

ATC

TESTREPORT

Applicant Name : Shenzhen Youmi Intelligent Technology Co., Ltd.
Address : 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen, China
ReportNumber: SZNS211231-68438E-RF-00A
FCC ID: 2ATZ4-BIXSGN

Test Standard (s)

FCC PART 15.225

Sample Description

Product Type: RP05
Model No.: BISON X10S NFC
Multiple Model(s) No.: BISON X10G NFC(Please refer to DOS for Model difference)
Trade Mark: UMIDIGI
Date Received: 2021/12/31
Date of Test: 2022/02/11~2022/02/14
Report Date: 2022/02/16

Test Result:	Pass*
--------------	-------

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Ting Lü
EMC Engineer

Approved By:

Robert Li
EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “*”.

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk **. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY.....	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT EXERCISE SOFTWARE	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE.....	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC§15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	9
ANTENNA CONNECTED CONSTRUCTION	9
FCC §15.207 – AC LINE CONDUCTED EMISSION	10
APPLICABLE STANDARD	10
EUT SETUP	10
EMI TEST RECEIVER SETUP.....	10
TEST PROCEDURE	11
CORRECTED FACTOR & MARGIN CALCULATION	11
TEST DATA	11
FCC§15.225, §15.205& §15.209 - RADIATED EMISSIONS TEST	14
APPLICABLE STANDARD	14
EUT SETUP	14
EMI TEST RECEIVER SETUP.....	15
CORRECTED AMPLITUDE & MARGIN CALCULATION	15
TEST DATA	15
FCC§15.225(E) - FREQUENCY STABILITY	24
APPLICABLE STANDARD	24
TEST PROCEDURE	24
TEST DATA	24
FCC§15.215(C) -20DBEMISSION BANDWIDTH	25
REQUIREMENT	25
TEST PROCEDURE	25
TEST DATA	25

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	13.56 MHz
E-field Strength	56.22dBuV/m@3m
Modulation Technique	ASK
Voltage Range	DC 3.87V from battery or DC 5Vfrom adapter
Sample serial number	SZNS211231-68438E-RF-S1(Assigned by ATC)
Sample/EUT Status	Good condition
Adapter information	Model: HJ-0502000W2-US Input: AC 100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2.0A
Normal/Extreme Condition	L.V.: Low Voltage 3.5V _{DC} N.V.: Normal Voltage3.87V _{DC} H.V.: High Voltage 4.45V _{DC}

Objective

This Type approval report is in accordance with Part 2- Subpart J, and Part 15-Subparts A and C of the Federal Communication Commissions rules.

The objective is to determine the compliance of the EUT with FCC rules, section 15.203, 15.205, 15.207, 15.209 and 15.225.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter	Uncertainty	
Occupied Channel Bandwidth	5%	
RF Frequency	0.082×10^{-7}	
RF output power, conducted	0.73dB	
Unwanted Emission, conducted	1.6dB	
AC Power Lines Conducted Emissions	2.72dB	
Emissions, Radiated	9kHz - 30MHz	2.66dB
	30MHz - 1GHz	4.28dB
	1GHz - 18GHz	4.98dB
	18GHz - 26.5GHz	5.06dB
	26.5GHz - 40GHz	4.72dB
Temperature	1°C	
Humidity	6%	
Supply voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISED), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

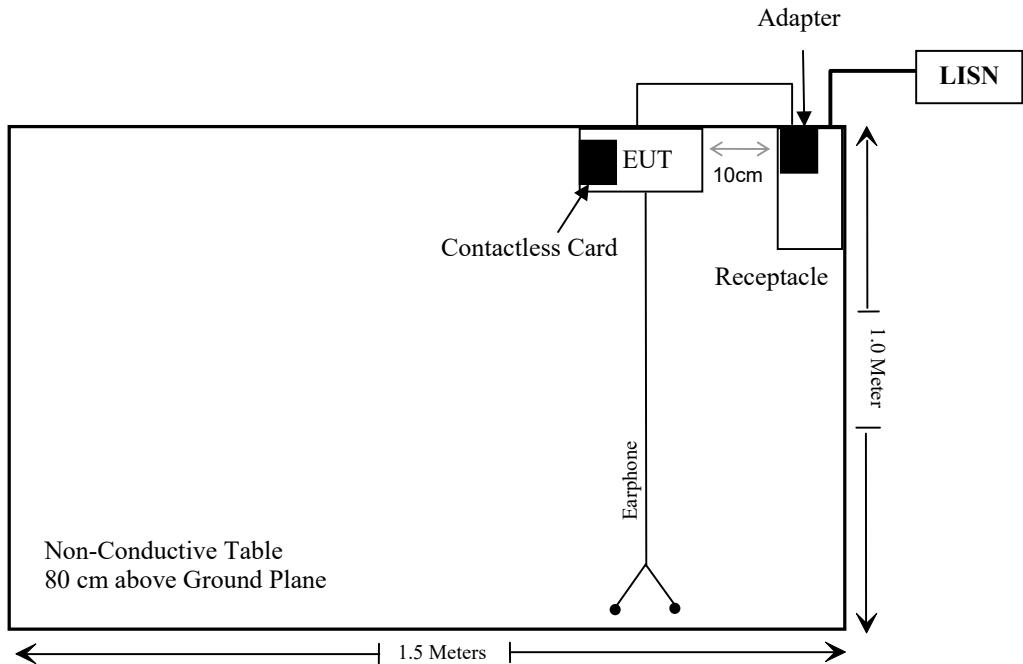
EUT Exercise Software

No Exercise Software was used.

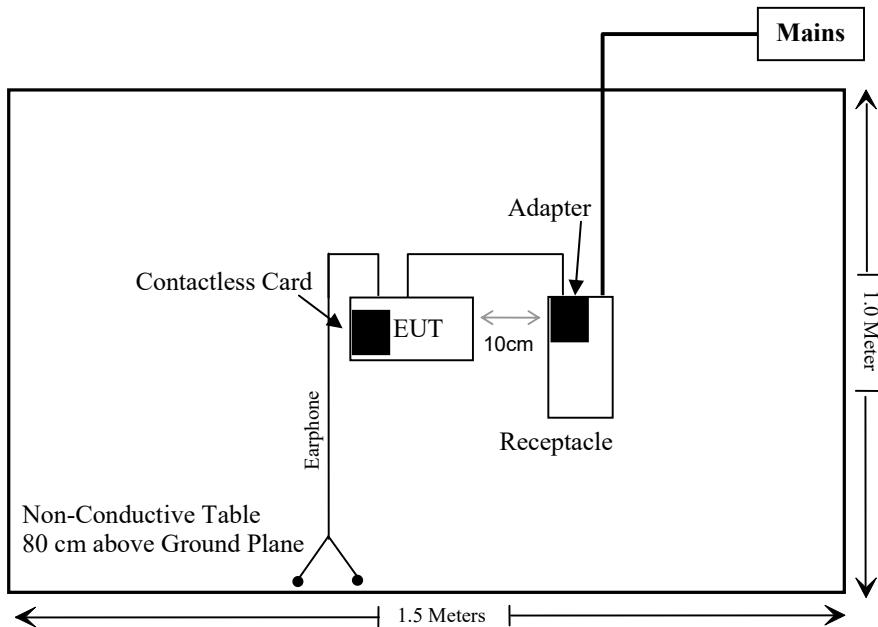
Equipment Modifications

No modification on the EUT.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Unknown	Earphone	Unknown	Unknown
Unknown	Contactless Card	Unknown	Unknown

External I/O Cable


Cable Description	Length (m)	From Port	To
Un-shield Detachable USB Cable	1.0	Adapter	EUT

Block Diagram of Test Setup

For conducted emission:

For radiated emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207	AC Line Conducted Emission	Compliant
§15.225 §15.209§15.205	Radiated Emission Test	Compliant
§15.225(e)	Frequency Stability	Compliant
§15.215(c)	20dB Emission Bandwidth	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Conducted Emissions Test					
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13
Conducted Emission Test Software: e3 19821b (V9)					
Radiated Emission Test					
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
SCHWARZBECK	LOOP ANTENNA	FMZB1516	1516131	2020/01/05	2023/01/04
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Radiated Emission Test Software: e3 19821b (V9)					
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Frequency Stability Test					
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
SCHWARZBECK	LOOP ANTENNA	FMZB1516	1516131	2020/01/05	2023/01/04
Fluke	Multi Meter	45	7664009	2021/12/14	2022/12/13
Manson	DC Power Source	KPS-6604	ATCS-205	NCR	NCR
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Gongwen	Temp. & Humid. Chamber	HSD-500	109	2021/10/14	2022/10/13

*** Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

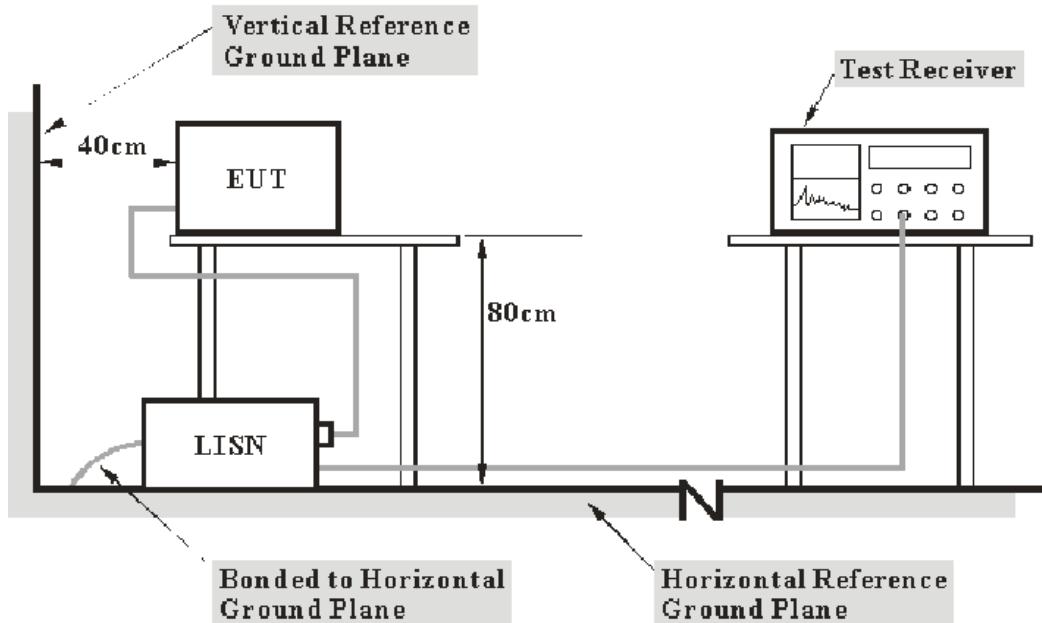
FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Antenna Connected Construction

The EUT has one internal antenna arrangement for NFC which was permanently attached; fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 – AC LINE CONDUCTED EMISSION

Applicable Standard

FCC§15.207

EUT Setup

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter of Host was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

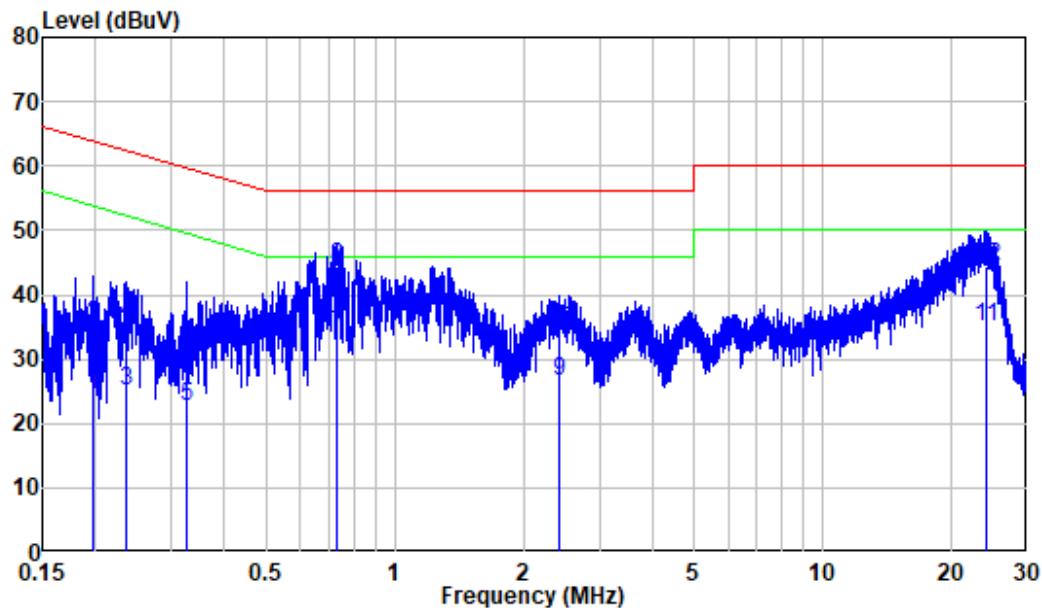
The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

$$\text{Correction Factor} = \text{LISN VDF} + \text{Cable Loss}$$

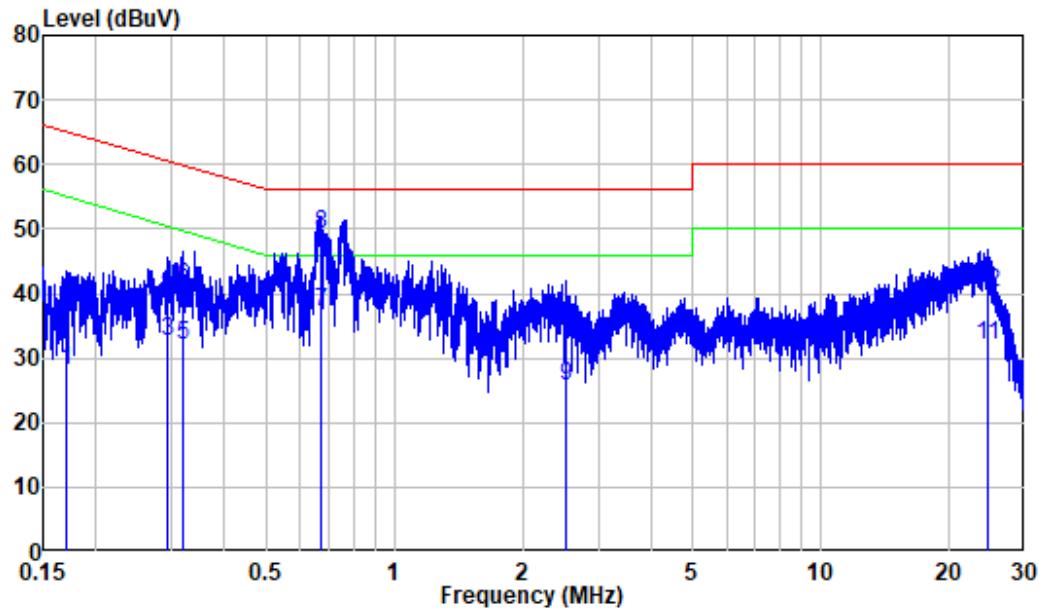
The “Over Limit” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Over limit} = \text{Result} - \text{Limit}$$

$$\text{Result} = \text{Reading} + \text{Factor}$$


Test Data

Environmental Conditions


Temperature:	23°C
Relative Humidity:	53%
ATM Pressure:	101.0 kPa

The testing was performed by Bin Duan on 2022-02-11.

Test mode: Transmitting

AC 120 V/60 Hz, Line:

	Freq	Factor	Read Level	Limit Level	Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.198	9.80	14.72	24.52	53.71	-29.19	Average
2	0.198	9.80	25.65	35.45	63.71	-28.26	QP
3	0.234	9.80	15.15	24.95	52.29	-27.34	Average
4	0.234	9.80	25.89	35.69	62.29	-26.60	QP
5	0.325	9.80	12.91	22.71	49.59	-26.88	Average
6	0.325	9.80	21.15	30.95	59.59	-28.64	QP
7	0.732	9.81	23.93	33.74	46.00	-12.26	Average
8	0.732	9.81	34.63	44.44	56.00	-11.56	QP
9	2.423	9.82	16.70	26.52	46.00	-19.48	Average
10	2.423	9.82	24.56	34.38	56.00	-21.62	QP
11	24.031	10.04	25.05	35.09	50.00	-14.91	Average
12	24.031	10.04	34.26	44.30	60.00	-15.70	QP

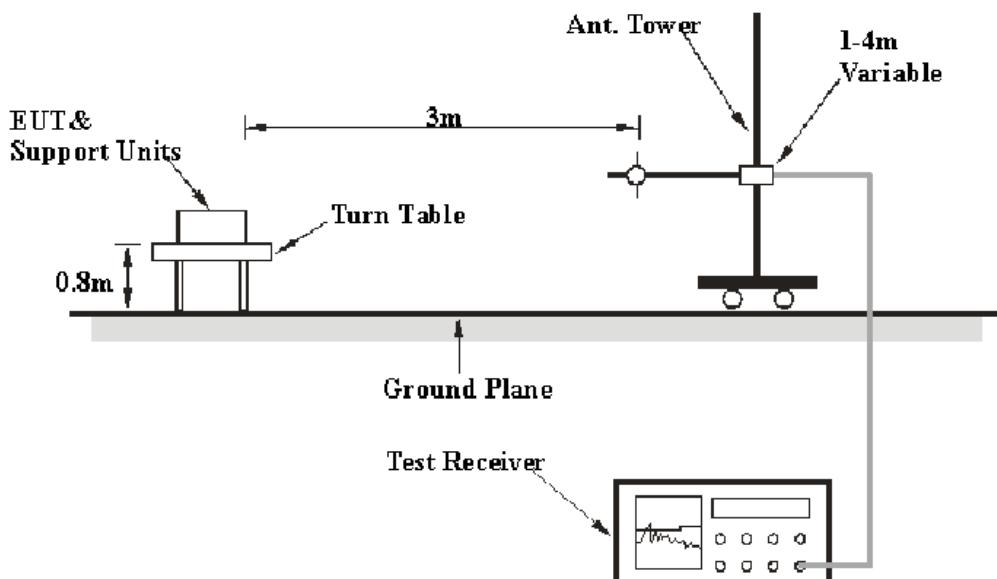
AC 120V/ 60 Hz, Neutral:

Freq	Factor	Read		Limit		Over Line Limit	Remark
		MHz	dB	Level	dBuV		
1	0.171	9.80	18.39	28.19	54.91	-26.72	Average
2	0.171	9.80	28.91	38.71	64.91	-26.20	QP
3	0.294	9.80	22.76	32.56	50.42	-17.86	Average
4	0.294	9.80	30.92	40.72	60.42	-19.70	QP
5	0.318	9.80	22.15	31.95	49.76	-17.81	Average
6	0.318	9.80	31.13	40.93	59.76	-18.83	QP
7	0.670	9.81	27.43	37.24	46.00	-8.76	Average
8	0.670	9.81	39.36	49.17	56.00	-6.83	QP
9	2.533	9.83	15.70	25.53	46.00	-20.47	Average
10	2.533	9.83	24.99	34.82	56.00	-21.18	QP
11	24.464	10.14	21.79	31.93	50.00	-18.07	Average
12	24.464	10.14	29.93	40.07	60.00	-19.93	QP

FCC§15.225, §15.205& §15.209 - RADIATED EMISSIONS TEST

Applicable Standard

As per FCC Part 15.225


(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

EUT Setup

Note: Antenna is set up at 1m during test for below 30MHz.

The radiated emission tests were performed in the 3-meter chamber a test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part Subpart C limits.

EMI Test Receiver Setup

According to FCC Rules, 47 CFR 15.33, the EUT emissions were investigated up to 1000 MHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
9 kHz – 150 kHz	300 Hz	1kHz	/	QP
150 kHz – 30MHz	10 kHz	30 kHz	/	QP
30MHz – 1000 MHz	100 kHz	300 kHz	/	QP

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Factor = Antenna Factor + Cable Loss- Amplifier Gain

Corrected Amplitude= Meter Reading + Corrected Factor

The “Over Limit or Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over Limit / Margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

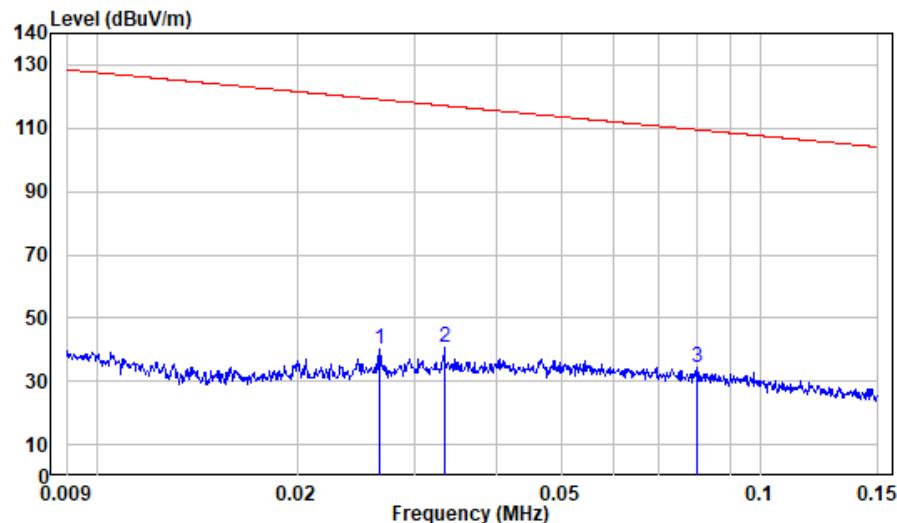
$$\begin{aligned} \text{Over Limit / Margin} &= \text{Level / Result} - \text{Limit} \\ \text{Level / Result} &= \text{Reading level} + \text{Factor} \end{aligned}$$

Test Data

Environmental Conditions

Temperature:	19°C
Relative Humidity:	62 %
ATM Pressure:	101.0 kPa

The testing was performed by Chao Moon 2022-02-12 .


Test mode: Transmitting(Pre-scan in the X,Y and Z axes of orientation, the worst case X-axes of orientation was recorded)

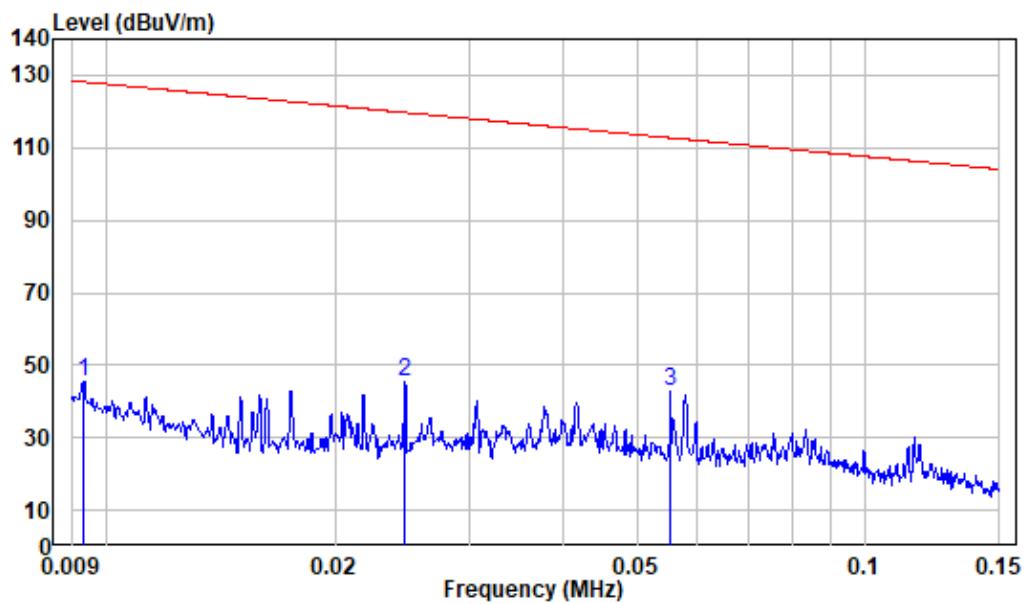
Note: when the result of Peak below the limit of QP more than 6dB, just the peak value was record.

1) Spurious Emissions (9 kHz~30 MHz):

Part 15 Section 15.31(f)(2) (9kHz-30MHz)
 Limit @ 3m=Limit @ 300m-40*log(3(m)/300(m))
 Limit @ 3m=Limit @ 30m-40*log(3(m)/30(m))

9 kHz~150 kHz

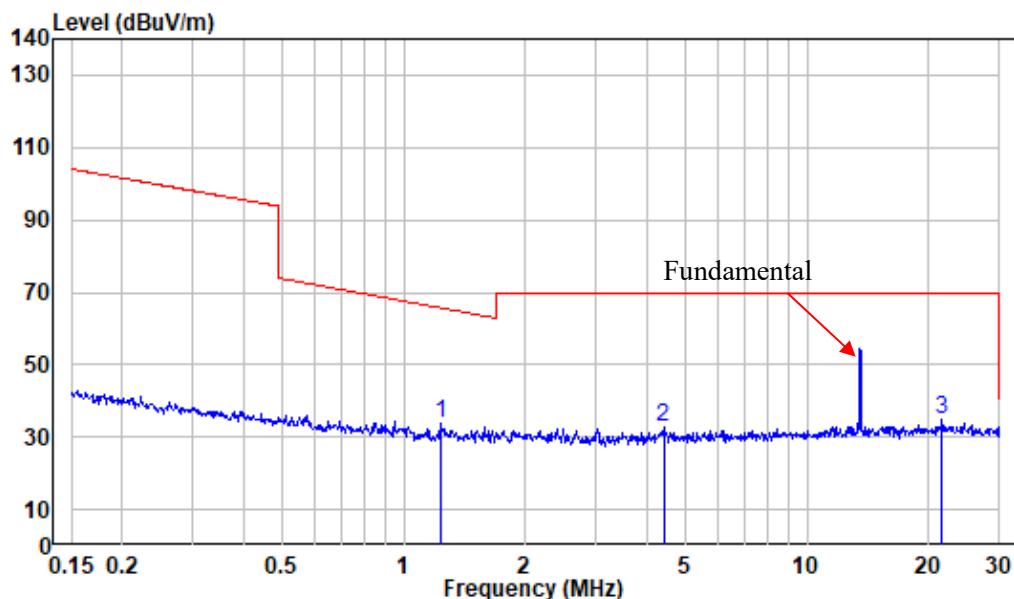
Coaxial:


Site : chamber

Condition: 3m

Job No. : SZNS211231-68438E-RF

Test Mode: NFC Transmitting


Freq	Factor	Read	Limit	Over	Remark			
		Level	Level	Line				
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.027	-11.65	51.69	40.04	119.11	-79.07	Peak	
2	0.033	-11.62	52.19	40.57	117.13	-76.56	Peak	
3	0.080	-11.58	45.76	34.18	109.53	-75.35	Peak	

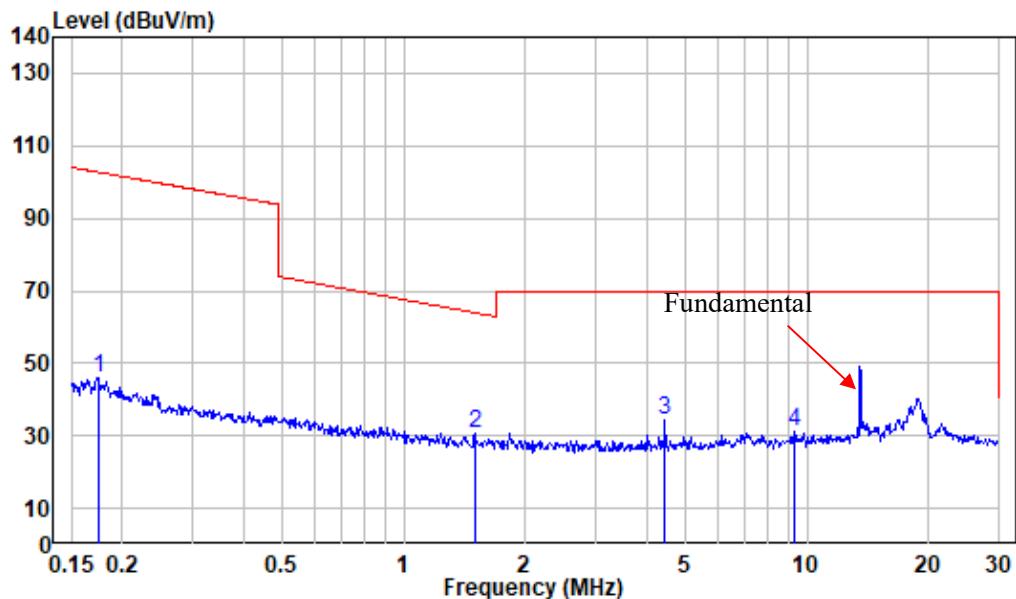
Coplanar:

Site : chamber
Condition: 3m
Model : BISON X105 NFC
Test Mode: NFC Transmitting

Freq	Factor	Read		Limit Line	Over Limit	Remark
		MHz	dB/m	dBuV	dBuV/m	
1	0.009	-11.35	57.02	45.67	128.20	-82.53 Peak
2	0.025	-11.67	57.11	45.44	119.75	-74.31 Peak
3	0.055	-11.54	54.14	42.60	112.73	-70.13 Peak

150 kHz~30 MHz

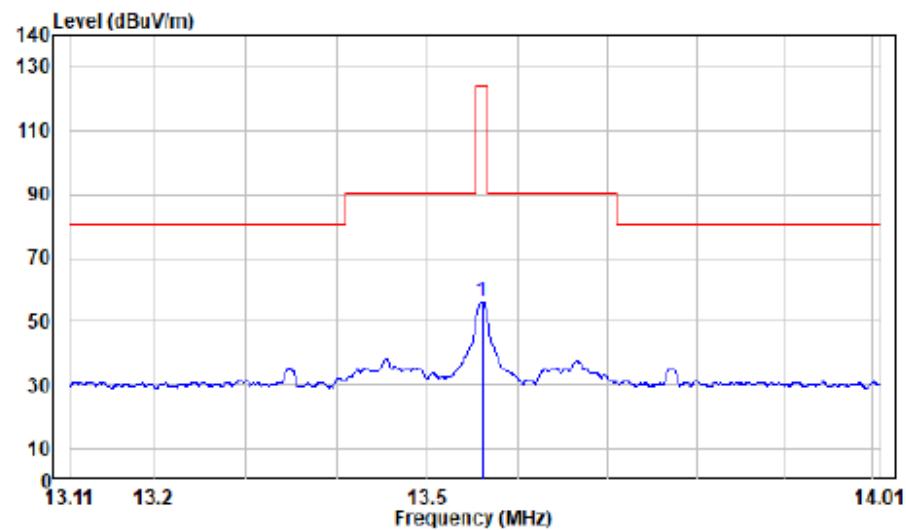
Coaxial:


Site : chamber

Condition: 3m

Job No. : SZNS211231-68438E-RF

Test Mode: NFC Transmitting


Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m		
1	1.236	-11.52	45.53	34.01	65.60	-31.59	Peak
2	4.407	-11.69	44.29	32.60	69.54	-36.94	Peak
3	21.600	-9.92	44.90	34.98	69.54	-34.56	Peak

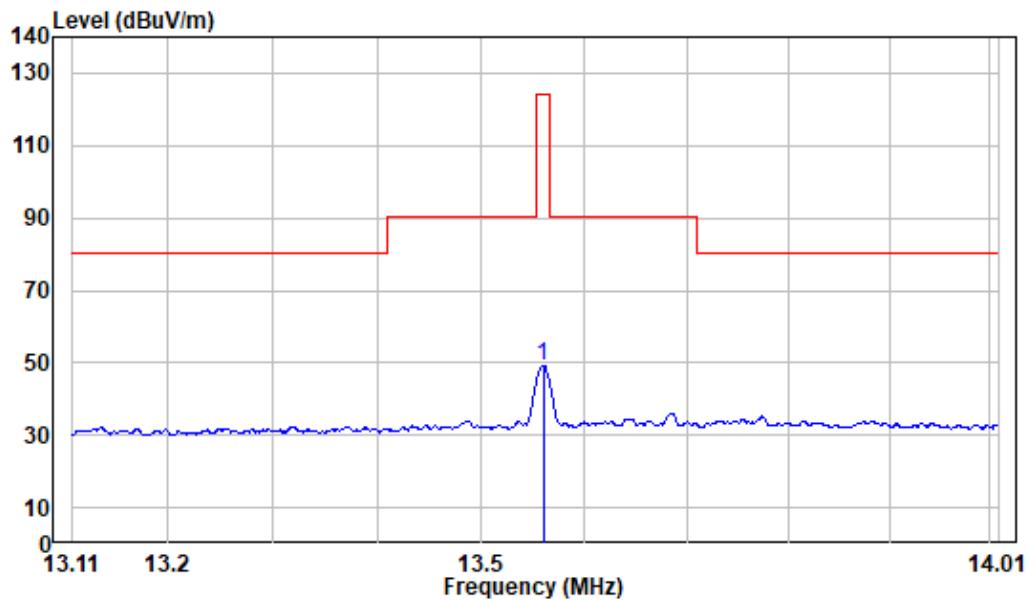
Coplanar:

Site : chamber
Condition: 3m
Model : BISON X10S NFC
Test Mode: NFC Transmitting

Freq	Factor	Read		Limit Line	Over Limit	Remark
		MHz	dB/m	dBuV	dBuV/m	dB
1	0.175	-12.06	58.17	46.11	102.75	-56.64
2	1.503	-11.45	42.07	30.62	63.86	-33.24
3	4.430	-11.69	46.11	34.42	69.54	-35.12
4	9.352	-11.04	42.02	30.98	69.54	-38.56

2) Emission Mask & Fundamental:

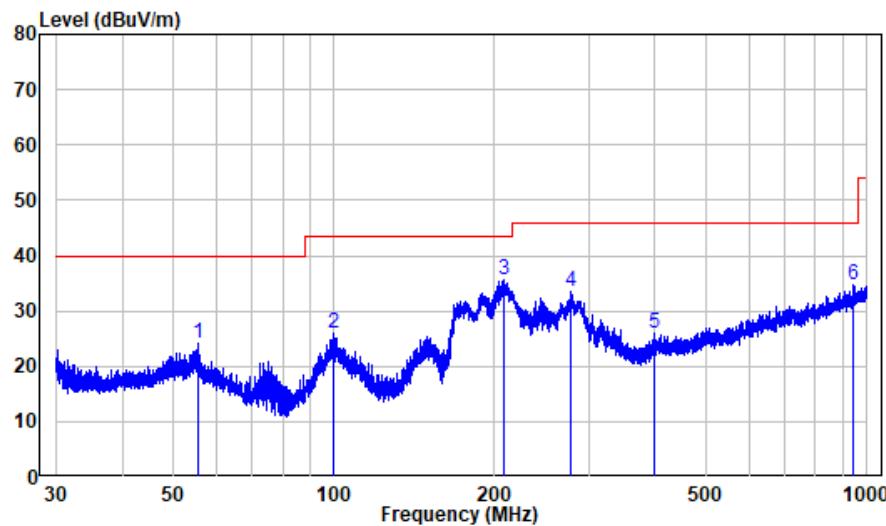
Coaxial:


Site : chamber

Condition: 3m

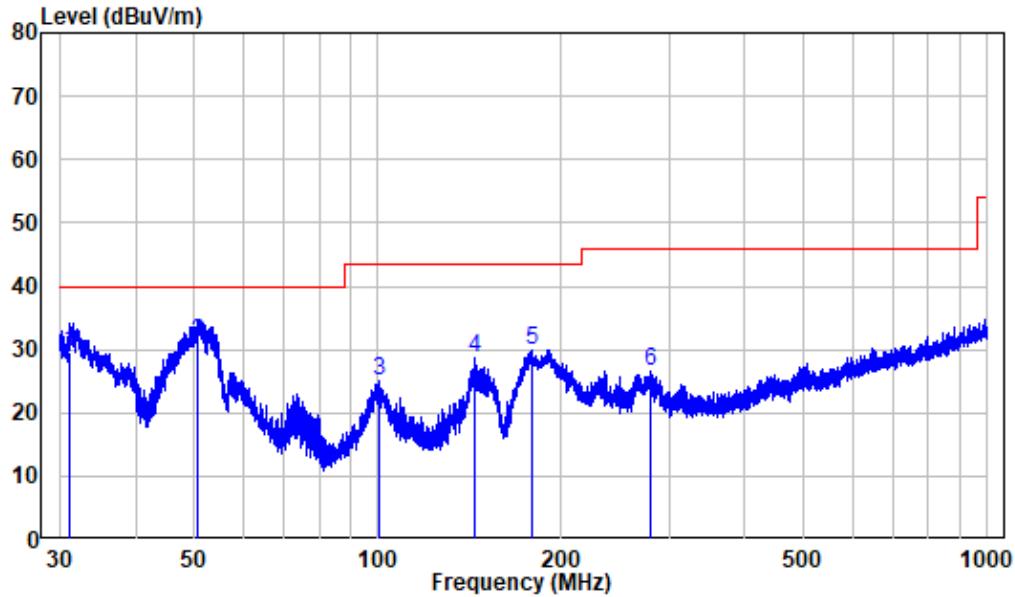
Job No. : SZNS211231-68438E-RF

Test Mode: NFC Transmitting


	Freq	Factor	Read Level	Limit Level	Limit Line	Over Limit	Remark
	MHz		dB/m	dBuV	dBuV/m	dBuV/m	
1	13.560	-10.92	67.14	56.22	124.00	-67.78	Peak

Coplanar:

Site : chamber
Condition: 3m
Model : BISON X10S NFC
Test Mode: NFC Transmitting


Freq	Factor	Read		Limit		Over	Remark
		Level	Level	Line	Line		
MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	13.560	-10.92	60.26	49.34	124.00	-74.66	

3) Spurious Emissions (30 MHz~1GHz):

Horizontal:

Site : chamber
Condition: 3m HORIZONTAL
Job No. : SZNS211231-68438E-RF
Test Mode: NFC Transmitting

	Freq	Factor	Read Level	Limit Level	Line	Over Limit	Remark
			MHz	dB/m	dBuV	dBuV/m	dB
1	55.439	-10.24	34.36	24.12	40.00	-15.88	Peak
2	99.965	-11.81	37.89	26.08	43.50	-17.42	Peak
3	208.215	-11.84	47.42	35.58	43.50	-7.92	Peak
4	278.067	-9.71	43.07	33.36	46.00	-12.64	Peak
5	399.205	-6.75	32.71	25.96	46.00	-20.04	Peak
6	941.718	1.78	33.04	34.82	46.00	-11.18	Peak

Vertical:

Site : chamber
Condition: 3m VERTICAL
Job No. : SZNS211231-68438E-RF
Test Mode: NFC Transmitting

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	Line	Limit
1	31.180	-12.27	41.90	29.63	40.00	-10.37	QP
2	50.630	-9.93	40.90	30.97	40.00	-9.03	QP
3	100.581	-11.73	36.74	25.01	43.50	-18.49	Peak
4	143.893	-15.52	44.06	28.54	43.50	-14.96	Peak
5	178.994	-12.87	42.63	29.76	43.50	-13.74	Peak
6	279.288	-9.62	36.23	26.61	46.00	-19.39	Peak

FCC§15.225(e) - FREQUENCY STABILITY

Applicable Standard

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to $+50$ degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and inductive antenna was connected to a Spectrum Analyzer. The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external DC power supply source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	64%
ATM Pressure:	101.0 kPa

The testing was performed by Chao Mo on 2022-02-14.

Test Mode: Transmitting

Test Result: Pass

Voltage Supply (V _{DC})	Temperature (°C)	Measured Frequency (MHz)	Frequency Error (%)	Part 15.225 Limit (%)
N.V.	-20	13.560096	0.00071	± 0.01
	-10	13.560049	0.00036	± 0.01
	0	13.560088	0.00065	± 0.01
	10	13.560067	0.00049	± 0.01
	20	13.560068	0.00050	± 0.01
	30	13.560075	0.00055	± 0.01
	40	13.560072	0.00053	± 0.01
	50	13.560086	0.00063	± 0.01
L.V.	20	13.560077	0.00057	± 0.01
H.V.	20	13.560067	0.00049	± 0.01

Note: the extreme voltage was declared by the applicant.

FCC§15.215(c) -20dBEMISSION BANDWIDTH

Requirement

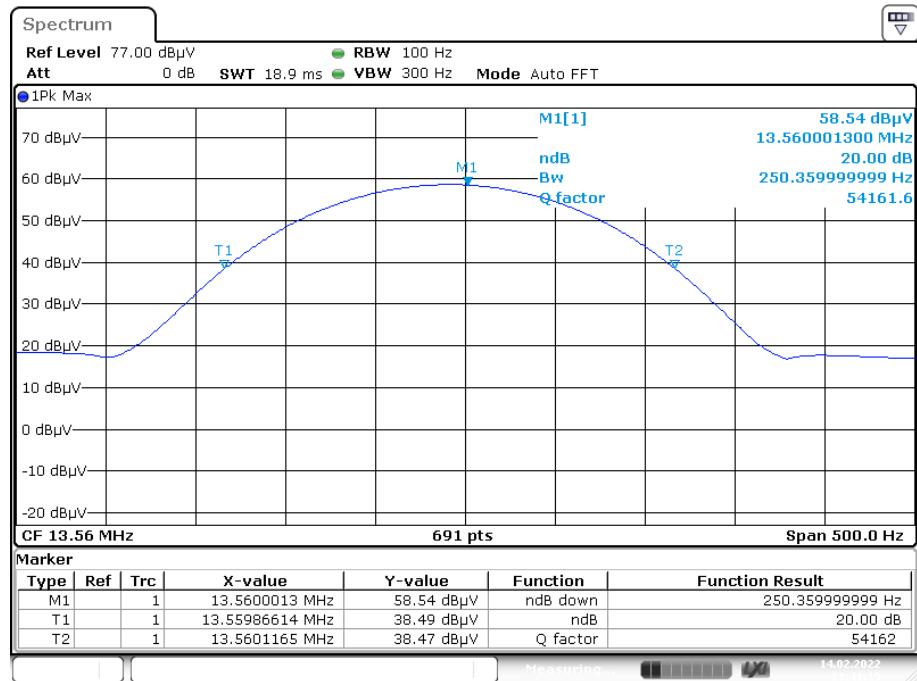
Per 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Test Procedure

Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

Test Data

Environmental Conditions


Temperature:	25°C
Relative Humidity:	64%
ATM Pressure:	101.0 kPa

The testing was performed by Chao Mo on 2022-02-14.

Test Mode: Transmitting

Test Result: Pass

Test Frequency (MHz)	20dB Bandwidth (kHz)
13.56	0.25

20 dB Emission Bandwidth

Date: 14.FEB.2022 13:41:19

******* END OF REPORT *******