

TEST REPORT

Report No.: 8232EU010604W3

Applicant: Shenzhen Qianhai Runway Technology Co., LTD

Address: Room 201, Block A, No.1, Qianwan Road 1, Qianhai

Shenzhen Hong Kong Cooperation Zone, Shenzhen,

China

Product Name: Smart Pet Feeder

Model No.: F15-C

Trademark: N/A

FCC ID: 2AU2C-F15-C

Test Standard(s): 47 CFR Part 15 Subpart E

Date of Receipt: Aug. 06, 2024

Test Date: Aug. 06, 2024 – Aug. 22, 2024

Date of Issue: Aug. 29, 2024

ISSUED BY:

Prepared by:

SHENZHEN EU TESTING LABORATORY LIMITED

Reviewed and Approved by:

* * *

Mikey Zhu/ Engineer

Sally Zhang/ Manager

Page 2 of 40 Report No.: 8232EU010604W3

Revision Record

Report Version	Issued Date	Description	Status
V0	Aug. 29, 2024	Original	Valid

Table of Contents

1	COVE	ER PAGE	1
2	GENE	RAL INFORMATION	5
	2.1 2.2 2.3 2.4 2.5	APPLICANT INFORMATION MANUFACTURER INFORMATION FACTORY INFORMATION GENERAL DESCRIPTION OF E.U.T TECHNICAL INFORMATION OF E.U.T	5 5
3	TEST	SUMMARY	8
	3.1 3.2 3.3	TEST STANDARDTEST VERDICTTEST LABORATORY	8
4	TEST	CONFIGURATION	9
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	TEST ENVIRONMENT	10 10 10 11
5	TEST	ITEMS	
	5.1	ANTENNA REQUIREMENT	12
	5.2	CONDUCTED EMISSION AT AC POWER LINE 5.2.1 Test Requirement 5.2.2 Test Setup Diagram 5.2.3 Test Procedure 5.2.4 Test Data	13 13
	5.3	EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH 5.3.1 Test Requirement 5.3.2 Test Setup Diagram 5.3.3 Test Procedure 5.3.4 Test Data	16 16
	5.4	MAXIMUM CONDUCTED OUTPUT POWER 5.4.1 Test Requirement 5.4.2 Test Setup Diagram 5.4.3 Test Procedure 5.4.4 Test Data	18 18 19
	5.5	Power Spectral Density 5.5.1 Test Requirement 5.5.2 Test Setup Diagram 5.5.3 Test Procedure 5.5.4 Test Data	20 21 21
	5.6	BAND EDGE EMISSIONS (RESTRICTED FREQUENCY BANDS). 5.6.1 Test Requirement	22 23 24
	5.7	UNDESIRABLE EMISSIONS	28

Report No.: 8232EU010604W3

Page 4 of 40

	5.7.1	Test Requirement	28
	5.7.2	Test Setup Diagram	
	5.7.3	Test Procedure	
	5.7.4	Test Data	31
5.8	FREQU	ENCY STABILITY	37
	5.8.1	Test Requirement	37
	5.8.2	Test Setup Diagram	37
	5.8.3	Test Procedure	
	5.8.4	Test Data	
ANNEX A	TEST S	SETUP PHOTOS	
ANNEX B	EXTER	NAL PHOTOS	
		NAL PHOTOS	

Report No.: 8232EU010604W3

Page 5 of 40 Report No.: 8232EU010604W3

2 General Information

2.1 Applicant Information

Applicant	Shenzhen Qianhai Runway Technology Co., LTD
Address	Room 201, Block A, No.1, Qianwan Road 1, Qianhai Shenzhen Hong Kong Cooperation Zone, Shenzhen, China

2.2 Manufacturer Information

Manufacturer	Shenzhen Qianhai Runway Technology Co., LTD
Address	Room 201, Block A, No.1, Qianwan Road 1, Qianhai Shenzhen Hong Kong Cooperation Zone, Shenzhen, China

2.3 Factory Information

Factory	Dongguan Paiwang Electronics Co., Ltd.
Address	7/F, A District, Jutai Science and Technology Park, Yayao Industrial Area, Huaide Community, Humen Town, Dongguan, Guangdong.

2.4 General Description of E.U.T.

Product Name	Smart Pet Feeder		
Model No. Under Test	F15-C		
List Model No.	N/A		
Description of Model differentiation	N/A		
Rating(s)	Input: 5.0V==2.0A(Adapter Input: 100-240V~ 50/60Hz 0.45A; Output: 5.0V==2.0A) Battery Capacity: 1.5VDC*4		
Product Type	☑ Mobile☐ Portable☐ Fix Location		
Test Sample No.	-1/2(Normal Sample), -2/2(Engineering Sample)		
Hardware Version	N/A		
Software Version	N/A		
Remark	The above information are declared by the applicant, EU-LAB is not responsible for the information accuracy provided by the applicant. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.		

Page 6 of 40 Report No.: 8232EU010604W3

2.5 Technical Information of E.U.T.

Network and	Bluetooth Low Energy (BLE)
	WiFi 2.4G: 802.11b, 802.11g, 802.11n(HT20)
Wireless Connectivity	WiFi 5G: 802.11a, 802.11n(HT20)
	U-NII-1

The requirement for the following technical information of the EUT was tested in this report:

1	and a common the contract of t	
Technology	WiFi 5G	
		ac(VHT20)
Operation Mode	ac(VHT40) ac(VHT80) ac(VHT160)	ax(HEW20)
	☐ ax(HEW40) ☐ ax(HEW80) ☐ ax(HEW160)	
Operating Frequency	U-NII-1: 5150 MHz to 5250 MHz	
Modulation Technology	OFDM	
Function	☐ Client device ☐ Master device	
Modulation Type	802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)	
Transfer Rate (Mbps)	802.11a: 54/ 48/ 36/ 24/ 18/ 12/ 9/ 6 Mbps	
(Single RF path)	802.11n: up to 150 Mbps	
Antenna Type	FPC Antenna	
Antenna Gain(Peak)	2.96 dBi	
Remark	The above information are declared by the applicant, EU-LAB is r for the information accuracy provided by the applicant.	not responsible

All channels were listed on the following table:

20 MHz Bandwidth				
Channel Number	Frequency (MHz)			
36	5180			
40	5200			
44	5220			
48	5240			

The Lowest frequency, the middle frequency and the highest frequency of channel were selected to perform the test, and the selected channels see below:

Page 7 of 40 Report No.: 8232EU010604W3

♦ For 802.11a/n(HT20)

U-NII-1 (5150 - 5250 MHz)				
Channel Number	Channel	Frequency (MHz)		
36	Low	5180		
40	Mid	5200		
48	High	5240		

Note: Preliminary tests were performed in different data rate in above table to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Modulation Type	U-NII-1
	Wiode	Wode Data Rate		Channel
RF Output Power	11a	6	BPSK	48/40/36
Ki Odipat Fower	11n(20 MHz)	6.5	DESK	48/40/36
Emission	11a	6		48/40/36
Bandwidth & 99% Occupied Bandwidth	11n(20 MHz)	6.5	BPSK	48/40/36
Power Spectral Density	11a	6	BPSK	48/40/36
	11n(20 MHz)	6.5	DF SK	48/40/36
Band Edge (Restricted- band)	11a	6	BPSK	48/40/36
	11n(20 MHz)	6.5	DF 3K	48/40/36
Undesirable Emissions	11a	6	BPSK	48/40/36
	11n(20 MHz)	6.5	DF SIX	48/40/36

Page 8 of 40 Report No.: 8232EU010604W3

3 Test Summary

3.1 Test Standard

The tests were performed according to following standards:

No.	Identity	Document Title
1	47 CFR Part 15 Subpart E	Unlicensed National Information Infrastructure Devices
2	ANSI C63.10-2020	American National Standard for Testing Unlicensed Wireless Devices
3	KDB Publication 789033 D02v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E
4	KDB Publication 662911 D01v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc)

Remark:

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product maybe which result in lowering the emission/immunity should be checked to ensure compliance has been maintained.

3.2 Test Verdict

No.	Description	FCC Part No.	Verdict	Remark
1	Antenna Requirement	15.203		
2	Conducted Emission at AC Power Line	15.207 15.407(b)(9)	Pass	
3	Emission Bandwidth and Occupied Bandwidth	U-NII 1: No limits, only for report use. U-NII 3: 15.407(e)	Pass	
4	Maximum Conducted Output Power	15.407(a)(1)(i) 15.407(a)(1)(ii) 15.407(a)(1)(iii) 15.407(a)(1)(iv) 15.407(a)(3)(i)	Pass	
5	Power Spectral Density	15.407(a)(1)(i) 15.407(a)(1)(ii) 15.407(a)(1)(iii) 15.407(a)(1)(iv) 15.407(a)(3)(i)	Pass	
6	Band Edge emissions (Radiated)	15.407(b)(1) 15.407(b)(4) 15.407(b)(10)	Pass	
7	Undesirable Emissions	15.407(b)(1) 15.407(b)(4) 15.407(b)(9) 15.407(b)(10)	Pass	·
8	Frequency Stability	15.407(g)	Pass	

3.3 Test Laboratory

Test Laboratory	Shenzhen EU Testing Laboratory Limited
Address	101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China
Designation Number	CN1368
Test Firm Registration Number	952583

SHENZHEN EU TESTING LABORATORY LIMITED

Page 9 of 40 Report No.: 8232EU010604W3

4 Test Configuration

4.1 Test Environment

During the measurement, the normal environmental conditions were within the listed ranges:

Builing the measurement, the normal environmental conditions were within the noted ranges.				
Relative Humidity	30% to 60%			
Atmospheric Pressure	86 kPa to 106 kPa			
Temperature	NT (Normal Temperature) +15°C to +35°C			
Working Voltage of the EUT	NV (Normal Voltage)	120VAC, 60Hz for adapter 6VDC via battery		

4.2 Test Equipment

Conducted Emission at AC power line					
Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	EE-004	2024/01/09	2025/01/08
EMI Test Receiver	Rohde & Schwarz	ESCI	EE-005	2024/01/09	2025/01/08
Test Software	Ferrari Technology	EZ-EMC	EE-014	N.C.R	N.C.R

Radiated Emission and RF Test					
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
EMI Test Receiver	ROHDE & SCHWARZ	ESPI	EE-006	2024/01/09	2025/01/08
Bilog Broadband Antenna	SCHWARZBECK	VULB 9163	EE-007	2023/01/14	2026/01/13
Double Ridged Horn Antenna	A-INFOMW	LB-10180-NF	EE-008	2023/01/12	2026/01/11
Pre-amplifier	Agilent	8447D	EE-009	2024/01/09	2025/01/08
Pre-amplifier	Agilent	8449B	EE-010	2024/01/09	2025/01/08
MXA Signal Analyzer	Agilent	N9020A	EE-011	2024/01/09	2025/01/08
MXG RF Vector Signal Generator	Agilent	N5182A	EE-012	2024/01/09	2025/01/08
Test Software	Farad	EZ-EMC	EE-015	N.C.R	N.C.R
MIMO Power Measurement Module	TSTPASS	TSPS 2023R	EE-016	2024/01/09	2025/01/08
RF Test Software	TSTPASS	TS32893 V2.0	EE-017	N.C.R	N.C.R
Wideband Radio Communication Tester	ROHDE & SCHWARZ	CMW500	EE-402	2024/02/15	2025/02/14
Loop Antenna	TESEQ	HLA6121	EE-403	2024/02/15	2025/02/14
Spectrum Analyzer	ROHDE & SCHWARZ	FSP40	EE-404	2024/02/15	2025/02/14
MXG RF Analog Signal Generator	Agilent	N5181A	EE-406	2024/02/15	2025/02/14
DRG Horn Antenna (up to 40GHz)	SCHWARZBECK	BBHA 9170	EE-410	2024/02/15	2025/02/14
Pre-amplifier	SKET	LNPA-1840-50	EE-411	2024/02/15	2025/02/14
Constant Temperature Humidity Chamber	Guangxin	GXP-401	ES-002	2024/07/30	2025/07/29
Power Sensor	ROHDE&SCHWARZN	NRP18S	ES-420	2024/02/15	2025/02/14

Page 10 of 40 Report No.: 8232EU010604W3

4.3 Description of Support Unit

No.	Title	Manufacturer	Model No.	Serial No.
1	Adapter	MI	A232-050200U-CN2	
2	Mobile phone	Apple	iPhone 13	

4.4 Test Mode

No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT in 802.11a transmitting mode.
TM2	802.11n(HT20) mode	Keep the EUT in 802.11n(HT20) transmitting mode.

4.5 Description of Calculation

4.5.1. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

4.5.2. Disturbance Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

Page 11 of 40 Report No.: 8232EU010604W3

4.6 **Measurement Uncertainty**

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level

using a coverage factor of k=2

Test Item	Measurement Uncertainty		
Conducted Emission	2.64 dB		
Occupied Channel Bandwidth	2.8 %		
RF output power, conducted	0.68 dB		
Power Spectral Density, conducted	1.37 dB		
Unwanted Emissions, conducted	1.84 dB		
Radiated Emission	Ur = 2.70 dB (Horizontal)		
(30MHz- 1GHz)	Ur = 2.70 dB (Vertical)		
Radiated Emission	Ur = 3.50 dB (Horizontal)		
(1GHz- 18GHz)	Ur = 3.50 dB (Vertical)		
Radiated Emission	Ur = 5.15 dB (Horizontal)		
(18GHz- 40GHz)	Ur = 5.24 dB (Vertical)		
Temperature	0.8°C		
Humidity	4%		

Deviation from Standards 4.7

None.

Page 12 of 40 Report No.: 8232EU010604W3

5 Test Items

5.1 Antenna requirement

5.1.1 Test Requirement

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Test Requirement

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

5.1.2 Antenna Anti-Replacement Construction

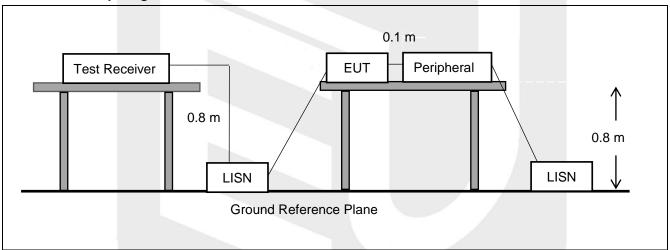
The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	An embedded-in antenna design is used.

Reference Documents	Item					
Photo	Please refer to the EUT Photo documents.					

5.1.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.


Page 13 of 40 Report No.: 8232EU010604W3

5.2 Conducted Emission at AC Power Line

5.2.1 Test Requirement

Test Requirement	Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
+ »	0.15-0.5	66 to 56*	56 to 46*				
Test Limit	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method	ANSI C63.10-2020 section 6.2						

5.2.2 Test Setup Diagram

5.2.3 Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided a 50ohm coupling impedance for the tested equipment. Both sides of AC line are investigated to find out the maximum conducted emission according to the test standard regulations during conducted emission measurement.

The bandwidth of the field strength meter (R&S Test Receiver ESCI) is set at 9kHz in 150kHz~30MHz.

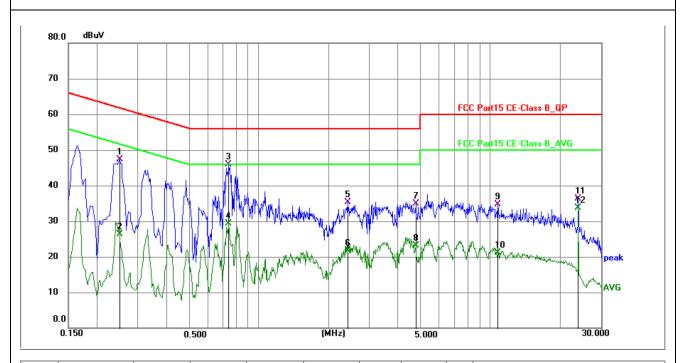
The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.2.4 Test Data

PASS.

All modes have been tested and PASS. Only the worst case data was showed in the report, please to see the following pages.


Page 14 of 40 Report No.: 8232EU010604W3

Conducted Emission Test Data

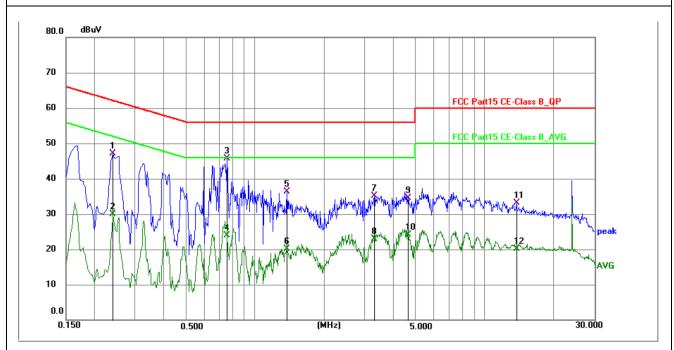
Test Site: Shielded Room #1

Test Mode: TM1/ CH Middle

Comments: Live Line

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2490	37.24	9.97	47.21	61.79	-14.58	QP	Р	
2	0.2490	16.37	9.97	26.34	51.79	-25.45	AVG	Р	
3 *	0.7395	35.93	10.04	45.97	56.00	-10.03	QP	Р	
4	0.7395	19.17	10.04	29.21	46.00	-16.79	AVG	Р	
5	2.4090	25.25	10.04	35.29	56.00	-20.71	QP	Р	
6	2.4090	11.75	10.04	21.79	46.00	-24.21	AVG	Р	
7	4.7715	24.83	10.04	34.87	56.00	-21.13	QP	Р	
8	4.7715	12.97	10.04	23.01	46.00	-22.99	AVG	Ъ	
9	10.7835	24.73	9.96	34.69	60.00	-25.31	QP	Р	
10	10.7835	11.24	9.96	21.20	50.00	-28.80	AVG	Р	
11	24.0000	26.24	10.16	36.40	60.00	-23.60	QP	Р	
12	24.0000	23.51	10.16	33.67	50.00	-16.33	AVG	Р	

Note: Level = Reading + Factor Margin = Level - Limit


Page 15 of 40 Report No.: 8232EU010604W3

Conducted Emission Test Data

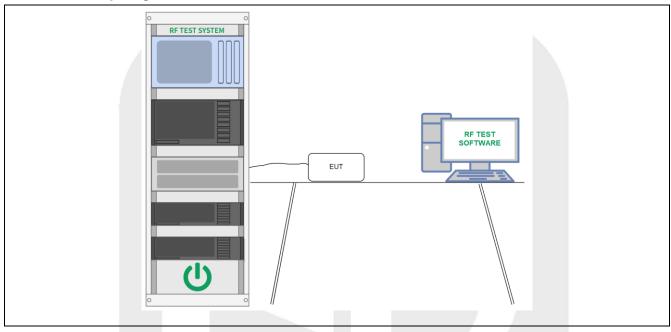
Test Site: Shielded Room #1

Test Mode: TM1/ CH Middle

Comments: Neutral Line

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2400	37.09	10.00	47.09	62.10	-15.01	QP	Р	
2	0.2400	19.86	10.00	29.86	52.10	-22.24	AVG	Р	
3 *	0.7575	35.63	10.07	45.70	56.00	-10.30	QP	Р	
4	0.7575	13.82	10.07	23.89	46.00	-22.11	AVG	Р	
5	1.3785	26.18	10.06	36.24	56.00	-19.76	QP	Р	
6	1.3785	10.12	10.06	20.18	46.00	-25.82	AVG	Р	
7	3.3045	25.03	10.04	35.07	56.00	-20.93	QP	Р	
8	3.3045	12.80	10.04	22.84	46.00	-23.16	AVG	Р	
9	4.6364	24.54	10.05	34.59	56.00	-21.41	QP	Р	
10	4.6364	13.97	10.05	24.02	46.00	-21.98	AVG	Р	
11	13.7580	23.17	9.99	33.16	60.00	-26.84	QP	Р	
12	13.7580	10.19	9.99	20.18	50.00	-29.82	AVG	Р	

Note: Level = Reading + Factor Margin = Level - Limit


Page 16 of 40 Report No.: 8232EU010604W3

5.3 Emission Bandwidth and Occupied Bandwidth

5.3.1 Test Requirement

Test Requirement	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method	ANSI C63.10-2020 section 12.5

5.3.2 Test Setup Diagram

Page 17 of 40 Report No.: 8232EU010604W3

5.3.3 Test Procedure

Emission bandwidth:

- a) Set RBW = shall be in the range of 1% to 5% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is in the range of 1% to 5%.

Occupied bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g)If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h)The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled.

Tabular data may be reported in addition to the plot(s).

- 6 dB emission bandwidth:
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.4 Test Data

PASS.

Please refer to Annex F for details.

Page 18 of 40 Report No.: 8232EU010604W3

5.4 Maximum Conducted Output Power

5.4.1 Test Requirement

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.

For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.

Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

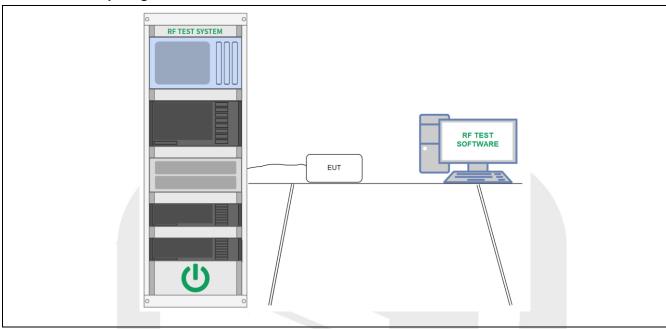
If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Method


Test Requirement

ANSI C63.10-2020, section 12.4

SHENZHEN EU TESTING LABORATORY LIMITED

Page 19 of 40 Report No.: 8232EU010604W3

5.4.2 Test Setup Diagram

5.4.3 Test Procedure

Method SA-1

- a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
- b) Set RBW = 1 MHz.
- c) Set VBW >= 3 MHz.
- d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."
- h) Trace average at least 100 traces in power averaging (rms) mode.
- i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.

5.4.4 Test Data

PASS.

Please refer to Annex F for details.

Page 20 of 40 Report No.: 8232EU010604W3

5.5 Power Spectral Density

5.5.1 Test Requirement

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

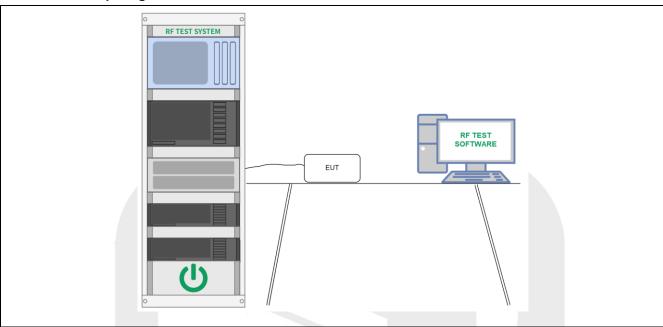
Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.


Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Method ANSI C63.10-2020, section 12.6

Test Requirement

Page 21 of 40 Report No.: 8232EU010604W3

5.5.2 Test Setup Diagram

5.5.3 Test Procedure

- a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power...." (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)
- b) Use the peak search function on the instrument to find the peak of the spectrum.
- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.
- 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- d) The result is the PPSD.
- e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:
- 1) Set RBW \Rightarrow 1 / T, where T is defined in 12.2 a).
- 2) Set VBW \Rightarrow [3 x RBW].

Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

5.5.4 Test Data

PASS.

Please refer to Annex F for details.

Page 22 of 40 Report No.: 8232EU010604W3

5.6 Band edge Emissions (Restricted frequency bands)

5.6.1 Test Requirement

Frequency band 5150-5350 MHz:

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

Frequency band 5725-5850 MHz:

Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

- a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;
- b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;
- c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to 27 dBm/MHz at 75 MHz above or below the band edges; and
- d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

Test Requirement

If radiated measurements are performed, field strength is then converted to EIRP as follows, Where:

E is the field strength in V/m;

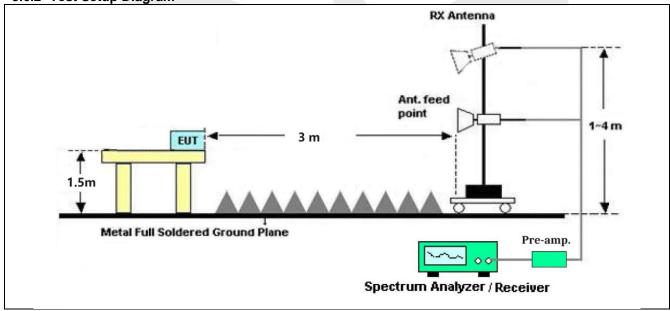
d is the measurement distance in meters.

EIRP is the equivalent isotopically radiated power in watts.ii) Working in dB units, the above equation is equivalent to.EIRP [dBm] = E [dBuV/m] + 20 log (d [meters]) - 104.77

Or, if d is 3 meters:

EIRP [dBm] = E [dBuV/m] - 95.23

	_			
Operating Band	Frequency	EIRP Limit	Value	
5150-5250MHz	Above 1GHz	-27dBm/MHz(68.23dBuV/m)@3m	Peak	
5250-5350MHz	Above 1GHz	-27dBm/MHz(68.23dBuV/m)@3m	Peak	
5470-5725MHz	Above 1GHz	-27dBm/MHz(68.23dBuV/m)@3m	Peak	
	1GHz- 5.65GHz	-27 dBm/MHz(68.23dBuV/m)@3m	Peak	
	5.65GHz- 5.7GHz	-27dBm/MHz to 10dBm/MHz* (68.23dBuV/m to 105.23dBuV/m) *	Peak	
5725-5850 MHz	5.7GHz- 5.72GHz			
	5.72GHz- 5.725GHz	15.6dBm/MHz to 27dBm/MHz* (110.8dBuV/m to 122.23dBuV/m) *	Peak	
	5.85GHz-	27dBm/MHz to 15.6dBm/MHz*	Peak	


SHENZHEN EU TESTING LABORATORY LIMITED

Page 23 of 40 Report No.: 8232EU010604W3

		5.855GHz	(122.2dE	BuV/m to110.83	dBuV/m)*	
		5.855GHz- 5.875GHz		m/MHz to 10dB BuV/m to 105.63	-	Peak
		5.875GHz- 5.925GHz		10dBm/MHz to -27dBm/MHz* (105.6dBuV/m to 68.23dBuV/m) *		
		Above 5.925GHz	-27 dBm	n/MHz(68.2dBuV	//m)@3m	Peak
	Restricted frequer	ncy bands: MHz		MHz	GHz	
	0.090-0.110 10.495-0.505 2.1735-2.1905	16.42-16.423 16.69475-16.69525		399.9-410 608-614 960-1240	4.5-5.15 5.35-5.46 7.25-7.75	
	4.125-4.128 4.17725-4.17775 4.20725-4.20775	25.5-25.67	25.5-25.67 1 37.5-38.25 1		8.025-8.5 9.0-9.2 9.3-9.5	
	6.215-6.218 6.26775-6.26825	74.8-75.2 108-121.94		1660-1710 1718.8-1722.2	10.6-12.7 13.25-13.4	
	6.31175-6.31225 8.291-8.294 8.362-8.366	123-138 149.9-150.0 156.52475-		2200-2300 2310-2390 2483.5-2500	14.47-14.5 15.35-16.2 17.7-21.4	
	8.37625-8.38675 8.41425-8.41475 12.29-12.293 12.51975-12.52025	156.7-156.9 162.0125-1 167.72-173 240-285	67.17	2690-2900 3260-3267 3332-3339 3345.8-3358	22.01-23.13 23.6-24.0 31.2-31.8 36.43-36.5	2
	12.57675-12.57725 13.36-13.41	322-335.4		3600-4400	(2)	
Test Method	ANSI C63.10-2020,	section 12.7.4, s	section 12.	7.5, section 12.7	7.6;	

5.6.2 Test Setup Diagram

Page 24 of 40 Report No.: 8232EU010604W3

5.6.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold.

According the ANSI C63.10-2020, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

5.6.4 Test Data

PASS.

Please refer to the following pages.

Page 25 of 40 Report No.: 8232EU010604W3

Band Edge Emissions Test Data:

U-NII-1:

Test M	Mode: 802.11a	a			CH Low: 5180 MHz			
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
Н	5150.00	48.51	5.79	54.30	68.23	-13.94	PK	PASS
Н	5350.00	45.51	6.45	51.96	68.23	-16.28	PK	PASS
V	5150.00	49.02	5.79	54.81	68.23	-13.43	PK	PASS
V	5350.00	44.26	6.45	50.71	68.23	-17.52	PK	PASS
Н	5150.00	35.23	5.79	41.02	54.00	-12.98	AV	PASS
Н	5350.00	32.36	6.45	38.81	54.00	-15.19	AV	PASS
V	5150.00	35.86	5.79	41.65	54.00	-12.36	AV	PASS
V	5350.00	32.15	6.45	38.60	54.00	-15.41	AV	PASS

Test N	Mode: 802.11a	1			CH High: 5240 MHz			
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
Н	5150.00	47.91	5.79	53.70	68.23	-14.54	PK	PASS
Н	5350.00	45.95	6.45	52.40	68.23	-15.83	PK	PASS
V	5150.00	48.44	5.79	54.23	68.23	-14.00	PK	PASS
V	5350.00	46.54	6.45	52.99	68.23	-15.24	PK	PASS
Н	5150.00	34.62	5.79	40.41	54.00	-13.59	AV	PASS
Н	5350.00	33.52	6.45	39.97	54.00	-14.03	AV	PASS
V	5150.00	35.49	5.79	41.28	54.00	-12.72	AV	PASS
V	5350.00	31.88	6.45	38.33	54.00	-15.68	AV	PASS

Remark:

1. Emission Level = Reading + Factor, Margin= Emission Level - Limit.

Page 26 of 40 Report No.: 8232EU010604W3

Band Edge Emissions Test Data:

U-NII-1:

Test N	/lode: 802.11r	n(HT20)			CH Low: 5180 MHz			
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
Н	5150.00	47.62	5.79	53.41	68.23	-14.82	PK	PASS
Н	5350.00	45.44	6.45	51.89	68.23	-16.35	PK	PASS
V	5150.00	48.75	5.79	54.54	68.23	-13.69	PK	PASS
V	5350.00	45.82	6.45	52.27	68.23	-15.97	PK	PASS
Н	5150.00	36.26	5.79	42.05	54.00	-11.96	AV	PASS
Н	5350.00	32.32	6.45	38.77	54.00	-15.23	AV	PASS
V	5150.00	34.49	5.79	40.28	54.00	-13.73	AV	PASS
V	5350.00	32.11	6.45	38.56	54.00	-15.45	AV	PASS

Test N	/lode: 802.11r	n(HT20)			CH High: 5240 MHz			
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
Н	5150.00	49.48	5.79	55.27	68.23	-12.97	PK	PASS
Н	5350.00	44.28	6.45	50.73	68.23	-17.50	PK	PASS
V	5150.00	47.90	5.79	53.69	68.23	-14.54	PK	PASS
V	5350.00	46.55	6.45	53.00	68.23	-15.24	PK	PASS
Н	5150.00	36.44	5.79	42.23	54.00	-11.78	AV	PASS
Н	5350.00	31.91	6.45	38.36	54.00	-15.64	AV	PASS
V	5150.00	35.74	5.79	41.53	54.00	-12.47	AV	PASS
V	5350.00	33.83	6.45	40.28	54.00	-13.72	AV	PASS

Remark:

1. Emission Level = Reading + Factor, Margin= Emission Level - Limit.

Page 27 of 40 Report No.: 8232EU010604W3

Band Edge Emissions Test Data:

U-NII-1:

Test N	/lode: 802.11r	n(HT40)			CH Low: 5190 MHz			
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
Н	5150.00	49.98	5.79	55.77	68.23	-12.47	PK	PASS
Н	5350.00	44.69	6.45	51.14	68.23	-17.10	PK	PASS
V	5150.00	47.69	5.79	53.48	68.23	-14.76	PK	PASS
V	5350.00	44.49	6.45	50.94	68.23	-17.29	PK	PASS
Н	5150.00	35.79	5.79	41.58	54.00	-12.43	AV	PASS
Н	5350.00	33.67	6.45	40.12	54.00	-13.89	AV	PASS
V	5150.00	35.70	5.79	41.49	54.00	-12.52	AV	PASS
V	5350.00	32.92	6.45	39.37	54.00	-14.63	AV	PASS

Test N	/lode: 802.11r	n(HT40)		CH High: 5190 MHz				
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
Н	5150.00	48.93	5.79	54.72	68.23	-13.52	PK	PASS
Н	5350.00	46.54	6.45	52.99	68.23	-15.24	PK	PASS
V	5150.00	48.54	5.79	54.33	68.23	-13.90	PK	PASS
V	5350.00	44.10	6.45	50.55	68.23	-17.68	PK	PASS
Н	5150.00	34.75	5.79	40.54	54.00	-13.46	AV	PASS
Н	5350.00	32.59	6.45	39.04	54.00	-14.97	AV	PASS
V	5150.00	34.93	5.79	40.72	54.00	-13.29	AV	PASS
V	5350.00	32.54	6.45	38.99	54.00	-15.01	AV	PASS

Remark:

1. Emission Level = Reading + Factor, Margin= Emission Level - Limit.

5.7 Undesirable Emissions

5.7.1 Test Requirement

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of –27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Report No.: 8232EU010604W3

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^{2})$
13.36-13.41	022 000.1	2000 1100	()

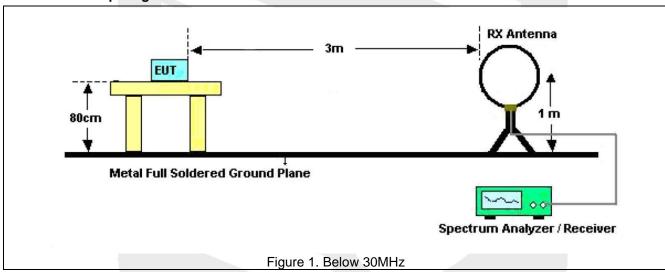
Test Requirement

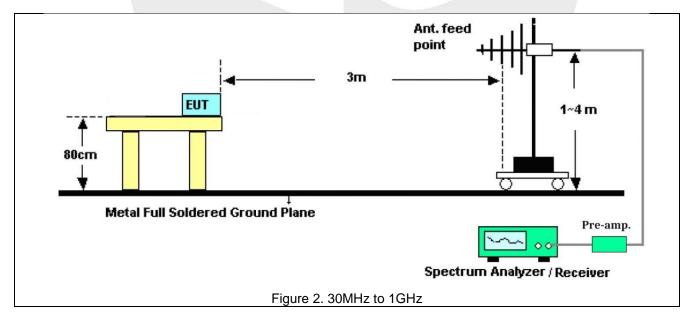
The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	
0.000.0.400	0.400/5(1.1.1.)	,	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	
30-88	100 **	3	
88-216	150 **	3	
216-960	200 **	3	
Above 960	500	3	

^{**} Except as provided in paragraph (g), fundamental emissions from intentional

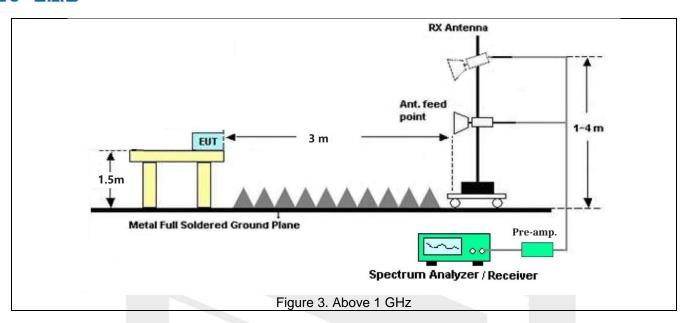
SHENZHEN EU TESTING LABORATORY LIMITED


¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6



Page 29 of 40 Report No.: 8232EU010604W3

	radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within
	these frequency bands is permitted under other sections of this part, e.g.,
	§§ 15.231 and 15.241.
	Note:
	1) Field Strength (dB μ V/m) = 20*log[Field Strength (μ V/m)].
	2) In the emission tables above, the tighter limit applies at the band edges.
	3) For above 1000 MHz, the emission limit in this paragraph is based on
	measurement instrumentation employing an average detector, measurement using
	instrumentation with a peak detector function, corresponding to 20dB above the
	maximum permitted average limit.
	4) For above 1000 MHz, limit field strength of harmonics:
	54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).
Test Method	ANSI C63.10-2020, section 12.7.4, section 12.7.5, section 12.7.6.


5.7.2 Test Setup Diagram

SHENZHEN EU TESTING LABORATORY LIMITED

Page 30 of 40 Report No.: 8232EU010604W3

5.7.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power.

Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

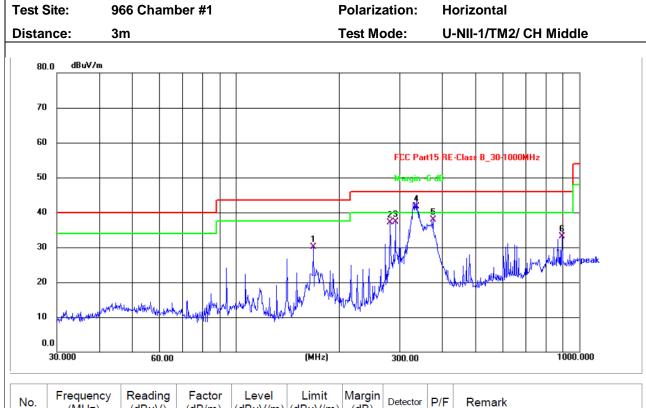
Page 31 of 40 Report No.: 8232EU010604W3

5.7.4 Test Data

PASS.

Please to see the following pages.

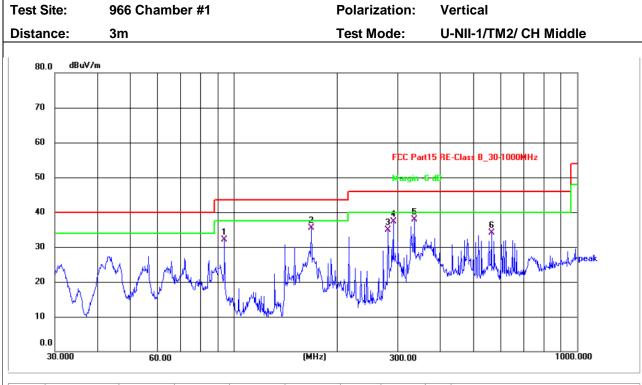
The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.


For test of 30MHz-1GHz, during the test, pre-scan all modes, and found the U-NII-1 / 802.11n(HT20) Middle is worse case, the report only record this mode.

For test of 1GHz-40GHz, during the test, pre-scan all modes, and found the U-NII-1 / 802.11n(HT20) is worse case, the report only record this mode.

Page 32 of 40 Report No.: 8232EU010604W3

Radiated Emission Test Data (30-1000MHz)



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	167.8243	47.54	-17.40	30.14	43.50	-13.36	QP	Р	
2	281.0075	49.60	-12.49	37.11	46.00	-8.89	QP	Р	
3	291.0360	49.48	-12.22	37.26	46.00	-8.74	QP	Ъ	
4 *	336.0352	53.01	-11.21	41.80	46.00	-4.20	QP	Р	
5	374.6225	48.27	-10.42	37.85	46.00	-8.15	QP	Р	
6	890.7278	35.44	-2.27	33.17	46.00	-12.83	QP	Р	

Note: Level = Reading + Factor Margin = Level - Limit

Page 33 of 40 Report No.: 8232EU010604W3

Radiated Emission Test Data (30-1000MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	93.7685	48.93	-16.89	32.04	43.50	-11.46	QP	Р	
2 *	167.8243	52.86	-17.40	35.46	43.50	-8.04	QP	Р	
3	281.0075	47.42	-12.53	34.89	46.00	-11.11	QP	Р	
4	291.0360	49.42	-12.21	37.21	46.00	-8.79	QP	Р	
5	336.0352	49.12	-11.21	37.91	46.00	-8.09	QP	Р	
6	562.6624	41.11	-7.00	34.11	46.00	-11.89	QP	Р	

Note: Level = Reading + Factor Margin = Level - Limit

Page 34 of 40 Report No.: 8232EU010604W3

Radiated Spurious Emission (1GHz-40GHz)

U-NII-1:

Test N	Mode: 802.11r	n(HT20)		CH Low: 5180 MHz				
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
V	3205.94	46.45	-0.85	45.60	68.23	-22.63	PK	PASS
V	7510.70	40.71	9.84	50.55	68.23	-17.68	PK	PASS
V	9511.67	35.16	13.18	48.34	68.23	-19.89	PK	PASS
V	10360.75	42.17	13.79	55.96	68.23	-12.27	PK	PASS
V	14000.77	35.28	17.33	52.61	68.23	-15.62	PK	PASS
V	15542.00	*	*	*	68.23	*	PK	PASS
Н	3201.25	45.77	-0.87	44.91	68.23	-23.32	PK	PASS
Н	7502.50	41.48	9.83	51.31	68.23	-16.92	PK	PASS
Н	9500.75	37.86	13.14	51.01	68.23	-17.22	PK	PASS
Н	10361.00	43.77	13.79	57.56	68.23	-10.67	PK	PASS
Н	14017.20	35.92	17.35	53.27	68.23	-14.96	PK	PASS
Н	15540.00	*	*	*	68.23	*	PK	PASS
V	3205.94	32.22	-0.85	31.38	54.00	-22.62	AV	PASS
V	7510.70	28.37	9.84	38.21	54.00	-15.79	AV	PASS
V	9511.67	23.28	13.18	36.46	54.00	-17.54	AV	PASS
V	10360.75	30.71	13.79	44.50	54.00	-9.50	AV	PASS
V	14000.77	23.68	17.33	41.02	54.00	-12.98	AV	PASS
V	15542.00	*	*	*	54.00	*	AV	PASS
Н	3201.25	33.21	-0.87	32.34	54.00	-21.66	AV	PASS
Н	7502.50	29.56	9.83	39.40	54.00	-14.60	AV	PASS
Н	9500.75	24.61	13.14	37.75	54.00	-16.25	AV	PASS
Н	10361.00	31.36	13.79	45.15	54.00	-8.85	AV	PASS
Н	14017.20	24.69	17.35	42.04	54.00	-11.96	AV	PASS
Н	15540.00	*	*	*	54.00	*	AV	PASS

Remark:

^{1.} Emission Level = Reading + Factor, Margin= Emission Level – Limit.

^{2. &}quot;*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Page 35 of 40 Report No.: 8232EU010604W3

Radiated Spurious Emission (1GHz-40GHz) U-NII-1:

Test N	/lode: 802.11r	n(HT20)		CH Middle: 5200 MHz				
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
V	3402.29	45.28	-0.13	45.14	68.23	-23.09	PK	PASS
V	8004.70	42.19	10.33	52.52	68.23	-15.71	PK	PASS
V	9713.23	37.34	13.20	50.55	68.23	-17.68	PK	PASS
V	10401.25	43.77	13.91	57.68	68.23	-10.55	PK	PASS
V	14300.27	37.81	17.43	55.24	68.23	-12.99	PK	PASS
V	15600.50	*	*	*	68.23	*	PK	PASS
Н	3403.40	47.83	-0.13	47.70	68.23	-20.53	PK	PASS
Н	8017.11	41.41	10.36	51.77	68.23	-16.46	PK	PASS
Н	9706.46	35.84	13.20	49.04	68.23	-19.19	PK	PASS
Н	10401.75	42.94	13.91	56.85	68.23	-11.38	PK	PASS
Н	14301.13	37.06	17.43	54.49	68.23	-13.74	PK	PASS
Н	15601.50	*	*	*	68.23	*	PK	PASS
V	3402.29	33.78	-0.13	33.65	54.00	-20.35	AV	PASS
V	8004.70	30.59	10.33	40.92	54.00	-13.08	AV	PASS
V	9713.23	22.95	13.20	36.15	54.00	-17.85	AV	PASS
V	10401.25	32.29	13.91	46.20	54.00	-7.80	AV	PASS
V	14300.27	24.46	17.43	41.89	54.00	-12.11	AV	PASS
V	15600.50	*	*	*	54.00	*	AV	PASS
Н	3403.40	33.79	-0.13	33.66	54.00	-20.34	AV	PASS
Н	8017.11	28.81	10.36	39.17	54.00	-14.83	AV	PASS
Н	9706.46	22.92	13.20	36.12	54.00	-17.88	AV	PASS
Н	10401.75	31.03	13.91	44.94	54.00	-9.06	AV	PASS
Н	14301.13	22.15	17.43	39.58	54.00	-14.42	AV	PASS
Н	15601.50	*	*	*	54.00	*	AV	PASS

Remark

^{1.} Emission Level = Reading + Factor, Margin= Emission Level – Limit.

^{2. &}quot;*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Page 36 of 40 Report No.: 8232EU010604W3

Radiated Spurious Emission (1GHz-40GHz) U-NII-1:

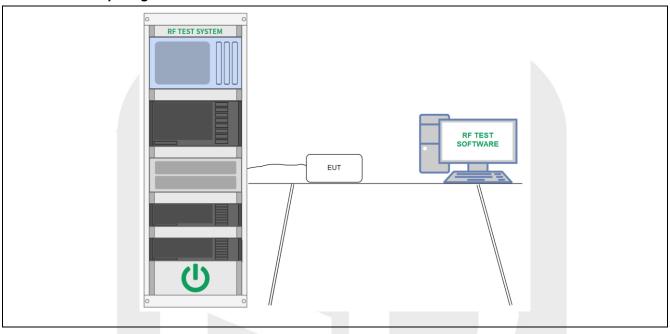
Test M	10de: 802.11r	n(HT20)		CH High: 5240 MHz				
Pol.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	Result
V	3707.37	47.78	1.10	48.87	68.23	-19.36	PK	PASS
V	8204.31	40.45	10.86	51.31	68.23	-16.92	PK	PASS
V	9808.73	35.93	13.23	49.16	68.23	-19.07	PK	PASS
V	10482.50	44.55	13.96	58.51	68.23	-9.73	PK	PASS
V	14700.69	35.61	17.56	53.17	68.23	-15.06	PK	PASS
V	15722.00	*	*	*	68.23	*	PK	PASS
Н	3711.34	47.24	1.10	48.34	68.23	-19.89	PK	PASS
Н	8211.97	42.55	10.88	53.43	68.23	-14.80	PK	PASS
Н	9805.31	35.00	13.23	48.23	68.23	-20.00	PK	PASS
Н	10482.50	43.13	13.96	57.10	68.23	-11.13	PK	PASS
Н	14708.96	37.06	17.58	54.64	68.23	-13.59	PK	PASS
Н	15720.50	*	*	*	68.23	*	PK	PASS
V	3707.37	34.77	1.10	35.87	54.00	-18.13	AV	PASS
V	8204.31	28.60	10.86	39.46	54.00	-14.54	AV	PASS
V	9808.73	23.63	13.23	36.86	54.00	-17.14	AV	PASS
V	10482.50	32.71	13.96	46.67	54.00	-7.33	AV	PASS
V	14700.69	23.03	17.56	40.59	54.00	-13.41	AV	PASS
V	15722.00	*	*	*	54.00	*	AV	PASS
Н	3711.34	34.55	1.10	35.65	54.00	-18.35	AV	PASS
Н	8211.97	28.60	10.88	39.48	54.00	-14.52	AV	PASS
Н	9805.31	24.24	13.23	37.48	54.00	-16.52	AV	PASS
Н	10482.50	30.58	13.96	44.54	54.00	-9.46	AV	PASS
Н	14708.96	22.47	17.58	40.05	54.00	-13.95	AV	PASS
Н	15720.50	*	*	*	54.00	*	AV	PASS

Remark:

^{1.} Emission Level = Reading + Factor, Margin= Emission Level – Limit.

^{2. &}quot;*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Page 37 of 40 Report No.: 8232EU010604W3


5.8 Frequency Stability

5.8.1 Test Requirement

Test Requirement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

5.8.2 Test Setup Diagram

5.8.3 Test Procedure

♦ Frequency stability with respect to ambient temperature

- a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies.
- b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument through an attenuator if necessary.
- NOTE-An instrument that has an adequate level of accuracy as specified by the procuring or regulatory agency is the recommended measuring instrument.
- c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).
- d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters energize only the heater circuit.
- e) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.
- f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 min, 5 min, and 10 min after the EUT is energized. Four measurements in total are made.
- g) Measure the frequency at each of frequencies.
- h) Switch OFF the EUT but do not switch OFF the oscillator heater.

SHENZHEN EU TESTING LABORATORY LIMITED

Page 38 of 40 Report No.: 8232EU010604W3

- i) Lower the chamber temperature by not more than 10 $^{\circ}$ C, and allow the temperature inside the chamber to stabilize.
- j) Repeat step f through step i) down to the lowest specified temperature.

♦ Frequency stability when varying supply voltage

Unless otherwise specified, these tests shall be made at ambient room temperature (+15 °C to +25 °C). a) An antenna shall be connected to the antenna output terminals of the EUT if possible. If the EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.

Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency measuring instrument.

NOTE An instrument that has an adequate level of accuracy as specified by the procuring or regulatory agency is the recommended measuring instrument.

- b) Tune the EUT to one of the number of frequencies. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).
- c) Measure the frequency at each of the frequencies.
- d) Repeat the above procedure at 85% and 115% of the nominal supply voltage.

5.8.4 Test Data PASS.

Please refer to Annex F for details.

Page 39 of 40 Report No.: 8232EU010604W3

ANNEX A TEST SETUP PHOTOS

Please refer to the document "8232EU010604W-AA.PDF"

ANNEX B EXTERNAL PHOTOS

Please refer to the document "8232EU010604W-AB.PDF"

ANNEX C INTERNAL PHOTOS

Please refer to the document "8232EU010604W-AC.PDF"

ANNEX F TEST DATA

Please refer to the document "8232EU010604W-AF.PDF"

Page 40 of 40 Report No.: 8232EU010604W3

STATEMENT

- 1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
- 2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
- 3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
- 4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
- 5. The test data and results are only valid for the tested samples provided by the customer.
- 6. This report shall not be partially reproduced without the written permission of the laboratory.
- 7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

