; 2346 is default setting.
If a frame is smaller than the RTS/CTS threshold, it will be sent by the AP without modification. If a frame is larger than the RTS/CTS threshold, then two frames will be sent by the AP. The first frame is an RTS (request to send) frame. After the RTS frame is sent, the AP listens for the corresponding CTS from the target client. Upon reception of the CTS, the AP then sends the data frame. There are trade-offs when considering what value you should set for the RTS/CTS threshold. Smaller values will cause RTS to be sent more often, increasing overheads. However, the more often RTS packets are sent, the sooner the system can recover from collisions. It is recommended to use the default value or only minor reductions of the default setting.
4. Click **Submit**
5. Click **Save & Apply** from the top on the right.

5.9. Beacon interval of BSS

Beacon interval stands for the time interval of beacon transmissions of each supported BSS. The unit is in term of millisecond (ms). The beacon interval can be configured between 40 and 3500ms. The default setting is 100ms, i.e. 10 beacons per second.

Figure 114 – Beacon Interval Setting


Beacon Interval Auto:

Beacon Interval: 100
(40-3500)

1. 2.4G Interface: Go to **Configuration > Wireless > Radio0 > Advanced > Advanced Settings**
5G Interface: Go to **Configuration > Wireless > Radio1 > Advanced > Advanced Settings**
2. Select **Beacon Interval Auto** checkbox AP tunes the interval of beacon transmissions of each supported BSS automatically. Enabling is default and recommended setting
3. Enter interval time between 40ms and 3500ms on **Beacon Interval**; this option is available if **Beacon Interval Auto** is NOT enabled. Each BSS share this setting.
4. Click **Submit**
5. Click **Save & Apply** from the top on the right.

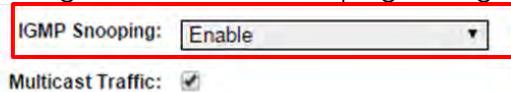
5.10. Nearby AP List

Figure 115 – Nearby AP List Setting

Enable Nearby AP List: [\[Nearby AP List\]](#)

To configure nearby AP list, perform the followings:

1. 2.4G Interface: Go to **Configuration > Wireless > Radio0(2.4G) > Advanced > Advanced Settings**
5G Interface: Go to **Configuration > Wireless > Radio1(5G) > Advanced > Advanced Settings**
2. Select **Nearby AP List** checkbox to enable that AP sniffs the surrounding AP periodically; The result list is shown on the corresponding radios' status information
3. Click **Submit**
4. Click **Save & Apply** from the top on the right.


5.11. IGMP Snooping

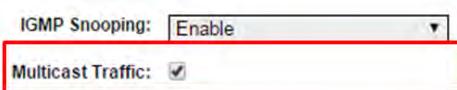
This Series product acts as a Layer 2 device when it is configured as Switch mode. However, IGMP Snooping implementation on AP is a little bit different than that of standard Layer 2 Switch.

Typically, IGMP Snooping allows a switch to only forward multicast traffic to the links that have at least one client joined the multicast group. Unlike ordinary IGMP Snooping implementation, this series converts multicast to unicast and delivers them to devices registered with the multicast group.

When IGMP Snooping is turned on, multicast packets should be dropped at the WLAN exit if there is no client from the WLAN who has joined the corresponding multicast group.

Figure 116 – IGMP Snooping Setting

IGMP Snooping:


Multicast Traffic:

1. 2.4G Interface: Go to **Configuration > Wireless > Radio0(2.4G) > Advanced > Advanced Settings**
5G Interface: Go to **Configuration > Wireless > Radio1(5G) > Advanced > Advanced Settings**
2. Select **IGMP Snooping** checkbox to enable IGMP Snooping
3. Click **Submit**
4. Click **Save & Apply** from the top on the right.

5.12. Multicast Traffic

Network administrator allows AP to process or discard the multicast traffic by configuring the multicast traffic option on Web UI.

Figure 117 – Multicast Traffic Setting

IGMP Snooping:

Multicast Traffic:

1. 2.4G Interface: Go to **Configuration > Wireless > Radio0(2.4G) > Advanced > Advanced Settings**
5G Interface: Go to **Configuration > Wireless > Radio1(5G) > Advanced > Advanced Settings**
2. Select Multicast Traffic checkbox to enable that AP processes multicast traffic in WLANs
3. Click **Submit**
4. Click **Save & Apply** from the top on the right.

6. VLAN Configuration

VLAN is layer-2 network domain that may be partitioned to create multiple distinct broadcast domains, which are mutually isolated so that packets can only pass between them via one or more routers.

Note:

- VLAN is applicable on Switch mode ONLY

Step 1: Configure Radio Settings

Please refer to Radios Setting on Page 14 to complete the radio settings

Step 2: Enable VLAN

Figure 118 – VLAN Setting

The screenshot shows the 'VLAN Configuration' page with the following details:

VLAN Profiles Table:

VLAN ID	Interfaces	IPv4 Address/Subnet Mask	Management VLAN	STP
1	eth0, eth1, AP0_0(Superwifi Network 0), AP1_0(Superwifi Network 0)	192.168.1.222/255.255.255.0	1	<input type="checkbox"/>

Buttons: Add VLAN...

Interfaces Table:

Interface	Type	PVID	Default VLAN Tagging	VLAN(s)	Edit
eth0	Trunk	1	<input type="checkbox"/>	all	Edit
eth1	Access	NA	NA	1	Edit
AP0_0(Superwifi Network 0)	Access	NA	NA	1	Edit
AP1_0(Superwifi Network 0)	Access	NA	NA	1	Edit

Buttons: Submit

1. Go to **Configuration > Network > VLAN**
2. Click **Enable VLAN** checkbox to enable VLAN on AP device
3. Click **Submit**

Step 3: Create VLAN Profile

Figure 119 – VLAN Profile Setting

VLAN ID: (1-4094)

IPv4 Address: . . .

IPv4 Subnet Mask: . . .

Enable STP Mode:

1. Go to **Configuration > Network > VLAN > VLAN Profile**
2. Click **Add VLAN**
3. Enter an identification number between 1 and 4094 on **VLAN ID** that is an unique identification representing a VLAN
4. Enter valid IP Address on **IPv4 Address** of AP device in the VLAN
5. Enter valid IP subnet mask on **IPv4 Subnet Mask** of the VLAN
6. Click **Enable STP Mode** checkbox to enable Spanning Tree Protocol (STP) on this VLAN profile
7. Click **Submit**

Note:

- Click to remove the existing VLAN profile

Step 4: Specify Management VLAN Profile

Management VLAN stands for an IP network that can provide remote administration. Network administrator can access the Web UI via the management VLAN only if VLAN is enabled on AP device.

Figure 120 – Management VLAN Setting

Enable VLAN:

VLAN Profiles

VLAN ID	Interfaces	IPv4 Address/Subnet Mask	Management VLAN	STP
1	eth0, eth1, AP0_0(Superwifi Network 0), AP1_0(Superwifi Network 0)	192.168.1.222 / 255.255.255.0	<input checked="" type="radio"/>	<input type="checkbox"/>
5	eth0	10.5.122.29 / 255.255.255.0	<input checked="" type="radio"/>	<input checked="" type="checkbox"/>

1. Go to **Configuration > Network > VLAN > VLAN Profile**
2. Click **Management VLAN** checkbox on the row with appropriate VLAN ID
3. Click **Submit**

Note:

- IP address of Management VLAN is same as IP address of WAN Setting

Step 5: Assign VLAN Profile on Interface as Access Port

Access port belongs to a single VLAN and does not provide any identifying marks on the frames that are passed between devices. Access port also carries traffic that comes from only the VLAN assigned to the port. Typically, interface that end-user device connects to is assigned as access port.

Figure 121 – VLAN Profile Assignment

The screenshot shows a web-based configuration interface for a network device. The top navigation bar includes 'Status', 'Configuration', 'Administration', 'Tools', and 'About'. Below this is a secondary navigation bar with 'System', 'Network', 'Wireless', and 'Thin AP' tabs, with 'Network' selected. The main content area has a breadcrumb trail: 'General' - 'VLAN' - 'DHCP' - 'Port Forward' - 'Safe Mode'. A sub-header 'Interface Configuration' is displayed. The interface details are as follows: 'Interface: AP0_0(Superwifi Network 0)', 'Type: Trunk (Access selected)', and 'VLAN: 1'. At the bottom are 'Back' and 'Submit' buttons.

1. Go to **Configuration > Network > VLAN > Interfaces**
2. Click Edit on the row with appropriate interface
3. Select **Access** checkbox
4. Select appropriate VLAN ID on **VLAN** that indicate which VLAN the interface belongs to
5. Click **Submit**

Step 6: Assign VLAN Profile on Interface as Trunk Port

1. Go to **Configuration > Network > VLAN > Interfaces**
2. Click Edit on the row with appropriate interface
3. Select **Trunk** checkbox

4. Select appropriate VLAN ID on **PVID** as default VLAN ID of the interface
5. Click **Default VLAN Tagging** checkbox that AP tags all incoming untagged packet with PVID before forwarding them. This entry is optional
6. Click **VLAN Pass Through** checkbox that AP does not modify the VLAN tag on incoming packets before forwarding them. This entry is optional
7. Select appropriate VLAN ID(s) on the **VLAN(s)** list that interface forwards the packet with selected VLAN ID(s). Unlike **VLAN Pass Through**, the interface only forwards the packets to selected VLAN.
8. Click **Submit**

Step 7: Apply Submitted VLAN Configurations on the AP Device

1. Click **Save & Apply** from the top on the right.

7. Network Time Protocol (NTP) Settings

For successful and proper communication between various elements in a network, time synchronization between the elements and across the network is critical. Network Time Protocol (NTP), a networking protocol for clock synchronization, is required to obtain the precise time from a server and to regulate the local time in each network element. The NTP server on AP devices is set to 0.pool.ntp.org by default.

Figure 122 – NTP Setting

The screenshot shows the 'NTP Setting' configuration page. It includes the following fields:

- IP Address Type: IPv4 IPv6
- NTP Server IP:
- NTP Polling Interval: (15-86400s)
- NTP Time Zone:
- Daylight Saving Time:

1. Go to **Configuration > System > NTP Setting**
2. Enter either the domain name / IP address of NTP server which you want to synchronize with on **NTP Server IP**.

Note:

- Click for adding more NTP Server entry;
- Click to remove existing NTP server entry

3. Enter suitable polling interval between 15s and 86400s on **NTP Polling Interval** that specifies the interval between each synchronization request from the AP device to NTP server(s). 600s is default setting.
4. Select appropriate time zone on **NTP Time Zone**; Asia/Hong Kong is default setting
5. Click **Daylight Saving Time** checkbox if your place has daylight saving time
6. Click **Submit**
7. Click **Save & Apply** from the top on the right.

Note:

- **IP Address Type** is changed by AP automatically based on whether **IPv6** is enabled or not
- If providing NTP server's domain name in **NTP Server IP**, you must provide valid DNS server information (Refer to Step 5: Assign an IP Address to AP Device on page 10 for more detail)

8. STP

Spanning Tree Protocol (STP) is a network protocol that ensures a loop-free topology for any bridged Ethernet local area network.

Figure 123 – STP Setting

1. Go to **Configuration > Network > General > STP Setting**
2. Select **Enable STP Mode** checkbox to enable spanning tree protocol on AP device
3. Click **Submit**
4. Click **Save & Apply** from the top on the right.

9. Safe Mode

Safe Mode is used for detecting the backhaul link integrity. If the AP loses its backhaul connectivity, it forces the clients to re-associate with another AP by changing its SSID to a default Safe Mode_X, where X is the MAC address of the radio interface in hexadecimal.

This mechanism protects the client from connecting to the AP which has no backhaul to the Internet end. Total duration for AP from losing backhaul link to safe mode is 3 x ping interval seconds.

Note:

- AP device recovers itself from safe mode if it detects the backhaul link had been recovered

Figure 124 – Safe Mode Setting

The screenshot shows a web-based configuration interface for a WiFi Access Point. The top navigation bar includes 'Status', 'Configuration' (which is selected), 'Administration', 'Tools', and 'About'. Below this is a secondary navigation bar with 'System', 'Network' (selected), 'Wireless', and 'Thin AP'. The main content area is titled 'Safe Mode Setting'. It contains the following fields:

- 'Enable Safe Mode': A checkbox.
- 'Ping Host 1': A text input field containing '0.0.0.0'.
- 'Ping Host 2': A text input field containing '0.0.0.0'.
- 'Ping Host 3': A text input field containing '0.0.0.0'.
- 'Ping Interval': A text input field containing '10' with a note '(3-30s)'.

A 'Submit' button is located at the bottom right of the form.

1. Go to **Configuration > Network > Safe Mode**
2. Click **Enable Safe Mode** checkbox
3. Enter at least one IP address of remote host in **Ping Host 1 / Ping Host 2 / Ping Host 3**
4. Enter interval time between 3s and 30s in **Ping Interval**
5. Click **Submit**
6. Click **Save & Apply** from the top on the right

10. Quality of Service (QoS)

AP supports Wireless Multimedia Extensions (WME), also known as Wi-Fi Multimedia (WMM), based on the IEEE 802.11e standard. It provides Quality of Service (QoS) feature on WiFi network. Network administrator can select the suitable per-defined profile or specify WMM parameters to maintain the network's QoS.

Figure 125 – Quality of Service (WMM)

	CWMIN (0-15)	CWMAX (0-15)	AIFS (0-15)	TXOP (0-8192)	NOACK
BestEffort (BE)	5	7	1	4096	<input type="checkbox"/>
Background(BK)	5	10	7	0	<input type="checkbox"/>
Video(VI)	3	4	1	3008	<input type="checkbox"/>
Voice(VO)	2	3	1	1504	<input type="checkbox"/>

1. 2.4G Interface: Go to **Configuration > Wireless > Radio0(2.4G) > QoS**
 5G Interface: Go to **Configuration > Wireless > Radio1(5G) > QoS**
2. Select suitable profile on **Optimization Mode**; options include:
 - Default Optimization* – a set of QoS/WMM parameters for most scenarios; default setting
 - Optimized for Throughput* – a set of QoS/WMM parameters for single user Wi-Fi network; Wi-Fi network achieves the highest throughput for a single user.
 - Optimized for Capacity* – a set of QoS/WMM parameters for multi-user (>20) Wi-Fi network; Wi-Fi network can achieve highest system throughput for multiple users
 - Manual Configuration* - Specify QoS/WMM parameters manually
3. Click **Submit**
4. Click **Save & Apply** from the top on the right

Except WMM settings on each AP's radio interface, AP also provide DSCP-to-WMM mapping on each individual SSID. Network administrator specifies different DSCP value on the four WMM access categories; they are Best Effort (BE), Background (BK), Video (VI), and Voice (VO).

Figure 126 – 2.4G WLAN # QoS

1. 2.4G Interface: Go to **Configuration** > **Wireless** > **Radio0(2.4G)** > **WLAN** > **WLAN #** > **QoS**
5G Interface: Go to **Configuration** > **Wireless** > **Radio1(5G)** > **WLAN** > **WLAN #** > **QoS**
2. Select **Enable DSCP-to-WMM Mapping** checkbox that AP provides different QoS to the incoming packet with the corresponding DSCP value
3. Enter DSCP value on **Best Effort (BE)**, **Background (BK)**, **Video (VI)**, and **Voice (VO)**; these entry is optional
4. Click **Submit**
5. Click **Save & Apply** from the top on the right

Note:

- AP classify the packet without DSCP marking as Best Effort (BE) traffic

11. IP Gateway

To provide the flexibility on network deployment, AP device can act as IP gateway on the network. IP Gateway is a network element that connects to two or more IP network physically, no matter via wire medium or wireless medium.

Note:

- Interfaces under the same group work as switch interfaces. E.g. Ethernet 0 and WLAN 0 of Radio 1 are assigned as WAN, they forward packet between them based on MAC address.

11.1. IP Gateway

Step 1: Configure WAN IP Setting

Refer to Step 5: Assign an IP Address to AP Device on page 10 for more detail

Step 2: Configure Radio Settings

Please refer to Radios Setting on Page 14 to complete the radio settings

Step 3: Enable Gateway Mode

Figure 127 – Network Setting

The screenshot shows a configuration interface for 'Network Setting'. At the top, a blue header bar contains the text 'Network Setting'. Below this, a section titled 'Network Setting' has a dropdown menu set to 'Gateway Mode'. There is also a checkbox labeled 'Enable IPv6' which is unchecked. The background of the page is white with black text.

1. Go to **Configuration > Network > Network Setting**
2. Select Gateway Mode on **Network Setting**
3. Click **Submit**

Step 4: Configure LAN IP Setting

Figure 128 – LAN Setting (IPv4)

The screenshot shows a configuration interface for 'LAN Setting(IPv4)'. At the top, a blue header bar contains the text 'LAN Setting(IPv4)'. Below this, there are two input fields: 'LAN IP Address' containing '192.168.98.1' and 'LAN IP Address Mask' containing '255.255.255.0'. The background of the page is white with black text.

1. Go to **Configuration > Network > LAN Setting (IPv4)**

2. Enter valid IP Address on **LAN IP Address**; 192.168.98.1 is the default setting
3. Enter valid IP subnet mask on **LAN IP Subnet Mask**; 255.255.255.0 is default setting
4. Click **Submit**

Figure 129 – WAN/LAN Interface Assignment

WAN/LAN Interface Assignment		
	Interface(s)	Detail
WAN	eth0	
LAN	eth1, AP0_0(Superwifi Network 0), AP1_0(Superwifi Network 0)	
Enable NAT Mode: <input checked="" type="checkbox"/>		

Step 5: Assign Interface(s) as WAN Interface

Figure 130 – WAN Interface Assignment

Status
Configuration
Administration
Tools
About

System
Network
Wireless
Thin AP

General
VLAN
DHCP
Port Forward
Safe Mode

WAN/LAN Interface Assignment

Network Type: WAN

WAN Interfaces:

eth0
 eth1
 AP0_0(Superwifi Network 0)
 AP1_0(Superwifi Network 0)

1. Go to **Configuration > Network > WAN/LAN Interface Assignment**
2. Click at the end of **WAN** row
3. Select appropriate interface(s) on **WAN Interfaces** list that acts as WAN interface.
4. Click **Submit**

Step 6: Assign Interface(s) as LAN Interface

1. Go to **Configuration > Network > WAN/LAN Interface Assignment**
2. Click at the end of **LAN** row
3. Select appropriate interface(s) on **LAN Interfaces** list that acts as LAN interface.
4. Click **Submit**

Step 7: NAT Setting

1. Go to **Configuration > Network > WAN/LAN Interface Assignment**
2. Click Enable NAT Mode checkbox if NAT is required. This entry is optional
3. Click **Submit**

Step 8: Apply Submitted Configurations on the AP Device

1. Click **Save & Apply** from the top on the right.

11.2. DHCP Server

AP series products have built-in DHCP server; it can dynamically distribute network configuration parameters to the connected end devices on all LAN interfaces.

Note:

- DHCP Server is applicable on Gateway mode ONLY

Step 1: Configure as Gateway Mode

Refer to IP Gateway on page 121 for more detail

Step 2: Enable DHCP Server

Figure 131 – DHCP Server Setting

Pool ID	Start IP	End IP	Default Lease Time	Enable	Detail
1	NA	NA	86400	No	
2	NA	NA	86400	No	
3	NA	NA	86400	No	
4	NA	NA	86400	No	

1. Go to **Configuration > Network > DHCP**
2. Select Server Mode on **DHCP Server**
3. Click **Submit**

Step 3: Assign IP Address Range for Leasing on DHCP Server

Figure 132 – Address Pool Setting

Address Pool Setting

Enable Pool:

Pool ID: 1

Start IP Address: 0.0.0.0

End IP Address: 0.0.0.0

Default Lease Time: 86400
(60-604800 Seconds)

Back to Pools List | Submit

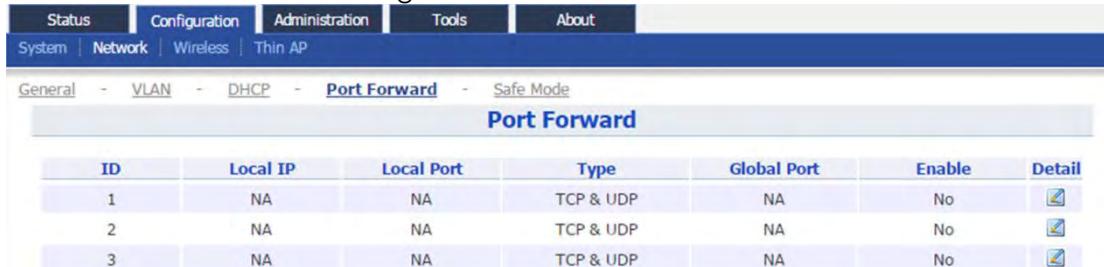
1. Go to **Configuration > Network > DHCP**
2. Click on any **Pool ID**
3. Click **Enable Pool** checkbox
4. Enter the first valid IP address on **Start IP Address**
5. Enter the last valid IP address on **End IP Address**
6. Enter lease time between 60s and 604800s on **Default Lease Time**; 86400s is default setting.
7. Click **Submit**

Note:

- All IP address for leasing MUST be within the LAN IP subnet (Refer to Step 4: Configure LAN IP Setting on page 121 for more detail)

Step 4: Apply Submitted Configurations on the AP Device

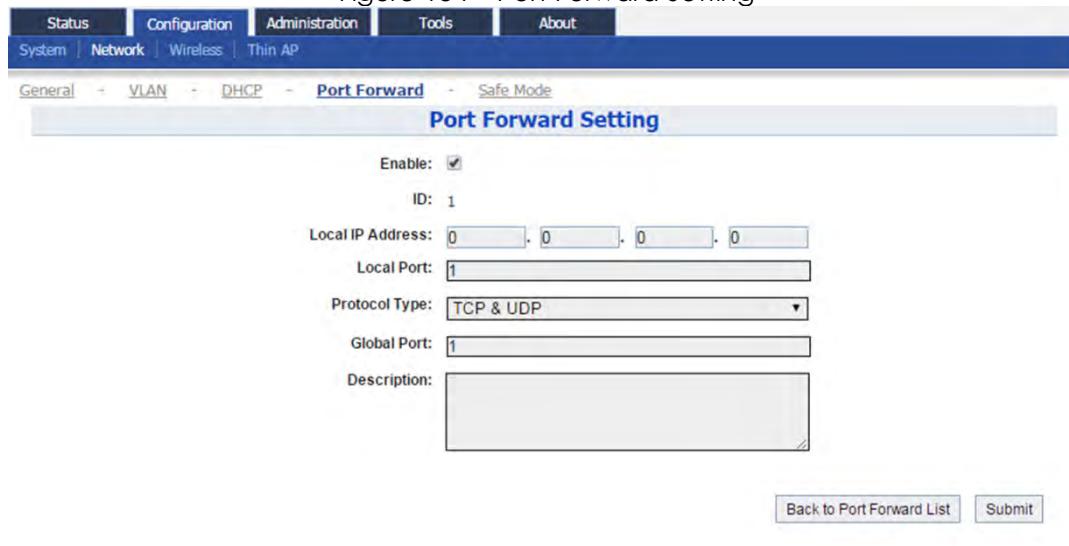
1. Click **Save & Apply** from the top on the right.


11.3. Port Forward

Port forward is an application of Network Address Translation (NAT) that redirects a communication request between WAN interface(s) and LAN interface(s) while the packets are traversing AP device in gateway mode. This technique is most commonly used to make services on a host residing on LAN interface(s) available to hosts on WAN interface(s), by remapping the destination IP address and port number of the communication to a host on LAN side.

Step 1: Configure as Gateway Mode

Refer to IP Gateway on page 121 for more detail


Figure 133 – Port Forward List

ID	Local IP	Local Port	Type	Global Port	Enable	Detail
1	NA	NA	TCP & UDP	NA	No	
2	NA	NA	TCP & UDP	NA	No	
3	NA	NA	TCP & UDP	NA	No	

Step 2: Configure Port Forwarding

Figure 134 – Port Forward Setting

Enable:

ID: 1

Local IP Address: 0.0.0.0

Local Port: 1

Protocol Type: TCP & UDP

Global Port: 1

Description:

Back to Port Forward List Submit

1. Go to **Configuration > Network > Port Forward**
2. Click on any **ID**
3. Click **Enable** checkbox to enable port forward profile
4. Enter the host's IP address on **Local IP Address** that provides service to hosts on WAN interface(s)
5. Enter the service listening port of the host on **Local Port** that provides service to hosts on WAN interface(s)
6. Select suitable protocol(s) on **Protocol Type**. Options include
TCP & UDP
TCP
UDP
7. Enter the listening port at WAN side on **Global Port**
8. Enter any description on **Description** about this port forward profile. This entry is optional.
9. Click **Submit**

Step 3: Apply Submitted Configurations on the AP Device

1. Click **Save & Apply** from the top on the right.

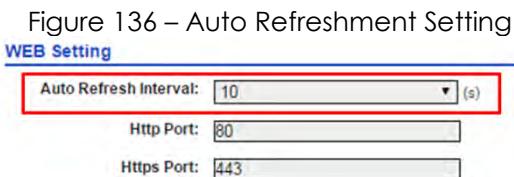
12. Thin AP

Figure 135 – Thin AP Setting

Thin AP stands for AP simply passes wireless network traffic to the switch, performing few complex tasks locally. All encryption, authentication, and policy settings generally occur on a central switch or controller, to which multiple thin access points are connected, rather than on the AP itself. Access controller or equivalent platform is required if thin AP is enabled

1. Go to **Configuration > Thin AP**
2. Select **Enable Thin AP** checkbox to enable thin AP mode
3. Enter valid IP Address / domain name of primary AC on **Primary AC Address**; AP can also acquire AC's IP address from DHCP Server by DHCP options (DHCP option 60 or option 43) when it is configured as DHCP client.
4. Enter valid IP Address / domain name of secondary AC on **Secondary AC Address**; this entry is optional.
5. Enter name of AP on **AP Name**; this entry is optional
6. Enter information of AP's location on **AP Location**; this entry is optional
7. Select desired debug level from 0 to 10 on **AC debug level**;
8. Select Radio0(2.4G) and/or Radio1(5G) checkbox on **Managed Radio** that AC manages the selected radio interface(s)
9. Select **Create Manage Wlan Switch** checkbox if a WLAN for AP management is required. Network administrator can manage AP via this WLAN even AP disconnects from AC

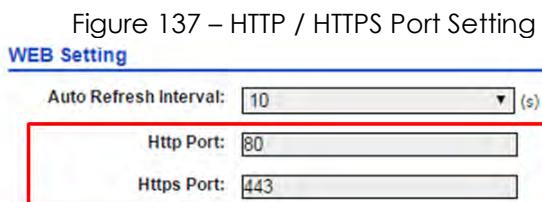
10. Select Close All WLAN or Close Tunnel WLAN on **WLAN Change**


Action. When AP disconnects from AC, it disables either all WLAN or tunnel WLAN.

11. Click **Submit**

12. Click **Save & Apply**

13. Web UI Administration


13.1. Auto Refreshment

1. Click **Configuration > System > WEB Setting**
2. Select appropriate refresh interval on **Auto Refresh Interval** that Web UI refreshes itself automatically. Options include:

Disable	Refresh manually
5s	Refresh every 5 seconds
10s	Refresh every 10 seconds (Default Setting)
20s	Refresh every 20 seconds
30s	Refresh every 30 seconds
40s	Refresh every 40 seconds
3. Click **Submit**
4. Click **Save & Apply** from the top on the right

13.2. Web UI Port Configuration

1. Click **Configuration > System > WEB Setting**
2. Enter suitable port number on **HTTP Port** for HTTP connection; 80 is default setting
3. Enter suitable port number on **HTTPS Port** for HTTPS connection; 433 is default setting
4. Click **Submit**
5. Click **Save & Apply** from the top on the right

13.3. HTTPS Certification

AP devices support both HTTP and HTTPS connection for their web UI. Certificate management allows network administrator to upload their own certifications for HTTPS connection.

Figure 138 – Certificate Management

1. Go to **Administration > Certificate**
2. Click **Browse** on **Http Cert File** and select suitable certification file for HTTPS connection
3. Click **Upload** on **Http Cert File** to upload certification
4. Click **Browse** on **Http Key File** and select suitable certification file for HTTPS connection
5. Click **Upload** on **Http Key File** to upload certification
6. Click **Install**

Note:

- The existing certification file and key file will be overwritten for executing installation each time

13.4. User Administration

AP device allows network administrator to manage user account and privilege for accessing Web UI via local authentication and/or RADIUS authentication. Table 5 describes the authentication setting on AP device.

Table 5 - Authentication setting on AP device

Authentication	Description
Local (Default)	Support 3-level User Login (root/admin/guest)
RADIUS	Authenticate user through RADIUS; if no response returned from RADIUS server, AP fallbacks to local authentication
RADIUS + Local	Login AP with local user login or RADIUS user login

Figure 139 – User Admin Setting

Local authentication

Modify admin account's password

1. Go to **Administration > User Admin**
2. Select **admin** in **UserName**
3. Type a new password in **Password**
4. Type a new password again in **Confirm Password**
5. Click **Submit**

Modify guest account's password

1. Go to **Administration** > **User Admin**
2. Select guest in **UserName**
3. Type a new password in **Password**
4. Type a new password again in **Confirm Password**
5. Click **Submit**

Note:

- Please login as admin for modifying password

RADIUS authentication

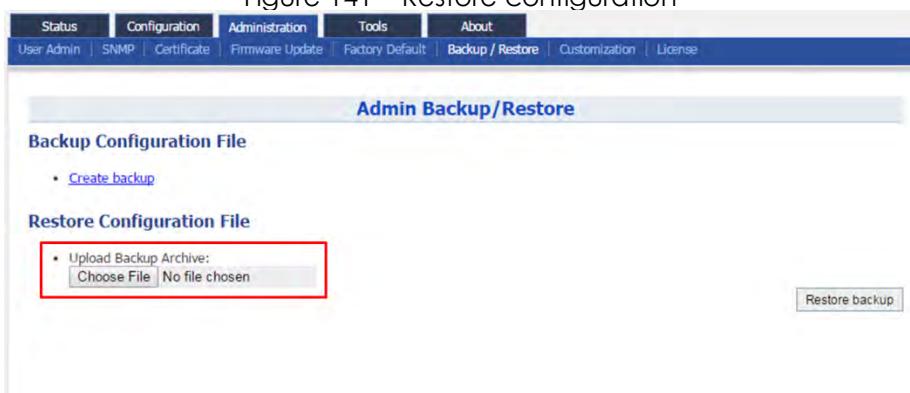
1. Go to **Administration** > **User Admin** > **Login Authentication Setting**
2. Select RADIUS authentication or RADIUS + Local authentication in **Authentication Type**
3. Select suitable authentication in **Authentication Mode**; options include:
PAP
EAP
4. Select suitable encryption in **Encryption Algorithm**; options include:
For authentication Mode is PAP:
Disable
For authentication Mode is EAP:
PEAP-GTC
PEAP-MS-CHAP-V2
TLS-PAP
TLS-CHAP
TLS-MS-CHAP
TLS-MS-CHAP-V2
5. Enter IP address of remote RADIUS server in **RADIUS Server**
6. Enter suitable secrets in **Secret** of **RADIUS Secret**.
7. Left **Secondary RADIUS Server** blank if no backup RADIUS server is available
8. Left **Secondary RADIUS Secret** blank if no backup RADIUS server is available
9. Click **Submit**
10. Click **OK**

14. Device Configuration & Firmware Management

14.1. Backup & Restore Device Configuration

Network administrator backups / restores AP device's settings via web UI.

Backup Device Configuration


Figure 140 – Backup configuration

1. Go to **Administration > Backup/Restore > Backup Configuration File**
2. Click [Create backup](#) and save configuration file

Restore Device Configuration

Figure 141 – Restore configuration

1. Go to **Administration > Backup/Restore > Restore Configuration File**
2. Click **Browse**, then select suitable configuration file (.tar.gz)
3. Click **Restore backup**

14.2. Firmware Update

Network administrator updates (upgrades or downgrades) AP device's firmware via web UI.

Figure 142 – Firmware Update

1. Go to **Administration > Firmware Update**
2. Click **Browse**, then select suitable firmware image file (.bin)
3. Select the suitable options under the Browse button; options include
Keep all settings - Device keeps all operating setting after updating firmware
Keep Network Address settings only - Device keeps IP address, subnet mask only after updating firmware; the other settings will be restored as default settings
Full Factory Reset - Device restores all setting as default settings after updating firmware
4. Click **Upload Image**
5. If uploaded firmware image is valid, click **Proceed** to continue; otherwise, error message will be shown
6. Wait until AP completes updating firmware
7. Login with correct username and password, then check the firmware version on **About > Product Version**

Caution:

- **Do not interrupt the process of firmware update. Please maintain network connection and power supply during updating firmware; otherwise AP may not function.**

14.3. Factory Default

Network administrator restores AP device's settings as default settings via web UI.

Figure 143 – Restore to Factory Default

1. Go to **Administration > Factory Default**
2. Select **Keep Network Address settings** checkbox for keeping IP address and subnet mask settings; otherwise, deselect the checkbox
3. Click **Restore to Factory Default**

14.4. Factory Default Configuration Customization

Network administrator may create customized settings as factory default settings for AP products. Once the customized configuration file is imported, AP products restore with the customized settings as default settings rather than the original default settings.

Figure 144 – Default Configuration Customization

1. Go to **Administration > Customization > Default Configuration Customization**
2. Click [Product Customization Template](#) to download configuration template file (.tar.gz)
3. Use 7-zip software to open the template file, and edit the files in the factory_default.zip.
4. Edit system, network, and wireless files with the desired settings;

system	Contain settings about SNMP, syslog ...etc
network	Contain network settings about all interfaces, such as IP address, VLAN enabling, and STP ...etc.
wireless	Contain settings about radio interfaces, including radio enabling, WLAN settings ... etc

5. Save the modified files
6. Go to **Administration** > **Customization** > **Default Configuration Customization**
7. Click **Browse**, then select the modified customization file
8. Click **Install**

Caution:

- **Do not unzip the file during edit; otherwise, error may appear after uploading the customization file. 7-zip is recommended software to use in customization.**

Note:

- Customization will take effect after reboot. Since improper customization may cause malfunction of AP, please contact our support team for any queries.

15. SNMP

Simple Network Management Protocol (SNMP) is a Network management protocol used almost exclusively in TCP/IP networks. SNMP provides a means to monitor and control network devices, and to manage configurations, statistics collection, performance, and security.

Figure 145 – SNMP Setting

Trap Host ID	Trap Host	Trap Port	Trap Community	Enable	Detail
1	NA	162	public	No	
2	NA	162	public	No	
3	NA	162	public	No	
4	NA	162	public	No	

1. Go to **Administration > User Admin > SNMP**
2. Select **Enable SNMP** checkbox to enable SNMP function
3. Type in suitable string in **Read Community**; the string of **Read Community** between Network Manage System (NMS) and AP must be identical, otherwise, NMS cannot get information from AP. **public** is default setting.
4. Type in suitable string in **Write Community**; the string of **Write Community** between Network Manage System (NMS) and AP must be identical, otherwise, NMS cannot modify AP's setting. **netman** is default setting.
5. Click **Submit**
6. Click **Save & Apply**

Note:

- AP support up to four trap host at the same time. The information about trap hosts will be listed in the trap host table

16. Logging Configuration

16.1. System Logs

Figure 146 – Syslog Setting

Logging Settings

Enable Syslog:

Server IP Address: 0.0.0.0

Severity: Informational

Enable Historical Statistics:

Sampling Frequency: 30 (s)

1. Go to **Configuration > System > Logging Settings**
2. Select **Enable Syslog** checkbox to enable system logging function
3. Type in IP address of the remote syslog server that AP sends system logs instantaneously. 0.0.0.0 denote that AP saves the syslog in its local memory
4. Specify severity level of log that AP stores / send to remote syslog server; options include:
 - Emergency - A "panic" condition usually affecting multiple apps/servers/sites. At this level it would usually notify all tech staff on call.
 - Alert - Should be corrected immediately, therefore notify staff who can fix the problem. An example would be the loss of a primary ISP connection.
 - Critical - Should be corrected immediately, but indicates failure in a secondary system, an example is a loss of a backup ISP connection
 - Error - Non-urgent failures, these should be relayed to developers or admins; each item must be resolved within a given time.
 - Warning - Warning messages, not an error, but indicate that an error will occur if action is not taken, e.g. file system 85% full - each item must be resolved within a given time.
 - Notice - Events that are unusual but not error conditions - might be summarized in an email to developers or admins to spot potential problems - no immediate action required.
 - Informational - Normal operational messages - may be harvested for reporting, measuring throughput, etc. - no action required. (Default Setting)
 - Debug - Info useful to developers for debugging the application, not useful during operations.
5. Click **Submit**
6. Click **Save & Apply**

16.2. Historical Statistic

Figure 147 – Historical Statistics Setting

Logging Settings

Enable Syslog:

Server IP Address: . . .

Severity: (Informational)

Enable Historical Statistics:

Sampling Frequency: (s) (30)

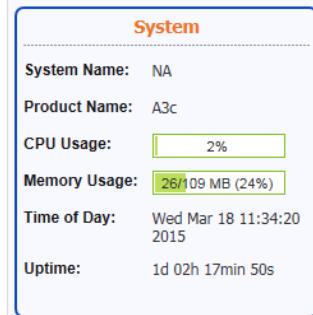
1. Go to **Configuration > System > Logging Settings**
2. Select **Enable Historical Statistics** checkbox to enable AP statistics function
3. Select the sampling time of statistics; options include:

1s	1 second per sample
5s	5 second per sample
10s	10 second per sample
30s	30 second per sample

(Default Setting)
4. Click **Submit**
5. Click **Save & Apply**

17. Monitor Your AP Device

17.1. System Status Overview


Figure 148 – Status Overview

Status	Configuration	Administration	Tools	About				
Overview	Radio0(2.4G)	Radio1(5G)	Ethernet	Logs				
System								
System Name:	NA							
Product Name:	WiFi Bridge							
CPU Usage:	9%							
Memory Usage:	23/286 MB (10%)							
Time of Day:	Fri Oct 27 13:46:53 2017							
Uptime:	00h 54min 01s							
Network(Switch Mode)								
Ethernet								
IPv4 DHCP Client:	Disabled							
IPv4 Address:	192.168.1.222							
IPv4 Subnet Mask:	255.255.255.0							
IPv4 Default Gateway:	192.168.1.1							
IPv4 DNS Server:	NA							
Interfaces(3)								
Ethernet (eth0)								
MAC:	00:19:be:a3:3f:88	Transmit:	734.7KB (1.9Kbps)					
Link:	Auto (Full 1000Mb/s)	Receive:	190.5KB (0.8Kbps)					
Radio0(2.4G)								
MAC:	00:19:be:a3:3f:8a	Mode:	AP					
Channel:	2412MHz(Channel 1)	WLANS:	1					
Wireless Mode:	2.4GHz 216.7Mbps(802.11ng HT20)	Clients:	0					
Noise Level:	-91 dBm	Busy:	19%(21%)					
Transmit Power:	23 dBm							
Transmit:	0.0KB (0.0Kbps)							
Receive:	0.0KB (0.0Kbps)							
Radio1(5G)								
MAC:	00:19:be:a3:3f:8b	Mode:	AP					
Channel:	5180MHz(Channel 36)	WLANS:	1					
Wireless Mode:	5GHz 1.3Gbps(802.11ac HT80)	Clients:	0					
Noise Level:	-103 dBm	Busy:	1%(4%)					
Transmit Power:	24 dBm							
Transmit:	0.2KB (0.0Kbps)							
Receive:	32.3KB (0.0Kbps)							

Status overview provides the summary of vital information on the device's status. Information includes system status, thin AP status, network status, and interfaces status.

System Status

Figure 149 – System Status

System status provides basic information and real time status of device.

System Name – Name represents the device in Wi-Fi network; it is customized by network administrator.

Product Name – Device's product name

CPU Usage – indicate that how many CPU resources the device is currently using

Memory Usage – indicate that how many memory resources the device is currently using

Time of Day – system time of device

Uptime – indicate operation time of device from last time boot up / reboot

Thin AP

Figure 150 – Thin AP Status

Thin AP - indicate status of thin AP feature

AC IP Address – indicate the controller's IP address that AP connect

AC Association Status – indicate association status between controller and AP

AC IP Address (DHCP Option 43) – indicate the controller's IP address that acquired from DHCP server with DHCP Option 43

AC IP Address (DHCP Option 60) – indicate the controller's IP address that acquired from DHCP server with DHCP Option 60

AC Online Time – indicate the AC online time

Networks

Networks provide basic information about Layer 3 status.

Switch Mode

Figure 151 – Network (Switch Mode)

Network(Switch Mode)				More>>
Ethernet				
IPv4 DHCP Client:	Disabled	IPv6 DHCP Client:	Disabled	
IPv4 Address:	10.6.122.101	IPv6 Address:	NA	
IPv4 Subnet Mask:	255.255.255.0	IPv6 Default Gateway:	NA	
IPv4 Default Gateway:	10.6.122.1	IPv6 DNS Server:	NA	
IPv4 DNS Server:	10.6.127.4			

IPv4 DHCP Client – indicate whether device's IP address is assigned by DHCP server or not

IPv4 Address – Current IPv4 address of device

IPv4 Subnet Mask – indicate the subnetwork device belongs to

IPv4 Default Gateway – indicate a node that helps device to another network.

IPv4 DNS Server - indicate a node that provides DNS service for the device

The following information is available if IPv6 option is enabled.

IPv6 DHCP Client – indicate whether device's IP address is assigned by IPv6 DHCP server or not

IPv6 Address – Current IPv6 address of device

IPv6 Default Gateway – indicate a node that helps device to another network.

IPv6 DNS Server - indicate a node that provides DNS service for the device

Gateway Mode

Figure 152 – Network (Gateway Mode)

Network(Gateway Mode)				More>>
WAN - eth0				
IPv4 DHCP Client:	Disabled			
IPv4 Address:	10.6.122.101			
IPv4 Subnet Mask:	255.255.255.0			
IPv4 Default Gateway:	10.6.122.1			
IPv4 DNS Server:	10.6.127.4			
LAN - eth1				
IP Address:	192.168.98.1	NAT:	Enabled	
Subnet Mask:	255.255.255.0	DHCP Server:	Disabled	

WAN Interface

IPv4 DHCP Client – indicate whether device's IP address is assigned by DHCP server or not

IPv4 Address – Current IPv4 address of device on WAN

IPv4 Subnet Mask – indicate the subnetwork device belongs to

IPv4 Default Gateway – indicate a node that helps device to another network.

IPv4 DNS Server - indicate a node that provides DNS service for the device

LAN Interface

IP Address - Current IP address of device on LAN

Subnet Mask – indicate the subnetwork device belongs to

NAT – indicate whether device performs network address translation (NAT) or not

DHCP Server - indicate whether built-in DHCP server is enabled or not

Interfaces

Interfaces provide the real time status of all interfaces on the AP device.

Figure 153 – Interfaces

Interfaces(4)			
Ethernet (eth0)			
MAC:	00:19:be:a3:08:24	Transmit:	583.00KB (2.12Kbps)
Link:	Auto (Full 1000Mbps/s)	Receive:	107.85KB (1.12Kbps)
Ethernet (eth1)			
MAC:	00:19:be:a3:08:25	Transmit:	0.00KB (0.00Kbps)
Link:	Manual (Disconnected)	Receive:	0.00KB (0.00Kbps)
Radio0(2.4G)			
MAC:	00:19:be:a3:08:26	Mode:	AP
Channel:	2412MHz(Channel 1)	WLANS:	3
Wireless Mode:	2.4GHz 216.7Mbps(802.11ng HT20)	Clients:	0
Noise Level:	-109 dBm	Busy:	33% (42%)
Transmit Power:	10 dBm		
Transmit:	0.00KB (0.00Kbps)		
Receive:	0.00KB (0.00Kbps)		
Radio1(5G)			
MAC:	00:19:be:a3:08:27	Mode:	AP
Channel:	5180MHz(Channel 36)	WLANS:	1
Wireless Mode:	5GHz 600Mbps(802.11ac HT40+)	Clients:	0
Noise Level:	-94 dBm	Busy:	5% (5%)
Transmit Power:	10 dBm		
Transmit:	0.00KB (0.00Kbps)		
Receive:	0.00KB (0.00Kbps)		

Ethernet (eth0) / Ethernet (eth1)

MAC – MAC address of Ethernet 0/1 interface

Link – indicate the status and operating mode of Ethernet 0/1

Transmit – indicate the traffic and instant throughput of transmission on Ethernet 0/1

Receive – indicate the traffic and instant throughput of receive operation on Ethernet 0 / 1

Radio0 (2.4G) / Radio1 (5G)

MAC – MAC address of Radio 0 interface

Channel – indicate operating frequency (channel) of Radio 0/1

Wireless Mode – indicate 802.11 standards that Radio 0/1 operates

Noise Level – indicate the noise level in terms of dBm of operating channel

Transmission Power – indicate the total transmission power of Radio 0/1

Transmit – indicate the traffic and instant throughput of transmission on Radio 0/1

Receive – indicate the traffic and instant throughput of receive operation on Radio 0/1

Mode – indicate operating mode of Radio 0/1

WLANs - indicate the number of operating WLAN on Radio 0/1 (AP mode and Repeater Mode only)

Clients - indicate the number of clients that Radio 0/1 servers currently (AP mode and Repeater mode only)

Connection – indicate connection status between Radio 0/1 and remote AP (Station mode only)

AP SSID – indicate the SSID that station associates with (Station mode only)

AP SNR – indicate received SNR from remote AP (Station mode only)

Busy – indicate busy of operating channel

17.2. Radio0 (2.4G) / Radio1 (5G) Status

Radio0 (2.4G) / Radio1 (5G) Status Information

Figure 154 – Radio0 (2.4G) Status Information

Radio Settings

Radio Status – indicate the current status of Radio 0/1 interface

MAC – MAC address of Radio 0/1 interface

Radio Channel - indicate operating frequency (channel) of Radio 0/1

Wireless Mode – indicate 802.11 standards that Radio 0/1 operates

Mode – indicate operating mode of Radio 0/1

Country Code – indicate country code setting of Radio 0/1

Transmission Power – indicate the total transmission power of Radio 0/1

Channel Usage List

Tx(%) – average transmit frames percentage of operating channel

Rx(%) – average receive frames percentage of operating channel

Busy (%) – average busy state percentage of operating channel

Noise Floor (dBm) – indicate noise floor of operating channel and noise floor of chain 0, chain 1, and chain 2 on the control channel; if operating with 40MHz bandwidth, it shows the noise floor of chain 0, chain 1, and chain 2 on the extension channel as well.

Interference Mitigation Offset (0-50dB) – signal offset option that will mask all noise / valid signal below 0-50 dB; 0 denotes disabled

Nearby AP List

If Nearby AP List is enabled, device collects nearby AP information and builds Nearby AP List from all beacon frames received during operation. Information shows the SSID, BSSID, authentication mode, cipher mode, operating channel, data rate, and received SNR of collected APs.

Tx/Rx Statistics

This statistic shows traffic distribution about Radio 0/1 interface. The statistical data includes distribution in terms of data rate and frame type for all incoming and outgoing data frame via Radio 0/1 interface.

Radio0 (2.4G) / Radio1 (5G) Association List

Figure 155 – Radio0 (2.4G) Association List

The screenshot shows a network management interface with a top navigation bar for Status, Configuration, Administration, Tools, and About. The main content area is titled 'Association List' under 'Status'. It displays a table for 'WLAN' with columns: WLAN ID, SSID, MAC Address, Auth Mode, Cipher, #Clients, Throughput, and Total Traffic. Three rows are listed, each corresponding to a WLAN with ID 0, 1, and 2, and SSID 'Supervifl Net work 0'. The table shows 0 clients and 0.00Kbps throughput for all. Below the table is a section titled 'Station List SNR Distribution' with a note 'This section contains no values yet'. At the bottom is a 'Rogue Station List' section with a note 'This section contains no values yet'.

WLAN ID	SSID	MAC Address	Auth Mode	Cipher	#Clients	Throughput	Total Traffic
0	Supervifl Net work 0	00:19:be:a3:08:26	open	invalid	0	TX: 0.00Kbps RX: 0.00Kbps	TX: 0.00KB RX: 0.00KB
1	Supervifl Net work 0	02:19:be:a3:08:26	open	invalid	0	TX: 0.00Kbps RX: 0.00Kbps	TX: 0.00KB RX: 0.00KB
2	Supervifl Net work 0	12:19:be:a3:08:26	open	invalid	0	TX: 0.00Kbps RX: 0.00Kbps	TX: 0.00KB RX: 0.00KB
					Total	0	TX: 0.00Kbps RX: 0.00Kbps

Station List SNR Distribution

STA ID	MAC Address	IP Address	SNR(dB)	RSSI(dBm)	Throughput	Traffic	Data Rate
This section contains no values yet							

Only first 50 stations are listed. [Search Station here...](#)

Rogue Station List

WLAN	MAC Address	Unblock
This section contains no values yet		

[Add](#) [Unblock All](#)

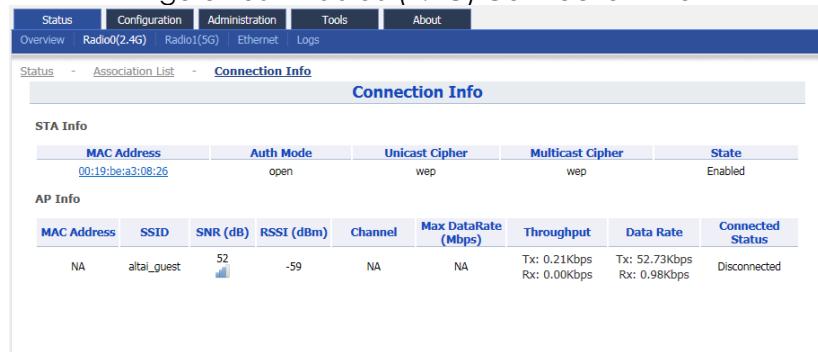
WAN

It shows the current status of all operating WLAN on Radio 0/1 interface. The information includes WLAN ID, SSID, MAC Address, authentication mode, cipher mode, number of associated clients, instant throughput, and total traffic of each operating WLAN respectively.

Station List

It shows the real time status of first 50 associated stations. The status includes Station ID, MAC Address, IP address, SNR(dB) of uplink, RSSI

(dBm) of uplink, instant throughput, cumulated traffic of uplink and downlink, and instant data rate of uplink and downlink for each associated station respectively.


Rogue Station List

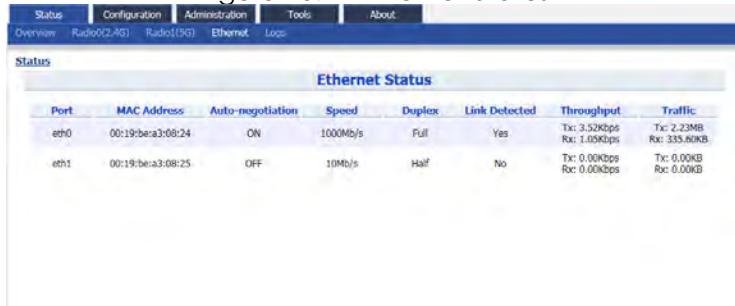
It lists out the stations that can potentially disrupt wireless networks and can sometimes cause irrevocable damage to the network owners. Network administrator inputs the rogue station's MAC address manually or selects any station from the station List by clicking .

Radio0 (2.4G) / Radio1 (5G) Connection Info

This information is available on Station mode and Repeater mode only.

Figure 156 – Radio0 (2.4G) Connection Info

STA Info


It shows station information on Radio 0. The information includes MAC Address, Authentication Mode, Unicast Cipher, Multicast Cipher, and State.

AP Info

It shows remote AP information on Radio 0. The information includes MAC Address, SSID, SNR (dB), RSSI (dBm), Channel, Max Data Rate, Throughput of uplink and downlink, Data Rate of uplink and downlink, and Connected Status.

17.3. Ethernet Status

Figure 157 – Ethernet Status

Ethernet Status								
Port	MAC Address	Auto-negotiation	Speed	Duplex	Link Detected	Throughput	Traffic	
eth0	00:19:beta3:08:24	ON	1000Mbps	Full	Yes	Tx: 3.52Kbps Rx: 1.05Kbps	Tx: 2.23MB Rx: 335.80KB	
eth1	00:19:beta3:08:25	OFF	10Mbps	Half	No	Tx: 0.00Kbps Rx: 0.00Kbps	Tx: 0.00KB Rx: 0.00KB	

It shows the current status of Ethernet interfaces. The information includes Port, MAC Address, Auto-negotiation, Speed, Duplex, Link Detected, instant throughput of uplink and downlink and traffic of uplink and downlink on Ethernet 0 and Ethernet 1 respectively.

18. Tools for Deployment / Operation / Troubleshooting

18.1. System Logs

Figure 158 –Logs

In order to realize easier monitoring and diagnosis, AP products provide log function for system information, association activity, and alarm event.

syslog – records the information about system information, such as software, hardware, system configuration, and self-checking result
wifi – records the information about association activity, such as association, dissociation, and roaming event
alarm – records the alert information of AP device, such as radio down, too high CPU usage

Note:

- System logs are the vital information for our engineer for troubleshooting. It is highly recommended that system logging MUST be enabled

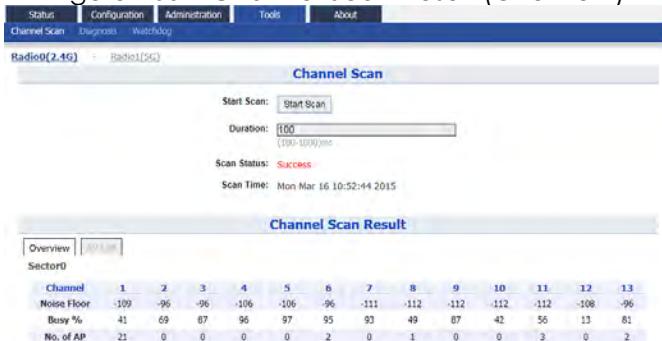
Download system logs

Figure 159 – Download Logs

1. Click [Download Logs](#) from the top on the right
 OR
1. Go to **Status > Logs**
 2. Click [Download Logs](#)

18.2. Historical Statistic

Network administrator and engineer monitor collect the historical statistical data about system, interfaces, wireless condition, and wireless client information from AP


Download historical statistical data

1. Go to **Status > Logs**
2. Click [Download Historical Data](#)

18.3. Channel Scan

Network administrator and engineer collect the status of 2.4GHz radio and 5GHz radio in the surrounding area. Throughout this tool, network administrator and engineer collect noise floor, percentage of channel busy, and the number of BSS in particular radio channels.

Figure 160 – Channel Scan Result (Overview)

AP shows the channel scan result into Overview tab and AP List tab.

Overview Tab – displays general information from channel 1 to channel 11. Information includes noise floor, percentage of channel busy, and the number of BSS on each channel respectively.

AP List Tab - displays information scanned WLAN; information includes SSID, BSSID, authentication Mode, cipher, channel, rate in kbps, and received SNR (dB)

1. 2.4G Radio: Go to **Tools > Channel Scan > Radio0(2.4G)**
5G Radio: Go to **Tools > Channel Scan > Radio1(5G)**
2. Enter scan interval from 100ms to 1000ms in **Duration**; this entry is optional
3. Click **Start Scan**
4. Wait until Scan Status is changed from *In Process* to *Success*; it will take for 20 seconds approximately

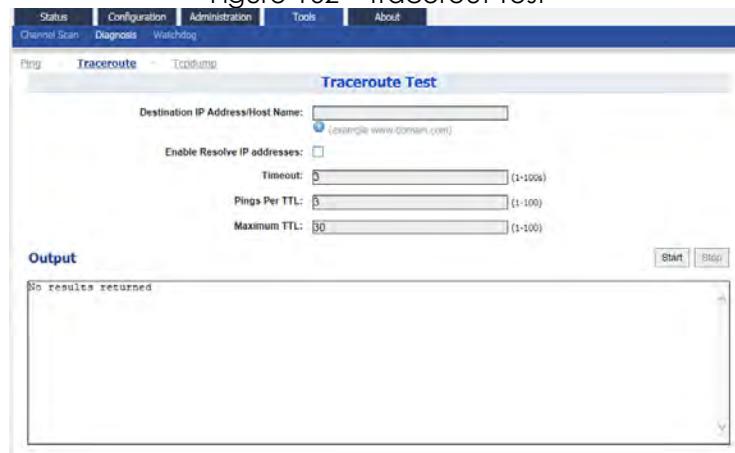
Note:

- Wi-Fi service will be interrupted during channel scan

18.4. Ping Test

Network administrator and engineer test the reachability of a host and measures the round-trip time between AP and the host over an Internet Protocol (IP) network by using ping tool.

Figure 161 – Ping Test

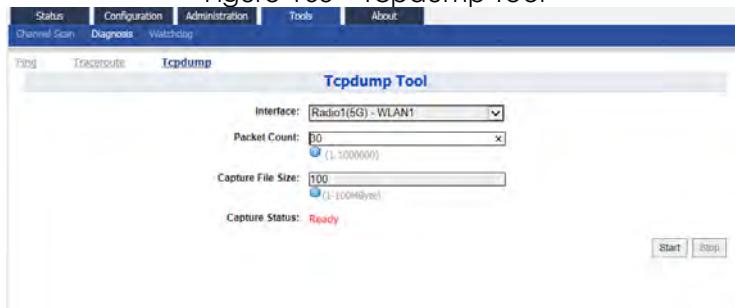


1. Go to **Tools > Diagnosis > Ping**
2. Type target IP address / host name in **Ping IP Address/Host Name**
3. Specify how many ICMP (ping) packet that AP sends to the target host in **Packet Count**; 4 is default setting. This entry is optional.
4. Specify the packet size of ICMP packet in **Packet Size**; 56 is default setting. This entry is optional.
5. Click **Start**
6. Click **Stop** to terminate ping test if necessary

18.5. Traceroute Test

Network administrator tests the route (path) and measuring transit delays of packets across an Internet Protocol (IP) network by using traceroute test.

Figure 162 – Traceroute Test



1. Go to **Tools > Diagnosis > traceroute**
2. Type target IP address / host name in **Destination IP Address/Host Name**
3. Click **Enable Resolve IP addresses** checkbox to enable IP address to domain name translation; this entry is optional
4. Specify timeout interval between 1s and 100s in **Timeout** for traceroute test; this entry is optional
5. Specify TTL value between 1 and 100 in **Pings Per TTL**; 3 is default setting. This entry is optional
6. Specify TTL value between 1 and 100 in **Maximum TTL**; 30 is default setting. This entry is optional
7. Click **Start**
8. Click **Stop** to terminate ping test if necessary

18.6. Tcpdump

AP provides a tool to capture packets that passing through a particular interface. It helps network administrator for troubleshooting.

Figure 163 – Tcpdump Tool

1. Go to **Tools > Diagnosis > Tcpdump**
2. Select suitable interface in **Interface**
3. Specify maximum number of packet in **Packet Count**; this entry is optional
4. Specify maximum file size in **Capture File Size**; this entry is optional
5. Click **Start**
6. Click **Stop** to terminate ping test if necessary
7. Download capture file after finished.

18.7. Watchdog

Watchdog is an electronic timer that is used to detect and recover from system malfunctions. That is timer for periodic reboot.

Schedule Reboot

Figure 164 – Schedule Reboot

Periodic reboot

1. Go to **Tools > Watchdog > Schedule Reboot**
2. Select **Periodic Reboot** checkbox to enable reboot scheduler
3. Select **Random Delay** checkbox to enable a random delay on scheduled rebooting time. It prevents all APs reboot at the same time; this entry is optional
4. Select exact time and day(s) in **Schedule Mode** for rebooting device; Or select a countdown timer (minute) in **Periodic Mode** for rebooting device
5. Click **Submit**
6. Click **Save & Apply**

Periodic log upload

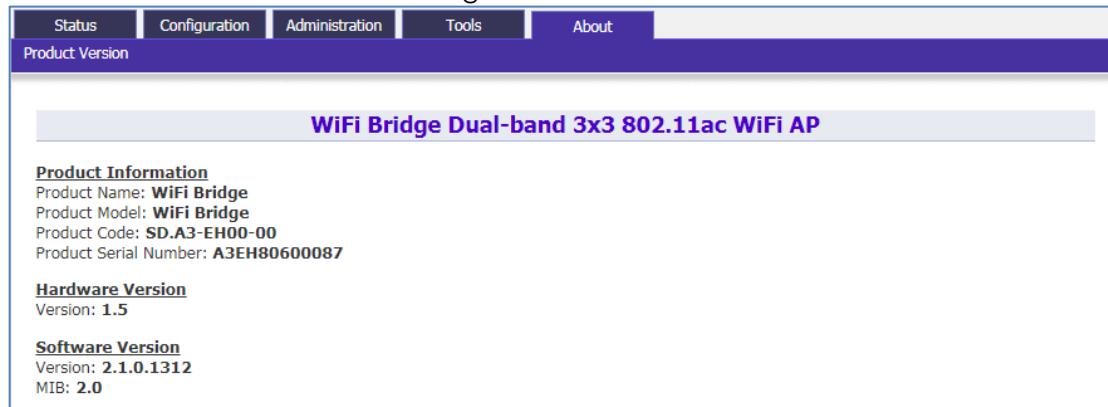
1. Go to **Tools > Watchdog > Schedule Reboot**
2. Select **Periodic Upload Log** checkbox to enable upload log scheduler
3. Select **Random Delay** checkbox to enable a random delay on scheduled rebooting time. It prevents all APs reboot at the same time

4. Enter username on **FTP Server User Name** for logging in remote FTP server
5. Enter password on **FTP Server Password** for logging in remote FTP server
6. Enter IP address of remote FTP server on **FTP Server IP Address**
7. Specify service port of remote FTP server on **FTP Server Port**; 21 is default setting
8. Select exact time and day(s) in **Schedule Mode** for uploading log to FTP server;
Or select a countdown timer (minute) in **Periodic Mode** for uploading log to FTP server
9. Click **Submit**
10. Click **Save & Apply**

Ping Watchdog

Ping watchdog is mechanism that AP reboots itself if it fails to communicate (ping) to target host for serval time.

Figure 165 – Ping Watchdog



1. Go to **Tools > Watchdog > Ping watchdog**
2. Click **Enable Ping Watchdog** to enable this function
3. Type in IP address of target host in **IP Address To Ping**
4. Enter interval between each ICMP request in **Ping Interval**; 300 is default setting. This entry is optional.
5. Specify delay time of each ICMP request in **Startup Delay**; 300 is default setting. This entry is optional.
6. Specify fail tolerant in **Failure Count to Reboot**; 3 is default setting. This entry is optional.
7. Click **Submit**
8. Click **Save & Apply**

19. Product Information

AP product shows the information about product information, hardware, software and company information in **About** tab.

Figure 166 - About

Federal Communications Commission (FCC) Statement

FCC ID: 2AU5Y-WIFIAP

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Warning: Changes or modifications made to this device not expressly approved by Beijing Nodes Network Technology Co., Ltd. may void the FCC authorization to operate this device.

Note: The manufacturer is not responsible for any radio or TV interference caused by unauthorized modifications to this equipment. Such modifications could void the user's authority to operate the equipment.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 45cm between the radiator & your body.