

Global United Technology Services Co., Ltd.

Report No.: GTS201907000062F02

FCC Report (Bluetooth)

Applicant: Wuhan Ipason Technology Co., Ltd

Address of Applicant: Room 1801, 18/F, Block D1, Hankou North E-Commerce

Building, No. 88, Hankou North Avenue, Huangpi District,

Wuhan, China

Manufacturer: Wuhan Ipason Technology Co., Ltd

Address of Room 1801, 18/F, Block D1, Hankou North E-Commerce Building, No. 88, Hankou North Avenue, Huangpi District.

Wuhan, China

Factory: Wuhan Ipason Technology Co., Ltd

Address of Factory: IPASON Science Park, Special #1, Qing Wu Road, Huangpi

District, Wuhan City, Hubei Province. China

Equipment Under Test (EUT)

Product Name: Microcomputer

Model No.: OB18501, OB18101, OB15401, OB12201, OB12401,

OB12001, OB***** (* represent 0-9, a-z, A-Z, or blank, only used to tell different market area and for client internal serial

number, will not affect product Safety and EMC

performance.)

Trade Mark: IPASON

FCC ID: 2ATY8-OB18501

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: July 04, 2019

Date of Test: July 04-12, 2019

Date of report issued: July 12, 2019

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	July 12, 2019	Original

Prepared By:	Bill. Yuan	Date:	July 12, 2019
	Project Engineer		
Check By:	Reviewer	Date:	July 12, 2019

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	RSION	2
_			
3	CON	NTENTS	3
4	TES	ST SUMMARY	4
5		NERAL INFORMATION	
	5.1 5.2	GENERAL DESCRIPTION OF EUT	
	5.2 5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	
	5.6	ADDITIONAL INSTRUCTIONS	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	11
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	_
	7.6.1		
	7.6.2		
	7.7	Spurious Emission	
	7.7.1 7.7.2		
8		ST SETUP PHOTO	
0	169	01 3ETUF FRUTU	34
9	FUT	CONSTRUCTIONAL DETAILS	34

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	±3.8039dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 3.9679dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.29dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Microcomputer
Model No.:	OB18501, OB18101, OB15401, OB12201, OB12401, OB12001, OB***** (* represent 0-9, a-z, A-Z, or blank, only used to tell different market area and for client internal serial number, will not affect product Safety and EMC performance.)
Test Model No:	OB18501, OB12201
	re identical in the same PCB layout, interior structure and electrical circuits. name for commercial purpose.
Serial No.:	PS00094219230089
Test sample(s) ID:	GTS201907000062-1
Sample(s) Status	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	Integral antenna
Antenna Gain:	Aux Antenna: 2.30dBi(Max)
Power Supply:	Adapter Model: ADP-90MD H
	Input: AC 100-240V, 50/60Hz
	Output: DC 19V, 4.74A

Operation F	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
•			. !	• !	•		. !	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep t	the EUT in continuously transmitting mode
--------------------------	---

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

EUT Software Settings:

Mode	The software provide	Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.				
Test Software Name	DRTU Version 1.7.7-0	DRTU Version 1.7.7-02972				
Mode	Channel	Channel Frequency (MHz) Soft Set				
GFSK	CH1	2402	TX level : default			
	CH20	CH20 2440				
	CH40	2480				

6 Test Instruments list

Rau	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020	
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020	
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020	
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020	
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020	
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020	

Con	ducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020

RF C	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020		

Gene	General used equipment:							
Item	Test Equipment	Test Equipment Manufacturer Mo		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

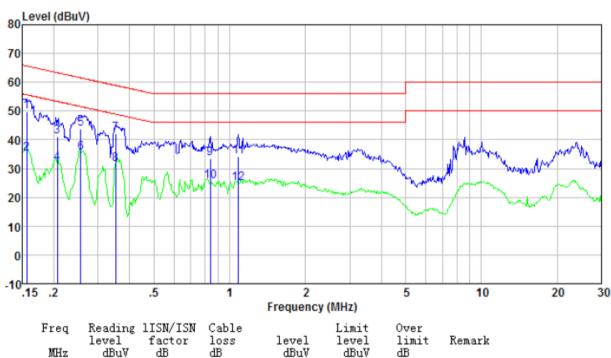
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Aux antenna is integral antenna, the best case gain of the antenna is 2.30dBi.

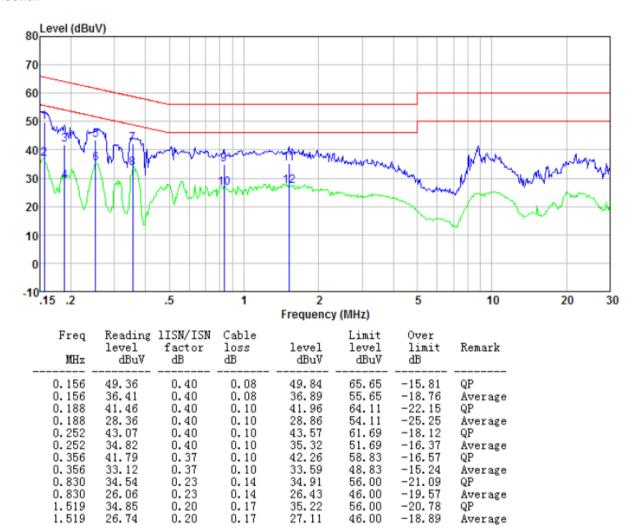
Two antennas can not synchronous transmission, reference to the appendix II for details.

7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207	,			
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	· · · · · · · · · · · · · · · · · · ·		(dBuV)		
Ziiiii.	Frequency range (MHz)	Quasi-peak		erage	
	0.15-0.5	66 to 56*	56 t	o 46*	
	0.5-5	56		16	
	5-30	60	[50	
Test setup:	* Decreases with the logarithm Reference Plane				
Test procedure:	Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a	Filter AC p			
	 line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:: 	edance for the measing also connected to the measing of the block diagram of the checked for maximude the maximum emission all of the interface of	uring equipmore main power edance with of the test seem conducted asion, the related ables must be	nent. er through a 500hm etup and d ative pe changed	
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details	3			
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz	l .	1	1	
Test results:	Pass				

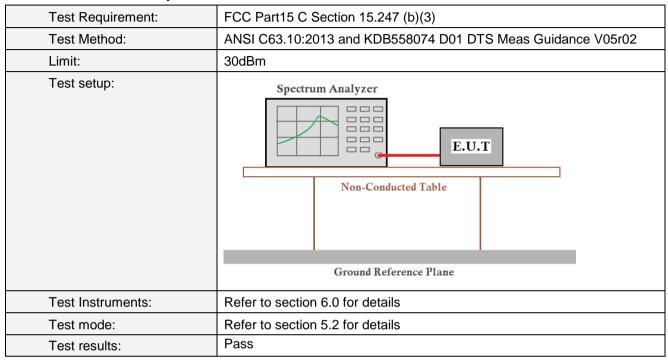
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data


Line:

Freq MHz	level	lISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.156	34.54	0.40	0.08	49.64	65.65	-16.01	QP
0.156		0.40	0.08	35.02	55.65	-20.63	Average
0.207	40.76	0.40	0.11	41.27	63.32	-22.05	QP
0.207	31.25	0.40	0.11	31.76	53.32	-21.56	Average
0.256	43.35	0.40	0.10	43.85	61.56	-17.71	QP
0.256	34.89	0.40	0.10	35.39	51.56	-16.17	Average
0.352		0.37	0.10	42.03	58.91	-16.88	QP
0.352	33.11	0.37	0.10	31.61	48.91	-17.30	Average
0.839		0.23	0.14	33.48	56.00	-22.52	QP
0.839		0.23	0.14	25.60	46.00	-20.40	Average
1.082		0.20	0.15	34.07	56.00	-21.93	QP
1.082		0.20	0.15	24.97	46.00	-21.03	Average

Neutral:

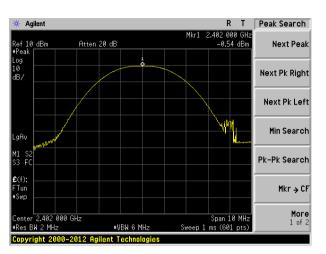


Notes:

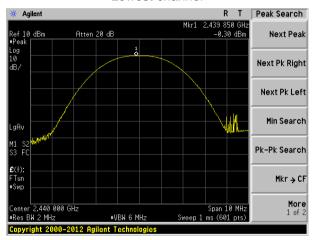
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

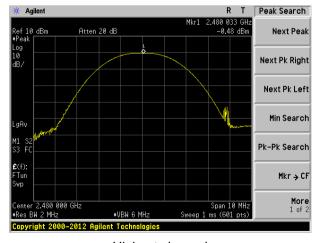


7.3 Conducted Output Power

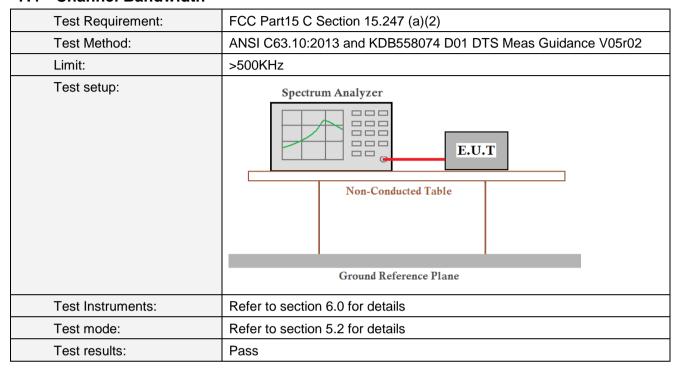

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.54		
Middle	-0.30	30.00	Pass
Highest	-0.48		



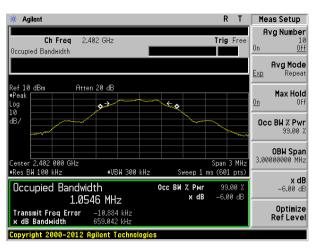

Test plot as follows:

Lowest channel

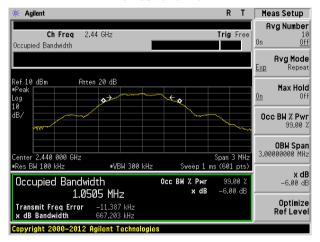

Middle channel

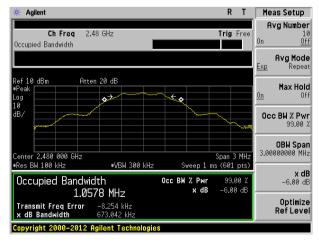
Highest channel

7.4 Channel Bandwidth

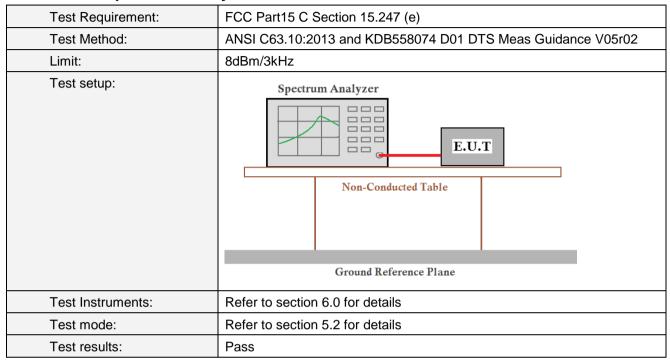


Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.659		
Middle	0.667	>500	Pass
Highest	0.673		


Test plot as follows:

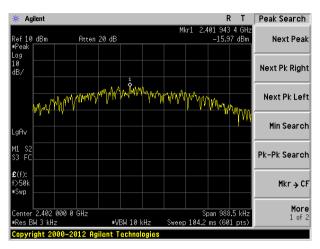
Lowest channel


Middle channel

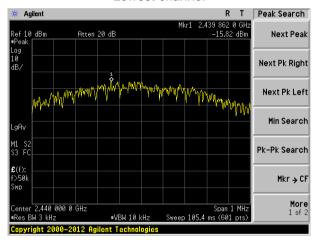
Highest channel

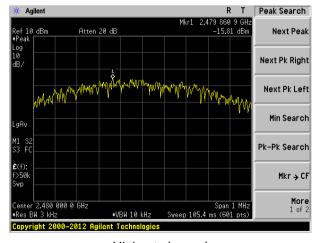


7.5 Power Spectral Density


Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-15.97		
Middle	-15.82	8.00	Pass
Highest	-15.81		

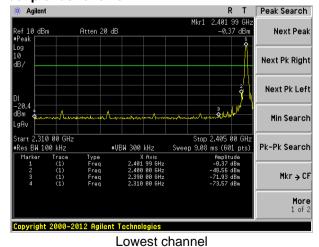


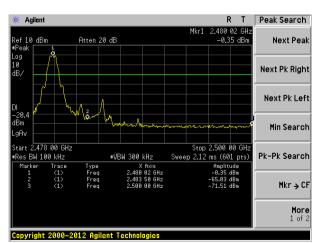

Test plot as follows:

Lowest channel

Middle channel

Highest channel




7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Test site:	Measurement Dis	stance: 3m				
Receiver setup:	Frequency Above 1GHz	Detector Peak	RBW 1MHz	VBW 3MHz	Value Peak	
		RMS	1MHz Limit (dBuV	3MHz	Average Value	
Limit:	Frequer Above 10		54.0 74.0	00	Average Peak	
Test Setup:	Tum Table	EUT-	< In	A) 1	The same	
Test Procedure:	determine the 2. The EUT was antenna, whice tower. 3. The antenna in ground to determine the horizontal and measurement in the maximum in the maximum in the test-receing specified Banion in the EUT would in the	a 3 meter can position of set 3 meter the was mour meight is variermine the novertical polar ected emission tenna was able was turneading. The week of the testing dient then testing dient to the second to the sec	amber. The tal the highest rac s away from the ted on the top lied from one n naximum value arizations of the sion, the EUT tuned to heig ned from 0 de was set to Pea Maximum Hole EUT in peak g could be stop d. Otherwise t	ble was rotated attack. The interference of a variable meter to four the of the field she antenna at was arranged hts from 1 magrees to 360 at Detect Furd Mode. In mode was 10 pped and the he emissions	ce-receiving c-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find	

	average method as specified and then reported in a data sheet.7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:	Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	38.29	27.59	5.38	30.18	41.08	74.00	-32.92	Horizontal
2400.00	52.42	27.58	5.40	30.18	55.22	74.00	-18.78	Horizontal
2310.00	38.40	27.59	5.38	30.18	41.19	74.00	-32.81	Vertical
2400.00	53.96	27.58	5.40	30.18	56.76	74.00	-17.24	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	29.88	27.59	5.38	30.18	32.67	54.00	-21.33	Horizontal
2400.00	37.84	27.58	5.40	30.18	40.64	54.00	-13.36	Horizontal
2310.00	29.49	27.59	5.38	30.18	32.28	54.00	-21.72	Vertical
2400.00	37.65	27.58	5.40	30.18	40.45	54.00	-13.55	Vertical

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	42.93	27.53	5.47	29.93	46.00	74.00	-28.00	Horizontal
2500.00	42.45	27.55	5.49	29.93	45.56	74.00	-28.44	Horizontal
2483.50	43.46	27.53	5.47	29.93	46.53	74.00	-27.47	Vertical
2500.00	43.27	27.55	5.49	29.93	46.38	74.00	-27.62	Vertical

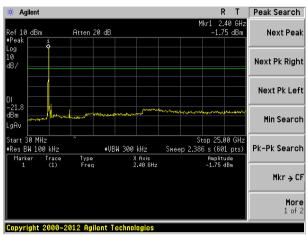
Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	34.81	27.53	5.47	29.93	37.88	54.00	-16.12	Horizontal
2500.00	33.08	27.55	5.49	29.93	36.19	54.00	-17.81	Horizontal
2483.50	35.87	27.53	5.47	29.93	38.94	54.00	-15.06	Vertical
2500.00	32.85	27.55	5.49	29.93	35.96	54.00	-18.04	Vertical

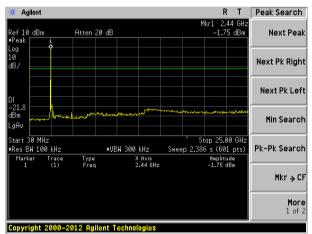
Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

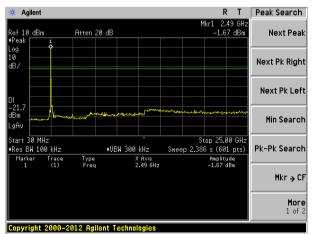
7.7 Spurious Emission


7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						


Test plot as follows:

Lowest channel


30MHz~25GHz

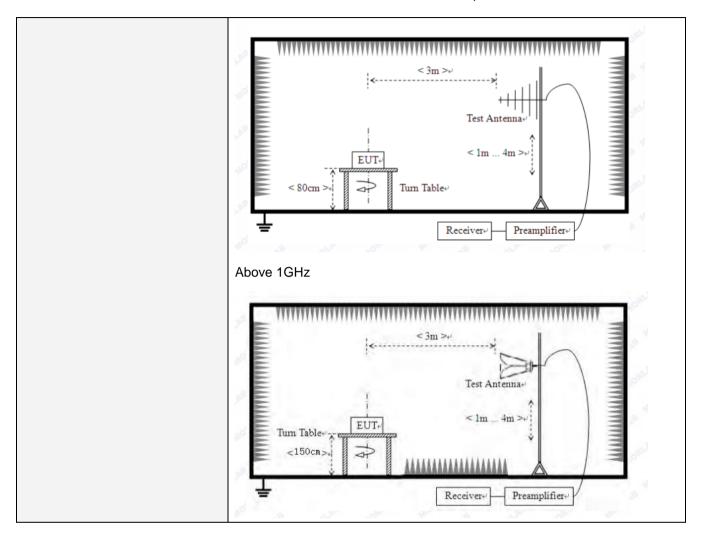
Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz

7.7.2 Radiated Emission Method


Test Requirement:	FCC Part15 C Section	on 15	5.209						
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz					-			
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency		Detector	RB\	W	VBW	Value		
	9KHz-150KHz	Qı	uasi-peak 2001		Hz	600Hz	Quasi-peak		
	150KHz-30MHz	Qı	uasi-peak	9KH	Ηz	30KHz	Quasi-peak		
	30MHz-1GHz	Qι	uasi-peak	120K	Ήz	300KH	z Quasi-peak		
	Above 1GHz		Peak	1MF	Ηz	3MHz	Peak		
	Above 10112	Peak		1MH	Ηz	10Hz	Average		
Limit:	Frequency		Limit (u\	//m)	V	'alue	Measurement Distance		
	0.009MHz-0.490M		2400/F(k			QP	300m		
	0.490MHz-1.705M		24000/F(KHz)		QP	30m		
	1.705MHz-30MH		30			QP	30m		
	30MHz-88MHz		100			QP			
	88MHz-216MHz		150			QP			
	216MHz-960MH		200			QP	3m		
	960MHz-1GHz		500		QP				
	Above 1GHz		500			erage			
			5000		Peak				
Test setup:	Tum Table	EUT				Preamplifie			
	Below 1GHz		_		<u> </u>	- reampility			

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

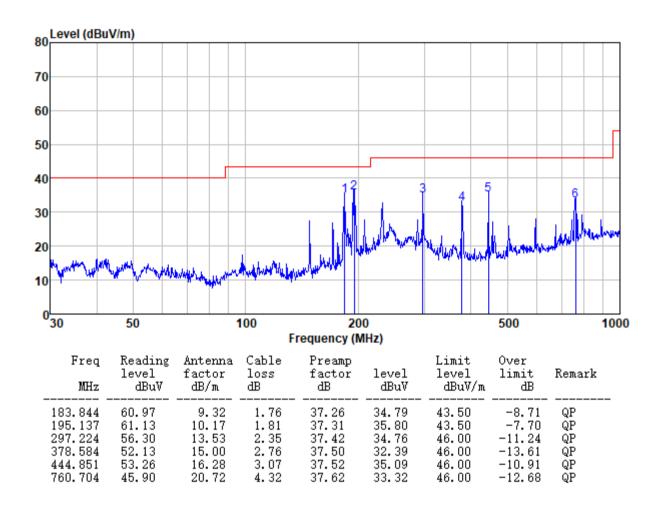
Report No.: GTS201907000062F02

Test Procedure:	and 1.5	JT was place om for above vas rotated 36 on.	1G) above th	ne ground at a	a 3 meter ca	mber. The		
		was set 3 m which was m						
	ground to	enna height is o determine t al and vertical ment.	he maximum	value of the	field strengtl	h. Both		
	4. For each suspected emission, the EUT was arranged to its worst and then the antenna was tuned to heights from 1 meter to 4 met and the rota table was turned from 0 degrees to 360 degrees to fi maximum reading.							
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test Instruments:	Refer to sec	ction 6.0 for c	etails					
Test mode:	Refer to section 5.2 for details							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							

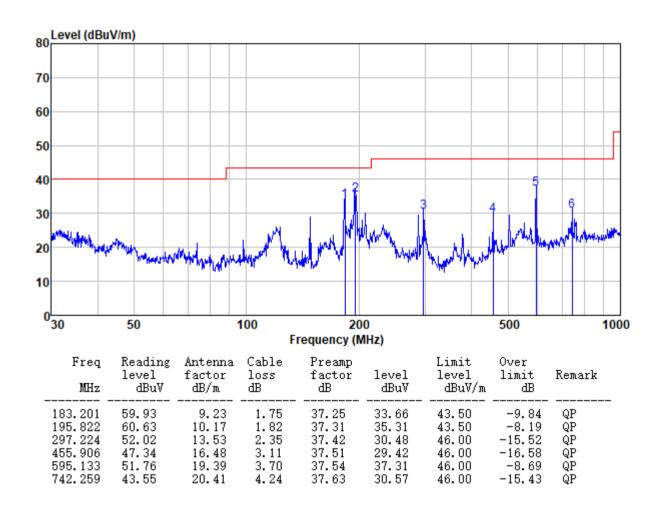
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


■ Below 1GHz

Horizontal:

Vertical:

■ Above 1GHz

Test channel	:			Low	rest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	37.17	31.78	8.60	32.09	45.46	74.00	-28.54	Vertical
7206.00	31.74	36.15	11.65	32.00	47.54	74.00	-26.46	Vertical
9608.00	31.39	37.95	14.14	31.62	51.86	74.00	-22.14	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	41.43	31.78	8.60	32.09	49.72	74.00	-24.28	Horizontal
7206.00	33.48	36.15	11.65	32.00	49.28	74.00	-24.72	Horizontal
9608.00	30.80	37.95	14.14	31.62	51.27	74.00	-22.73	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	26.01	31.78	8.60	32.09	34.30	54.00	-19.70	Vertical
7206.00	20.44	36.15	11.65	32.00	36.24	54.00	-17.76	Vertical
9608.00	19.53	37.95	14.14	31.62	40.00	54.00	-14.00	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	30.22	31.78	8.60	32.09	38.51	54.00	-15.49	Horizontal
7206.00	22.61	36.15	11.65	32.00	38.41	54.00	-15.59	Horizontal
9608.00	19.25	37.95	14.14	31.62	39.72	54.00	-14.28	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	Test channel: Middle								
Peak value:				 					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	37.10	31.85	8.67	32.12	45.50	74.00	-28.50	Vertical	
7320.00	31.70	36.37	11.72	31.89	47.90	74.00	-26.10	Vertical	
9760.00	31.35	38.35	14.25	31.62	52.33	74.00	-21.67	Vertical	
12200.00	*					74.00		Vertical	
14640.00	*					74.00		Vertical	
4880.00	41.35	31.85	8.67	32.12	49.75	74.00	-24.25	Horizontal	
7320.00	33.43	36.37	11.72	31.89	49.63	74.00	-24.37	Horizontal	
9760.00	30.75	38.35	14.25	31.62	51.73	74.00	-22.27	Horizontal	
12200.00	*					74.00		Horizontal	
14640.00	*					74.00		Horizontal	
Average val	ue:	•	•	l			I.	1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	25.97	31.85	8.67	32.12	34.37	54.00	-19.63	Vertical	
7320.00	20.41	36.37	11.72	31.89	36.61	54.00	-17.39	Vertical	
9760.00	19.50	38.35	14.25	31.62	40.48	54.00	-13.52	Vertical	
12200.00	*					54.00		Vertical	
14640.00	*					54.00		Vertical	
4880.00	30.17	31.85	8.67	32.12	38.57	54.00	-15.43	Horizontal	
7320.00	22.57	36.37	11.72	31.89	38.77	54.00	-15.23	Horizontal	
9760.00	19.22	38.35	14.25	31.62	40.20	54.00	-13.80	Horizontal	
12200.00	*					54.00		Horizontal	
14640.00	*					54.00		Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel: Highest								
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.89	31.93	8.73	32.16	45.39	74.00	-28.61	Vertical
7440.00	31.55	36.59	11.79	31.78	48.15	74.00	-25.85	Vertical
9920.00	31.22	38.81	14.38	31.88	52.53	74.00	-21.47	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	41.09	31.93	8.73	32.16	49.59	74.00	-24.41	Horizontal
7440.00	33.27	36.59	11.79	31.78	49.87	74.00	-24.13	Horizontal
9920.00	30.61	38.81	14.38	31.88	51.92	74.00	-22.08	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:	•	•	l	•		I.	l
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.86	31.93	8.73	32.16	34.36	54.00	-19.64	Vertical
7440.00	20.34	36.59	11.79	31.78	36.94	54.00	-17.06	Vertical
9920.00	19.44	38.81	14.38	31.88	40.75	54.00	-13.25	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	30.05	31.93	8.73	32.16	38.55	54.00	-15.45	Horizontal
7440.00	22.49	36.59	11.79	31.78	39.09	54.00	-14.91	Horizontal
9920.00	19.14	38.81	14.38	31.88	40.45	54.00	-13.55	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----