

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

TEST REPORT

Report Reference No..... GTS20190628001-1-2-2

FCC ID. 2ATXN-BB1

Compiled by

(position+printed name+signature) ... File administrators Jimmy Wang

Supervised by

(position+printed name+signature) ... Test Engineer Aaron Tan

Approved by

(position+printed name+signature) ... Manager Jason Hu

Date of issue..... July 11, 2019

Representative Laboratory Name : Shenzhen Global Test Service Co., Ltd.

Address No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name..... Kenu, Inc.

Address 560 Alabama Street, San Francisco, CA94110, United States

Test specification

Standard FCC Rules and Regulations part 2.1091
KDB680106 D01v03

TRF Originator..... Shenzhen Global Test Service Co.,Ltd.

Master TRF..... Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description BingeBank

Trade Mark KENU

Manufacturer Shenzhen Senkaixin Technology Co. Ltd.

Model/Type reference..... BB1-KK-10

Listed Models BB1

Modulation Type ASK

Operation Frequency..... From 110KHz~205KHz

Rating DC 3.7V from battery charged by DC 5V

Result **PASS**

TEST REPORT

Test Report No. :	GTS20190628001-1-2-2	June 27, 2019
		Date of issue

Equipment under Test : BingeBank

Model /Type : BB1-KK-10

Listed Models : BB1

Applicant : **Kenu, Inc.**

Address : 560 Alabama Street, San Francisco, CA94110, United States

Manufacturer : **Shenzhen Senkaixin Technology Co. Ltd.**

Address : Nine 101 Hongqiaotou Hengzhao Industrial Zone, Songgang Street, Bao'an District, Shenzhen, China

Test Result:	PASS
---------------------	-------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1</u>	<u>SUMMARY</u>	4
1.1	General Remarks	4
1.2	Product Description	4
1.3	Equipment under Test	4
1.4	Modifications	4
<u>2</u>	<u>TEST ENVIRONMENT</u>	5
2.1	Address of the test laboratory	5
2.2	Test Facility	5
2.3	Environmental conditions	5
2.4	Summary of measurement results	6
2.5	Statement of the measurement uncertainty	6
2.6	Equipments Used during the Test	6
<u>3</u>	<u>TEST CONDITIONS AND RESULTS</u>	7
3.1	Applicable Standard	7
3.2	Limit	7
3.3	Test Setup	7
3.4	Measurement Procedure	8
3.5	Test Result of E and H field Strength	8
3.6	Equipment Approval Considerations	9
3.7	Conclusion	9

1 SUMMARY

1.1 General Remarks

Date of receipt of test sample	:	June 20, 2019
Testing commenced on	:	June 21, 2019
Testing concluded on	:	July 10, 2019

1.2 Product Description

Product Name:	BingeBank
Model/Type reference:	BB1-KK-10
Power supply:	DC 3.7V from battery charged by DC 5V
Adapter(Auxiliary test Provided by the laborator)	Mode:EP-TA20CBC Input:AC100-240V-50/60Hz, 0.5A Output:DC 5V,2A
Wireless Charger	
Antenna Type	Coil Antenna
Antenna Gain	1.0dBi
Operation frequency	110KHz~205KHz
Modulation Type	ASK

1.3 Equipment under Test

Power supply system utilised

Power supply voltage	:	<input type="radio"/>	230V / 50 Hz	<input type="radio"/>	120V / 60Hz
		<input type="radio"/>	12 V DC	<input type="radio"/>	24 V DC
		<input checked="" type="radio"/>	Other (specified in blank below)		

DC 3.7V from battery

Description of the test mode

Operation Frequency each of channel	
Channel	Frequency
1	153KHz

Operating Mode

The mode is used: Transmitting mode

1.4 Modifications

No modifications were implemented to meet testing criteria.

2 TEST ENVIRONMENT

2.1 Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

2.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2024.

2.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

2.4 Summary of measurement results

Test Item	Result
Electric Field Strength (E) (V/m)	Compliant
Magnetic Field Strength (H) (A/m)	Compliant

2.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 „Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements“ and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.6 Equipments Used during the Test

Description	Brand	Model No.	Frequency Range	Calibrated Date	Calibrated Until
Broadband Field Meter	NARDA	NBM-550	-	Dec. 28, 2018	Dec. 27, 2019
Magnetic Field Meter	NARDA	ELT-400	1 – 400kHz	Dec. 28, 2018	Dec. 27, 2019
Magnetic Probe	NARDA	HF-3061	300kHz – 30MHz	Dec. 28, 2018	Dec. 27, 2019
Magnetic Probe	NARDA	HF-0191	27 – 1000MHz	Dec. 28, 2018	Dec. 27, 2019
Broadband Field Meter	NARDA	NBM-550	-	Dec. 28, 2018	Dec. 27, 2019
Electric Field Meter	COMBINNOVA	EFM 200	5Hz – 400kHz	Dec. 28, 2018	Dec. 27, 2019
E-Field Probe	NARDA	EF-0391	100kHz – 3GHz	Dec. 28, 2018	Dec. 27, 2019
E-Field Probe	NARDA	EF-6091	100MHz – 60GHz	Dec. 28, 2018	Dec. 27, 2019

Note: The Cal.Interval was one year.

3 TEST CONDITIONS AND RESULTS

3.1 Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

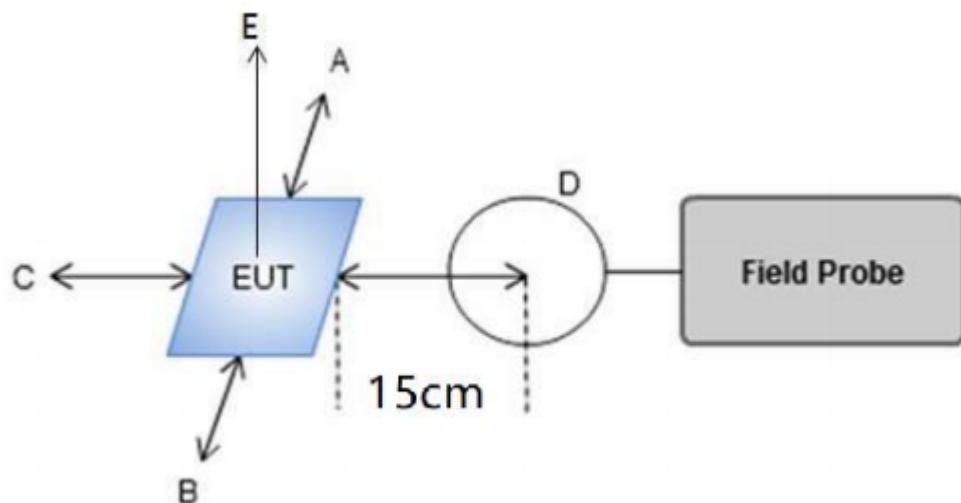
According to §1.1310 and §2.1091 RF exposure is calculated.

According KDB 680106 D01 RF Exposure Wireless Charging App v03

3.2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Limits for Occupational/Controlled Exposure				
0.3 – 3.0	614	1.63	(100) *	6
3.0 – 30	1842/f	4.89/f	(900/f)*	6
30 – 300	61.4	0.163	1.0	6
300 – 1500	/	/	f/300	6
1500 – 100,000	/	/	5	6


Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Limits for Occupational/Controlled Exposure				
0.3 – 3.0	614	1.63	(100) *	30
3.0 – 30	824/f	2.19/f	(180/f)*	30
30 – 300	27.5	0.073	0.2	30
300 – 1500	/	/	f/1500	30
1500 – 100,000	/	/	1.0	30

F=frequency in MHz

*=Plane-wave equivalent power density

3.3 Test Setup

Note: A, B, C, D, E, F for six surfaces of the product.

3.4 Measurement Procedure

- a) The RF exposure test was performed on 360 degree turn table in anechoic chamber.
- b) The measurement probe was placed at test distance (10cm) which is between the edge of the charger and the geometric centre of probe.
- c) The turn table was rotated 360d degree to search of highest strength.
- d) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E) were completed.
- e) The EUT were measured according to the dictates of KDB 680106 D01 RF Exposure Wireless Charging App v03.

3.5 Test Result of E and H field Strength

E-Field Strength at 15 cm from the edges surrounding the EUT and 15cm from the top surface of the EUT

Charging Battery Level	Frequency Range (MHz)	Measured E-Field Strength Values (V/m)					FCC E- Field Strength 50% Limits (V/m)	FCC E- Field Strength Limits (V/m)
		Test Position A	Test Position B	Test Position C	Test Position D	Test Position E		
1%	0.153	6.84	6.66	6.11	6.51	6.74	307.0	614.0
50%	0.153	6.23	6.25	6.23	6.26	6.23	307.0	614.0
99%	0.153	5.78	6.14	5.47	5.45	5.24	307.0	614.0

H-Field Strength at 15 cm from the edges surrounding the EUT and 15cm from the top surface of the EUT

Charging Battery Level	Frequency Range (MHz)	Measured E-Field Strength Values (A/m)					FCC H- Field Strength 50% Limits (A/m)	FCC H- Field Strength Limits (A/m)
		Test Position A	Test Position B	Test Position C	Test Position D	Test Position E		
1%	0.153	0.387	0.336	0.185	0.256	0.245	0.815	1.63
50%	0.153	0.347	0.287	0.314	0.224	0.225	0.815	1.63
99%	0.153	0.214	0.242	0.205	0.211	0.218	0.815	1.63

H-Field Strength at 20cm from the top surface of the EUT

Charging Battery Level	Frequency Range (MHz)	Measured E-Field Strength Values (A/m)		FCC H-Field Strength 50% Limits (A/m)	FCC H-Field Strength Limits (A/m)
		Test Position E			
1%	0.153	0.318		0.815	1.63
50%	0.153	0.285		0.815	1.63
99%	0.153	0.257		0.815	1.63

3.6 Equipment Approval Considerations

The EUT does comply with KDB 680106 D01 as follow table.

Requirements of KDB 680106 D01	Yes / No	Description
Power transfer frequency is less than 1 MHz	Yes	The device operate in the frequency range 110KHz~205KHz
Output power from each primary coil is less than 15 watts	Yes	The maximum output power for each primary coil is 5W.
The transfer system includes only single primary and secondary coils. This includes charging systems that may have multiple primary coils and clients that are able to detect and allow coupling only between individual pairs of coils.	Yes	The transfer system includes only one primary coils.
Client device is placed directly in contact with the transmitter.	Yes	Client device is placed directly in contact with the transmitter.
Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion).	Yes	Mobile exposure conditions only
The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.	Yes	The EUT H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.

3.7 Conclusion

The detected emissions with a distance of 15cm surrounding the device and 20 cm above the top surface of the device are below the FCC E-Field Strength & H-Field Strength limits; and comply with the requirements of FCC KDB 680106 D01.

4 Test Setup Photos of the EUT

***** End of Report *****