

# Relief Technologies

## TEST REPORT FOR

### Wearable Lower Back Warmer Model: R1-001

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247  
(DTS 2400-2483.5 MHz)

Report No.: 102320-9

Date of issue: July 23, 2019



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate # 803.01

This report contains a total of 52 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

## TABLE OF CONTENTS

|                                                     |    |
|-----------------------------------------------------|----|
| Administrative Information .....                    | 3  |
| Test Report Information .....                       | 3  |
| Report Authorization .....                          | 3  |
| Test Facility Information .....                     | 4  |
| Software Versions .....                             | 4  |
| Site Registration & Accreditation Information ..... | 4  |
| Summary of Results .....                            | 5  |
| Modifications During Testing .....                  | 5  |
| Conditions During Testing .....                     | 5  |
| Equipment Under Test .....                          | 6  |
| General Product Information .....                   | 6  |
| FCC Part 15 Subpart C .....                         | 7  |
| 15.247(a)(2) 6dB Bandwidth .....                    | 7  |
| 15.247(b)(3) Output Power .....                     | 13 |
| 15.247(e) Power Spectral Density .....              | 22 |
| 15.247(d) Radiated Emissions & Band Edge .....      | 30 |
| 15.207 AC Conducted Emissions .....                 | 44 |
| Supplemental Information .....                      | 51 |
| Measurement Uncertainty .....                       | 51 |
| Emissions Test Details .....                        | 51 |

## ADMINISTRATIVE INFORMATION

### Test Report Information

**REPORT PREPARED FOR:**

Relief Technologies  
2325 3rd Street, Suite 204  
San Francisco CA 94107

Representative: Brian Krieger

**REPORT PREPARED BY:**

Darcy Thompson  
CKC Laboratories, Inc.  
5046 Sierra Pines Drive  
Mariposa, CA 95338

Project Number: 102320

**DATE OF EQUIPMENT RECEIPT:**

April 16, 2019

**DATE(S) OF TESTING:**

April 16 – July 16, 2019

### Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.



*Steve Behm*  
Director of Quality Assurance & Engineering Services  
CKC Laboratories, Inc.

## Test Facility Information



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):  
CKC Laboratories, Inc.  
110 Olinda Place  
Brea, CA 92823

## Software Versions

| CKC Laboratories Proprietary Software | Version |
|---------------------------------------|---------|
| EMITest Emissions                     | 5.03.12 |

## Site Registration & Accreditation Information

| Location                 | *NIST CB # | FCC    | Japan  |
|--------------------------|------------|--------|--------|
| Canyon Park, Bothell, WA | US0081     | US1022 | A-0136 |
| Brea, CA                 | US0060     | US1025 | A-0136 |
| Fremont, CA              | US0082     | US1023 | A-0136 |
| Mariposa, CA             | US0103     | US1024 | A-0136 |

\*CKC's list of NIST designated countries can be found at: <https://standards.gov/cabs/designations.html>

## SUMMARY OF RESULTS

### Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

| Test Procedure | Description                        | Modifications | Results |
|----------------|------------------------------------|---------------|---------|
| 15.247(a)(2)   | 6dB Bandwidth                      | NA            | Pass    |
| 15.247(b)(3)   | Output Power                       | NA            | Pass    |
| 15.247(e)      | Power Spectral Density             | NA            | Pass    |
| 15.247(d)      | RF Conducted Emissions & Band Edge | NA            | NA1     |
| 15.247(d)      | Radiated Emissions & Band Edge     | Mod. #1       | Pass    |
| 15.207         | AC Conducted Emissions             | NA            | Pass    |

NA = Not Applicable

NA1 = Not applicable because the EUT has an integral antenna.

#### ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

## Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

#### Summary of Conditions

Modification #1: Added shielding to the electronics housing.

**Modifications listed above must be incorporated into all production units.**

## Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

#### Summary of Conditions

None

## EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

### Configuration 1

#### *Equipment Tested:*

| Device                     | Manufacturer        | Model #     | S/N |
|----------------------------|---------------------|-------------|-----|
| Power Supply               | Generic             | XS-0503000S | NA  |
| Wearable Lower Back Warmer | Relief Technologies | R1-001      | NA  |

#### *Support Equipment:*

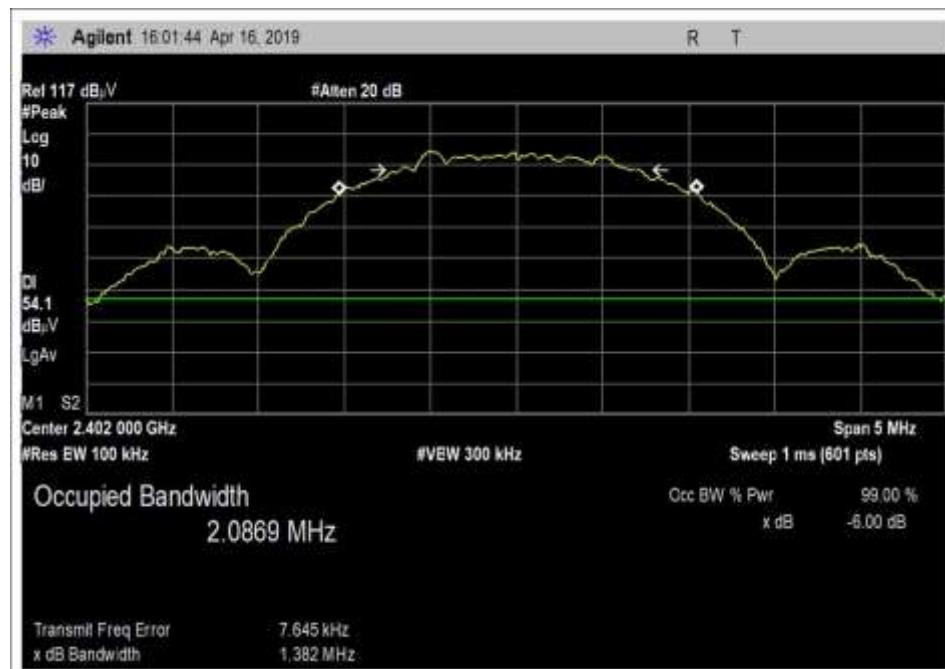
| Device | Manufacturer | Model # | S/N |
|--------|--------------|---------|-----|
| None   |              |         |     |

## General Product Information:

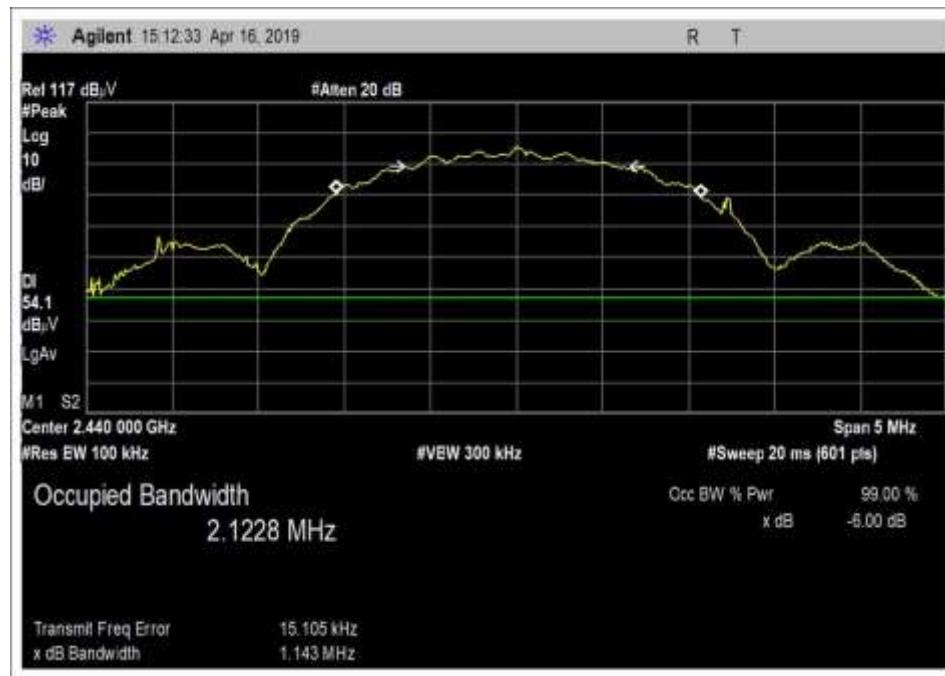
| Product Information                | Manufacturer-Provided Details                            |
|------------------------------------|----------------------------------------------------------|
| Equipment Type:                    | Stand-Alone Equipment                                    |
| Type of Wideband System:           | BLE                                                      |
| Operating Frequency Range:         | 2402-2480                                                |
| Modulation Type(s):                | GFSK                                                     |
| Maximum Duty Cycle:                | 98%                                                      |
| Number of TX Chains:               | 1                                                        |
| Antenna Type(s) and Gain:          | Chip / 0.5 dBi                                           |
| Beamforming Type:                  | NA                                                       |
| Antenna Connection Type:           | Integral                                                 |
| Nominal Input Voltage:             | 120Vac/ 5V rechargeable battery, transmit while charging |
| Firmware / Software used for Test: | PuTTY ver.0.62                                           |

## FCC Part 15 Subpart C

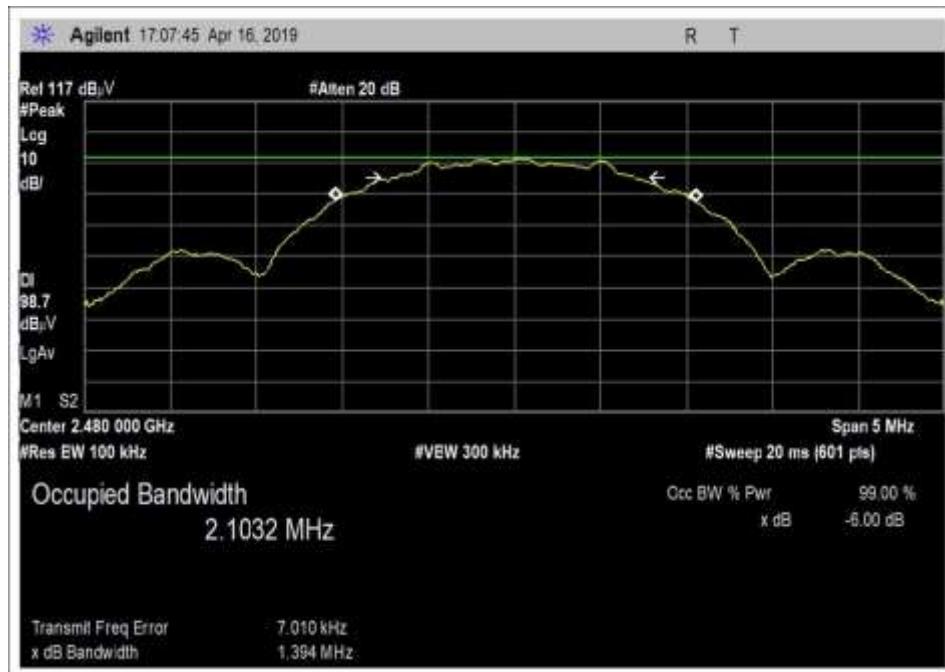
### 15.247(a)(2) 6dB Bandwidth


| Test Setup/Conditions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |           |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Test Location:        | Brea Lab A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test Engineer: | E. Wong   |
| Test Method:          | ANSI C63.10 (2013),<br>KDB 558074 D01 15.247 Meas Guidance<br>v05r02, April 2, 2019                                                                                                                                                                                                                                                                                                                                                                                                          | Test Date(s):  | 4/16/2019 |
| Configuration:        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |           |
| Test Setup:           | <p>Removed from nonconductive enclosure, the EUT is placed on the Styrofoam platform. A charger is connected to the device; rechargeable battery is fully charged.</p> <p>Frequency range: 2402- 2480 MHz<br/>TX freq 2402 MHz, 2440 MHz, 2480 MHz</p> <p>Test software setting<br/>Channel 02, 40, 80<br/>Power: Pos3dBm<br/>Data rate: ble-2Mbit</p> <p>Emission profile of the EUT rotated along three orthogonal axes was investigated. Recorded data represent worse case emission.</p> |                |           |

| Environmental Conditions |    |                        |    |
|--------------------------|----|------------------------|----|
| Temperature (°C)         | 20 | Relative Humidity (%): | 52 |


| Test Equipment |                   |              |                          |           |           |
|----------------|-------------------|--------------|--------------------------|-----------|-----------|
| Asset#         | Description       | Manufacturer | Model                    | Cal Date  | Cal Due   |
| AN02672        | Spectrum Analyzer | Agilent      | E4446A                   | 3/13/2019 | 3/13/2021 |
| AN00849        | Horn Antenna      | ETS          | 3115                     | 3/14/2018 | 3/14/2020 |
| P07246         | Cable             | H&S          | 32022-29094K-29094K-24TC | 7/5/2018  | 7/5/2020  |
| AN00786        | Preamp            | HP           | 83017A                   | 5/12/2018 | 5/12/2020 |
| P07139         | Cable             | Andrew       | ANDL1-PNMNM-48           | 3/4/2019  | 3/4/2021  |

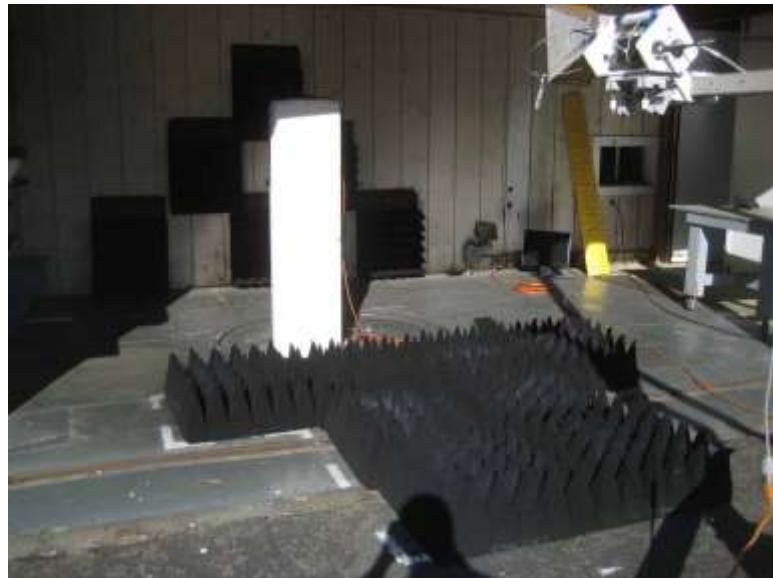
| Test Data Summary |              |            |                |             |         |
|-------------------|--------------|------------|----------------|-------------|---------|
| Frequency (MHz)   | Antenna Port | Modulation | Measured (kHz) | Limit (kHz) | Results |
| 2402              | 1            | GFSK       | 2086.9         | ≥500        | Pass    |
| 2440              | 1            | GFSK       | 2122.8         | ≥500        | Pass    |
| 2480              | 1            | GFSK       | 2082.0         | ≥500        | Pass    |

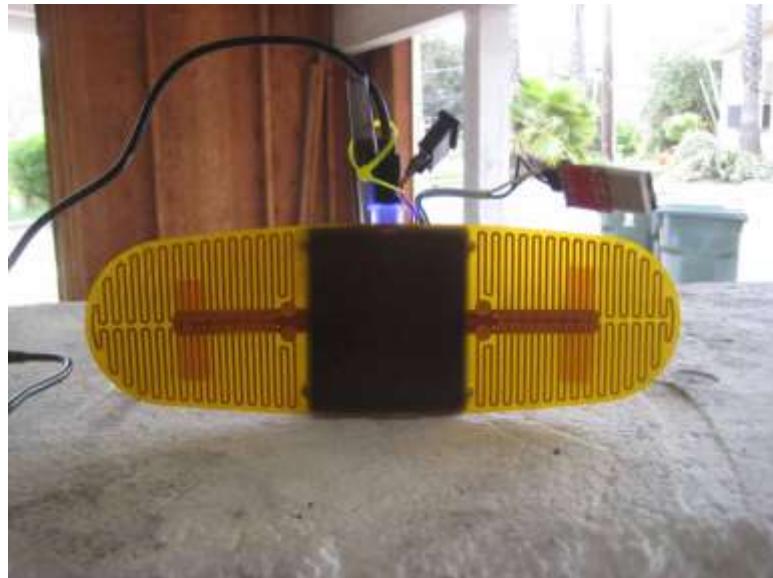

## Plot(s)



Low Channel




Middle Channel




High Channel

### Test Setup Photo(s)







X-Axis



Y-Axis



Z-Axis

## 15.247(b)(3) Output Power

### Test Data Summary - Voltage Variations

| Frequency (MHz) | Modulation / Ant Port | V <sub>Minimum</sub> (dBm) | V <sub>Nominal</sub> (dBm) | V <sub>Maximum</sub> (dBm) | Max Deviation from V <sub>Nominal</sub> (dB) |
|-----------------|-----------------------|----------------------------|----------------------------|----------------------------|----------------------------------------------|
| 2402            | GFSK / integral       | -3.8                       | -3.8                       | -3.8                       | 0                                            |
| 2440            | GFSK / integral       | -3.0                       | -3.0                       | -3.0                       | 0                                            |
| 2480            | GFSK / integral       | -5.2                       | -5.2                       | -5.2                       | 0                                            |

Test performed using operational mode with the highest output power, representing worst case.

#### **Parameter Definitions:**

Measurements performed at input voltage V<sub>Nominal</sub> ± 15%.

| Parameter              | Value |
|------------------------|-------|
| V <sub>Nominal</sub> : | 120   |
| V <sub>Minimum</sub> : | 102   |
| V <sub>Maximum</sub> : | 138   |

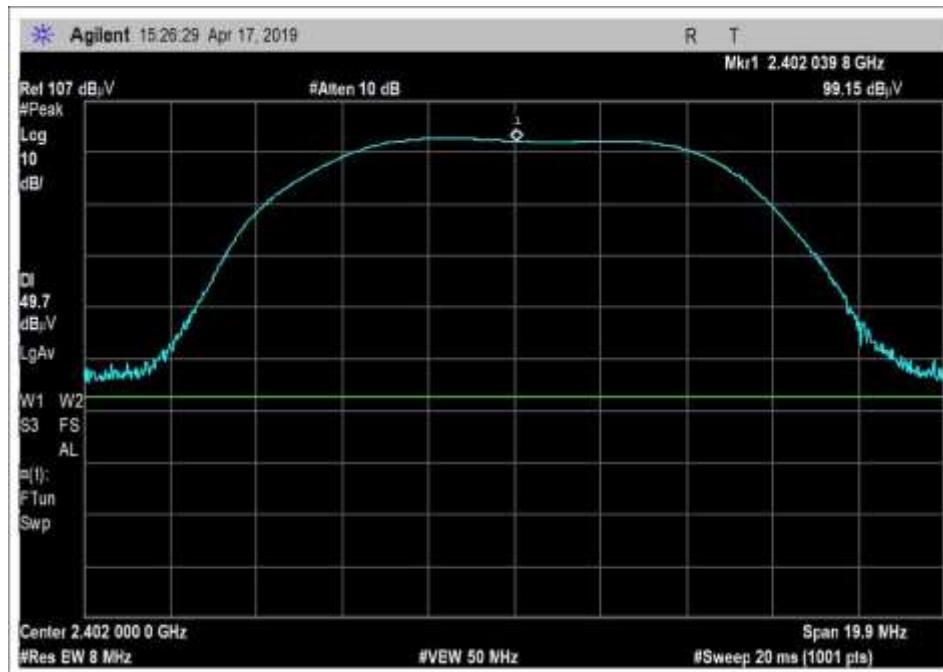
### Test Data Summary - Radiated Measurement

Measurement Option: RBW > DTS Bandwidth

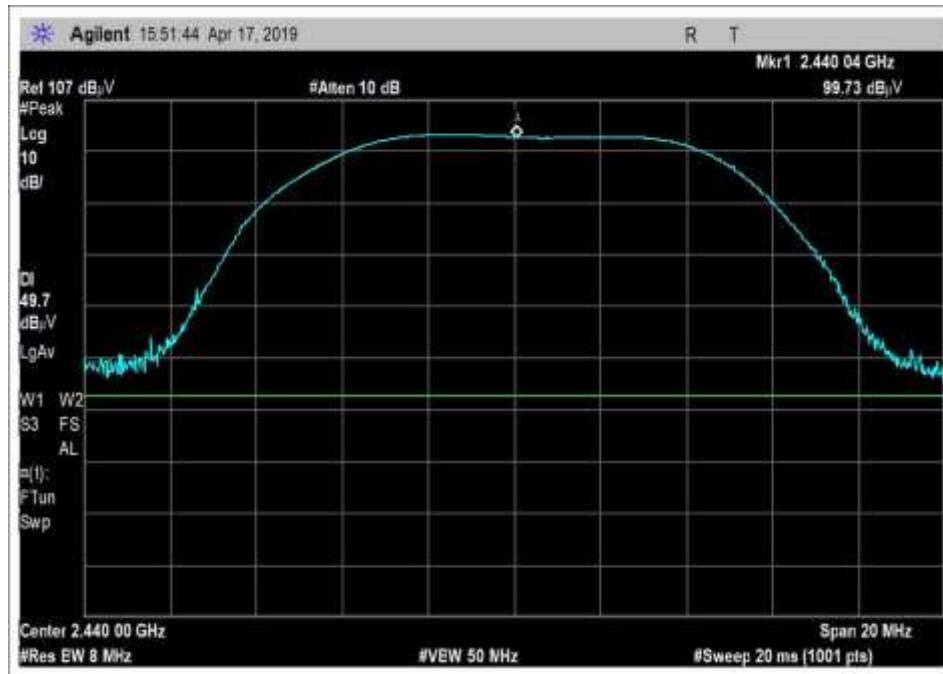
| Frequency (MHz) | Modulation | Ant. Type / Gain (dBi) | Field Strength (dB <sub>uV/m</sub> @3m) | Calculated (dBm) | Limit (dBm) | Results |
|-----------------|------------|------------------------|-----------------------------------------|------------------|-------------|---------|
| 2402            | GFSK       | Integral/ 0.5          | 92.0                                    | -3.8             | ≤ 30        | Pass    |
| 2440            | GFSK       | Integral/ 0.5          | 92.8                                    | -3.0             | ≤ 30        | Pass    |
| 2480            | GFSK       | Integral/ 0.5          | 90.6                                    | -5.2             | ≤ 30        | Pass    |

For fixed point-to-point antennas, the limit is calculated in accordance with 15.247(c)(1): *Limit = 30 – Roundup*  $\left(\frac{G-6}{3}\right)$

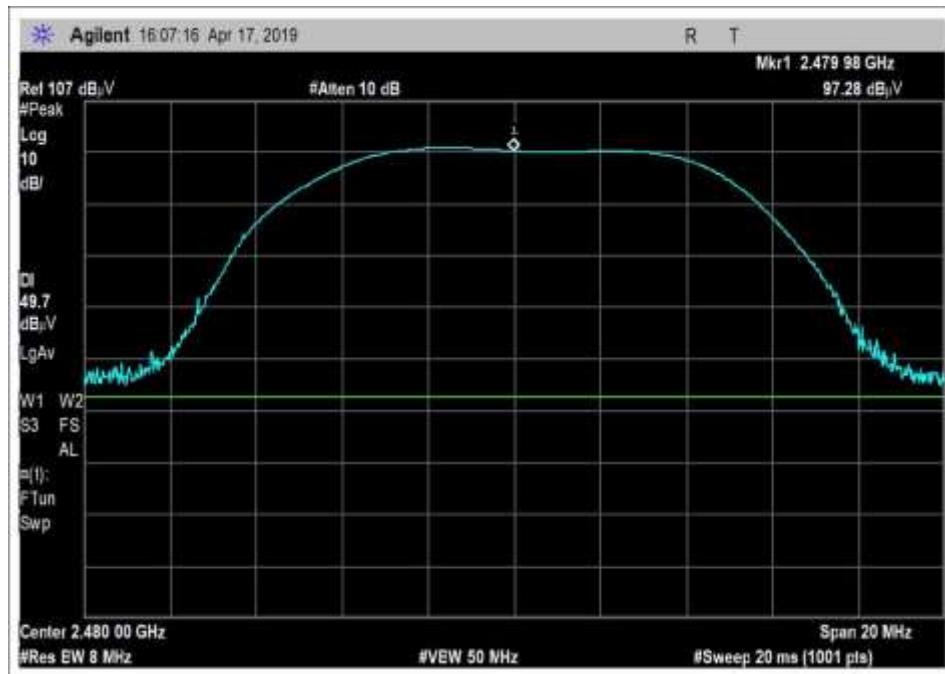
For directional beamforming antennas, the limit is calculated in accordance with 15.247(c)(2) and KDB 662911.


Conducted RF output power calculated in accordance with ANSI C63.10.

$$P(W) = \frac{(E \cdot d)^2}{30 G}$$


Or equivalently, in logarithmic form:

$$P(dBm) = E(dB<sub>uV/m</sub>) + 20LOG(d) – G – 104.77$$


## Plots



Low Channel



Middle Channel



High Channel

## Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510 249 1170  
 Customer: **Relief Technologies**  
 Specification: **15.247(b) Power Output (2400-2483.5 MHz DTS)**  
 Work Order #: **102320** Date: 4/17/2019  
 Test Type: **Radiated Scan** Time: 17:03:58  
 Tested By: E. Wong Sequence#: 1  
 Software: EMITest 5.03.12

***Equipment Tested:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

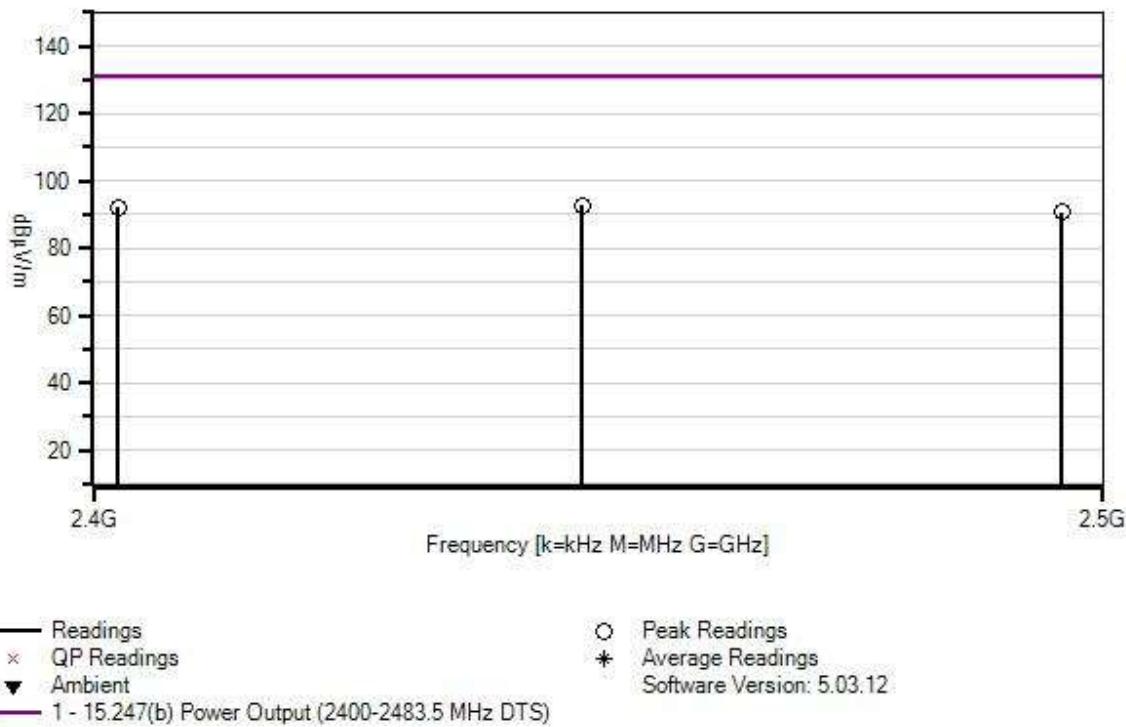
***Support Equipment:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Test Conditions / Notes:***

Removed from nonconductive enclosure, the EUT is placed on the Styrofoam platform.  
 A charger is connected to the device; rechargeable battery is fully charged.

Freq range: 2402- 2480 MHz  
 TX freq 2402 MHz, 2440 MHz, 2480 MHz


Test software setting  
 Channel 02, 40, 80  
 Power: Pos3dBm  
 Data rate: ble-2Mbit

Frequency range of measurement = Fundamental.

Test environment conditions:  
 Temperature: 20°C  
 Relative humidity: 52%  
 Pressure: 99kPa

Emission profile of the EUT rotated along three orthogonal axes was investigated.  
 Recorded data represent worse case emission.

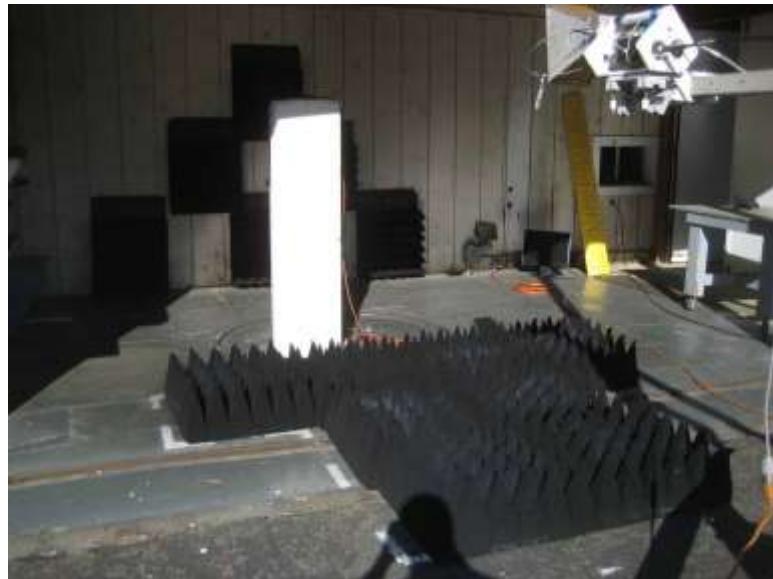
ANSI C63.10 (2013), KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019

Relief Technologies W/O#: 102320 Sequence#: 1 Date: 4/17/2019  
 15.247(b) Power Output (2400-2483.5 MHz DTS) Test Distance: 3 Meters Horiz

**Test Equipment:**

| ID | Asset #  | Description       | Model                        | Calibration Date | Cal Due Date |
|----|----------|-------------------|------------------------------|------------------|--------------|
| T1 | AN02672  | Spectrum Analyzer | E4446A                       | 3/13/2019        | 3/13/2021    |
| T2 | AN00849  | Horn Antenna      | 3115                         | 3/14/2018        | 3/14/2020    |
| T3 | ANP07246 | Cable             | 32022-29094K-<br>29094K-24TC | 7/5/2018         | 7/5/2020     |
| T4 | AN00786  | Preamp            | 83017A                       | 5/12/2018        | 5/12/2020    |
| T5 | ANP07139 | Cable             | ANDL1-<br>PNMNM-48           | 3/4/2019         | 3/4/2021     |

**Measurement Data:**


Reading listed by margin.

Test Distance: 3 Meters

| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | T1<br>dB     | T2<br>dB | T3<br>dB | T4<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V/m | Spec<br>dB $\mu$ V/m | Margin<br>dB | Polar |
|---|-------------|--------------------|--------------|----------|----------|----------|---------------|----------------------|----------------------|--------------|-------|
| 1 | 2440.040M   | 99.7               | +0.0<br>+3.1 | +28.4    | +0.3     | -38.7    | +0.0          | 92.8                 | 131.2<br>M_y_3dBm    | -38.4        | Horiz |
| 2 | 2402.040M   | 99.1               | +0.0<br>+3.1 | +28.2    | +0.3     | -38.7    | +0.0          | 92.0                 | 131.2<br>L_y_3dBm    | -39.2        | Horiz |
| 3 | 2479.980M   | 97.3               | +0.0<br>+3.2 | +28.5    | +0.3     | -38.7    | +0.0          | 90.6                 | 131.2<br>H_y_3dBm    | -40.6        | Horiz |

**Test Setup Photo(s)**







X-Axis



Y-Axis



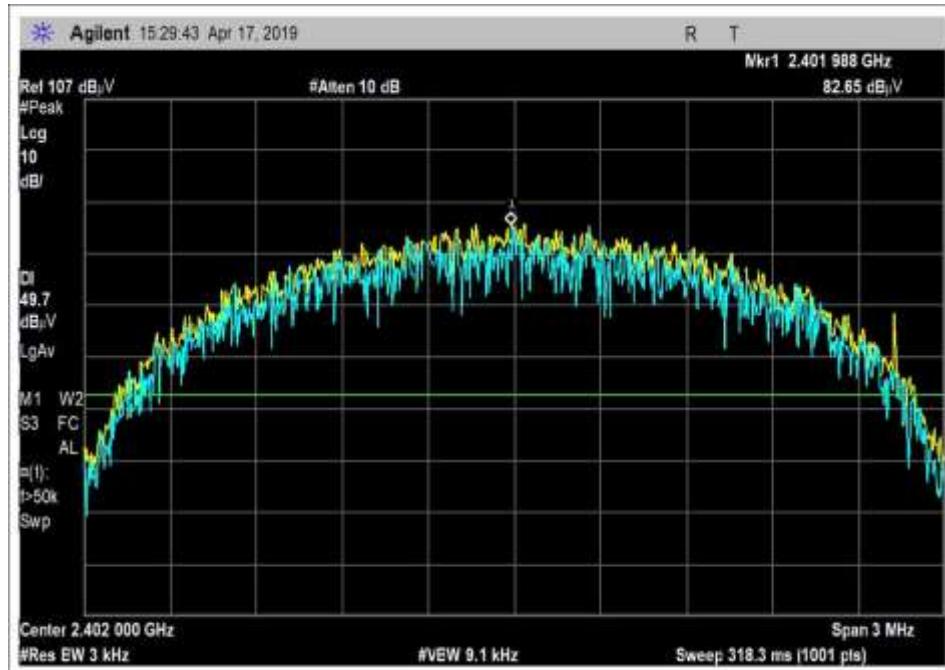
Z-Axis

## 15.247(e) Power Spectral Density

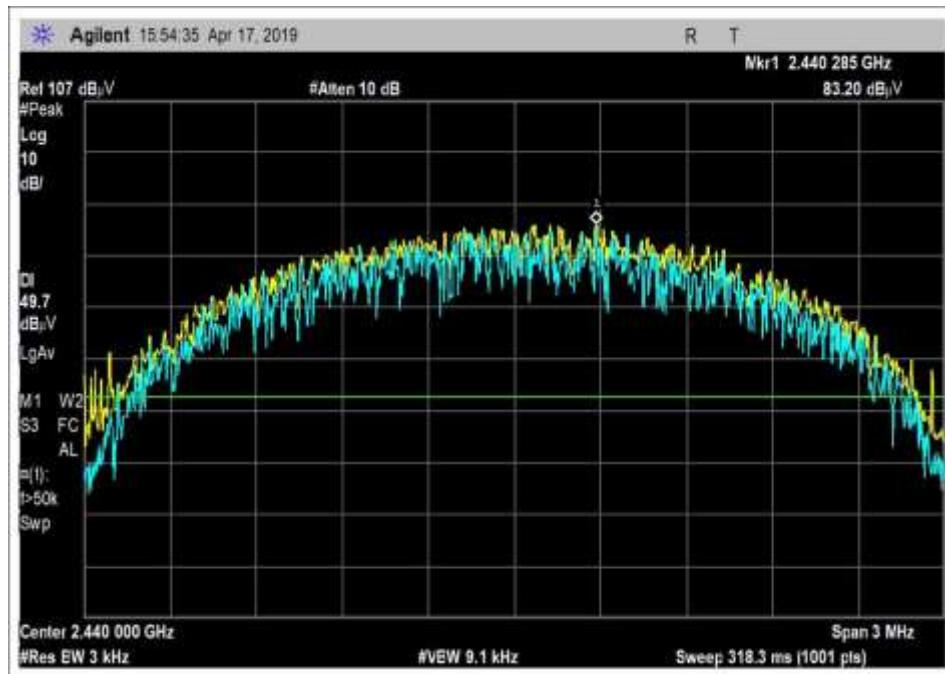
### Test Data Summary - Radiated Measurement

Measurement Method: PKPSD

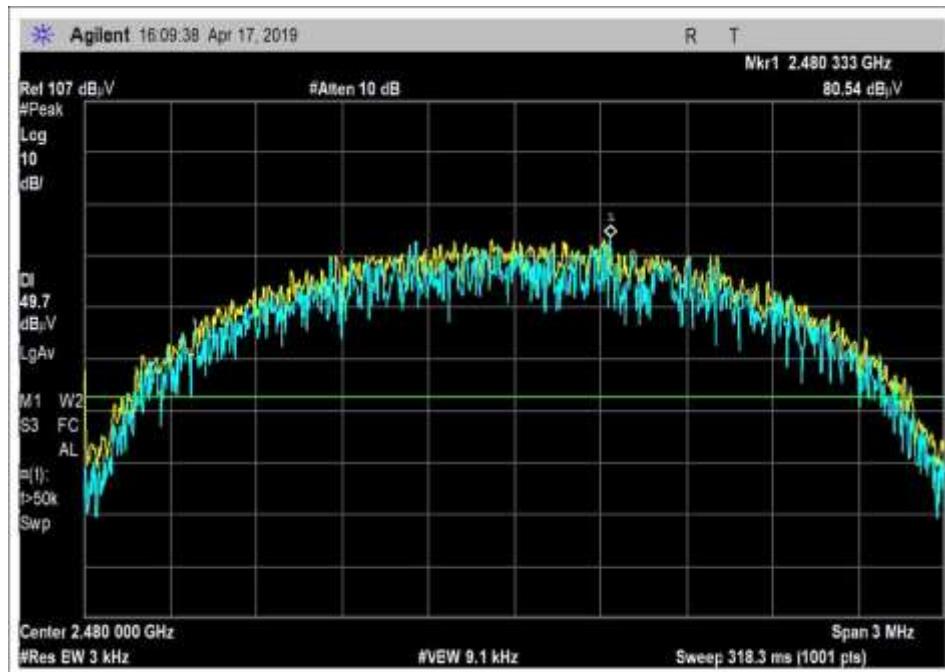
| Frequency (MHz) | Modulation | Ant. Type / Gain (dBi) | Field Strength (dBuV/m @3m) | Calculated (dBm/3kHz) | Limit (dBm/3kHz) | Results |
|-----------------|------------|------------------------|-----------------------------|-----------------------|------------------|---------|
| 2402            | GFSK       | Integral/ 0.5          | 75.6                        | -20.2                 | ≤8               | Pass    |
| 2440            | GFSK       | Integral/ 0.5          | 76.3                        | <b>-19.5</b>          | ≤8               | Pass    |
| 2480            | GFSK       | Integral/ 0.5          | 73.8                        | -22.0                 | ≤8               | Pass    |


Conducted RF output power calculated in accordance with ANSI C63.10.

$$P(W) = \frac{(E \cdot d)^2}{30 G}$$


Or equivalently, in logarithmic form:

$$P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77$$


### Plots



Low Channel



Middle Channel



High Channel

## Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112  
 Customer: **Relief Technologies**  
 Specification: **15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)**  
 Work Order #: **102320** Date: 4/17/2019  
 Test Type: **Radiated Scan** Time: 17:03:58  
 Tested By: E. Wong Sequence#: 1  
 Software: EMITest 5.03.12

***Equipment Tested:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

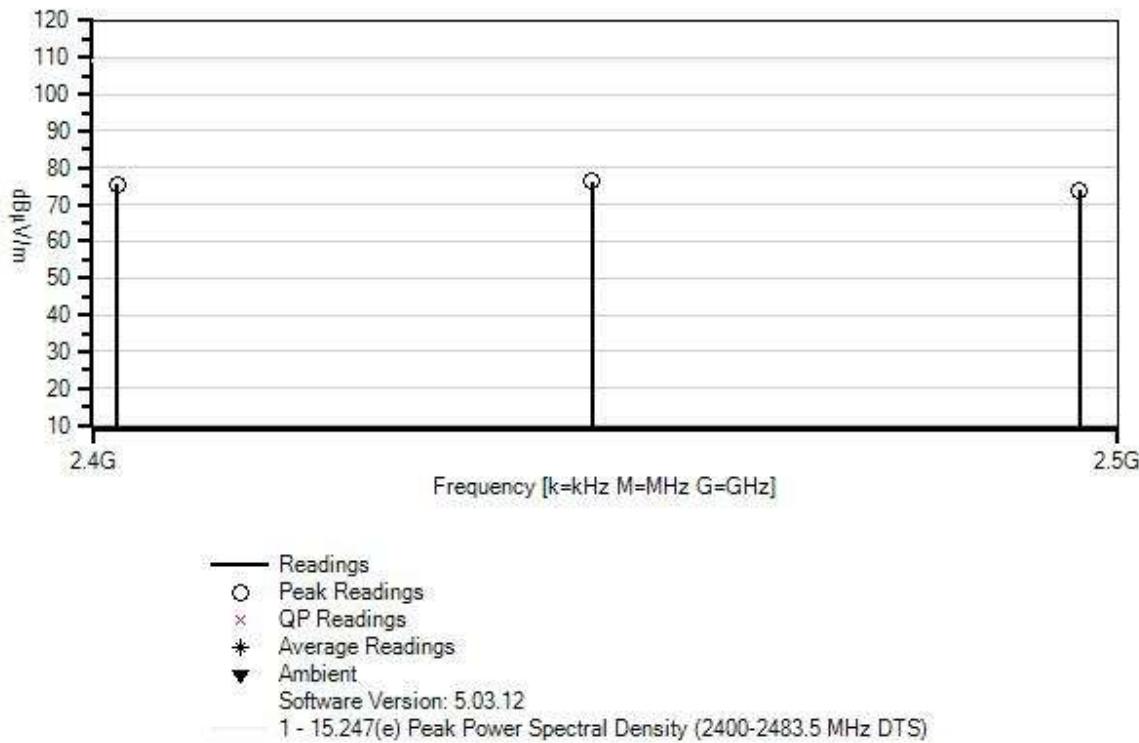
***Support Equipment:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Test Conditions / Notes:***

Removed from nonconductive enclosure, the EUT is placed on the Styrofoam platform.  
 A charger is connected to the device; rechargeable battery is fully charged.

Freq range: 2402- 2480 MHz  
 TX freq 2402 MHz, 2440 MHz, 2480 MHz


Test software setting  
 Channel 02, 40, 80  
 Power: Pos3dBm  
 Data rate: ble-2Mbit

Frequency range of measurement = Fundamental

Test environment conditions:  
 Temperature: 20°C  
 Relative humidity: 52%  
 Pressure: 99kPa

Emission profile of the EUT rotated along three orthogonal axes was investigated.  
 Recorded data represent worse case emission.

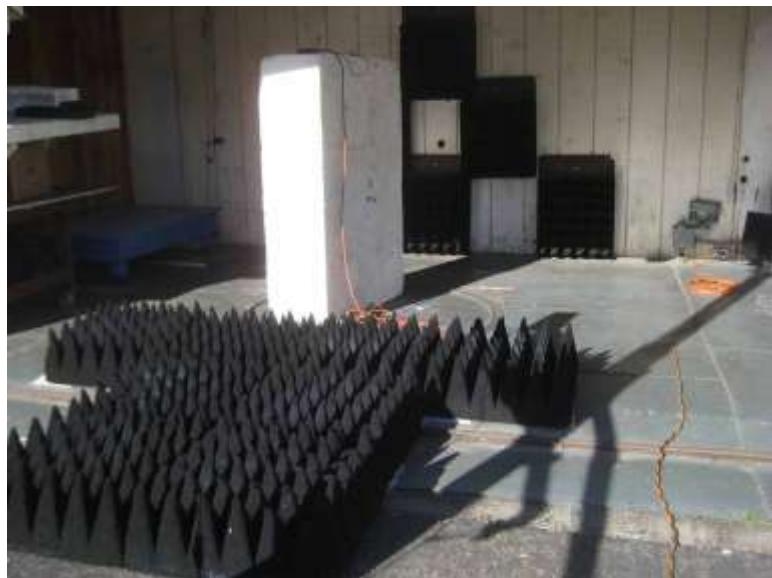
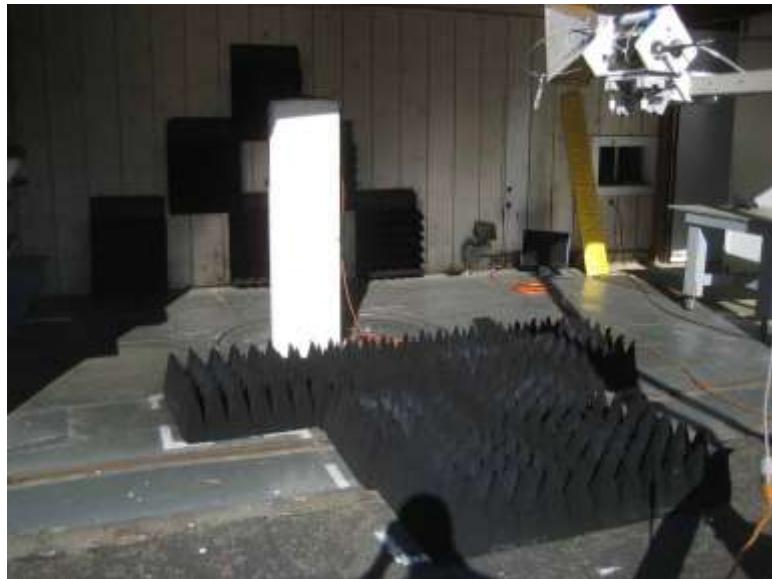
ANSI C63.10 (2013), KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019

Relief Technologies WO#: 102320 Sequence#: 1 Date: 4/17/2019  
 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS) Test Distance: 3 Meters Horiz

**Test Equipment:**

| ID | Asset #  | Description       | Model                        | Calibration Date | Cal Due Date |
|----|----------|-------------------|------------------------------|------------------|--------------|
| T1 | AN02672  | Spectrum Analyzer | E4446A                       | 3/13/2019        | 3/13/2021    |
| T2 | AN00849  | Horn Antenna      | 3115                         | 3/14/2018        | 3/14/2020    |
| T3 | ANP07246 | Cable             | 32022-29094K-<br>29094K-24TC | 7/5/2018         | 7/5/2020     |
| T4 | AN00786  | Preamp            | 83017A                       | 5/12/2018        | 5/12/2020    |
| T5 | ANP07139 | Cable             | ANDL1-<br>PNMNM-48           | 3/4/2019         | 3/4/2021     |

**Measurement Data:**



Reading listed by margin.

Test Distance: 3 Meters

| # | Freq      | Rdng       | T1   | T2    | T3   | T4    | Dist  | Corr         | Spec         | Margin       | Polar |
|---|-----------|------------|------|-------|------|-------|-------|--------------|--------------|--------------|-------|
|   | MHz       | dB $\mu$ V | dB   | dB    | dB   | dB    | Table | dB $\mu$ V/m | dB $\mu$ V/m | dB           | Ant   |
| 1 | 2440.285M | 83.2       | +0.0 | +28.4 | +0.3 | -38.7 | +0.0  | 76.3         | 109.2        | -32.9        | Horiz |
|   |           |            |      | +3.1  |      |       |       |              |              | M_y_3dBm_PSD |       |
| 2 | 2401.988M | 82.7       | +0.0 | +28.2 | +0.3 | -38.7 | +0.0  | 75.6         | 109.2        | -33.6        | Horiz |
|   |           |            |      | +3.1  |      |       |       |              |              | L_y_3dBm_PSD |       |
| 3 | 2480.333M | 80.5       | +0.0 | +28.5 | +0.3 | -38.7 | +0.0  | 73.8         | 109.2        | -35.4        | Horiz |
|   |           |            |      | +3.2  |      |       |       |              |              | H_y_3dBm_PSD |       |

**Test Setup Photo(s)**







X-Axis



Y-Axis



Z-Axis

## 15.247(d) Radiated Emissions & Band Edge

### Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112  
 Customer: **Relief Technologies**  
 Specification: **15.247(d) / 15.209 Radiated Spurious Emissions**  
 Work Order #: **102320** Date: 7/16/2019  
 Test Type: **Maximized Emissions** Time: 09:16:23  
 Tested By: E. Wong/Don Nguyen Sequence#: 2  
 Software: EMITest 5.03.12

***Equipment Tested:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Support Equipment:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Test Conditions / Notes:***

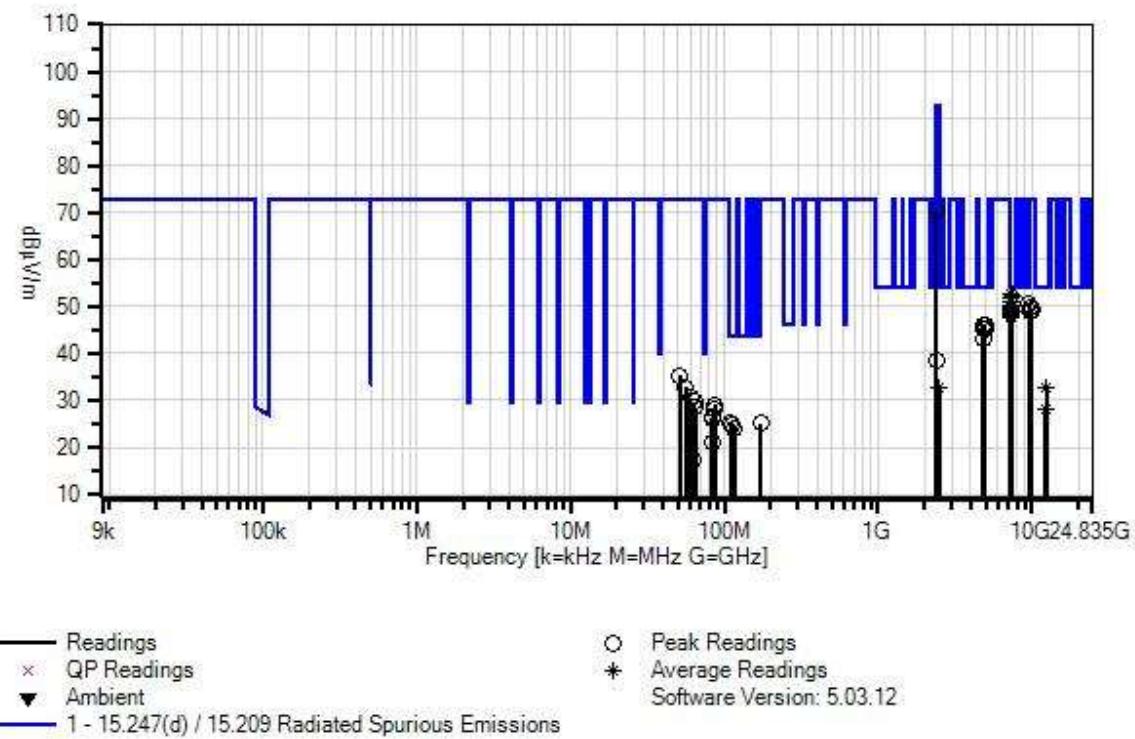
Removed from nonconductive enclosure, the EUT is placed on the Styrofoam platform.  
 A charger is connected to the device; rechargeable battery is fully charged.

Freq range: 2402- 2480 MHz  
 TX freq 2402 MHz, 2440 MHz, 2480 MHz

Test software setting  
 Channel 02, 40, 80  
 Power: Pos3dBm  
 Data rate: ble-2Mbit

Frequency range of measurement = 9 kHz- 25 GHz.  
 9 kHz -150 kHz;RBW=200 Hz,VBW=600 Hz;150 kHz-30 MHz;RBW=9 kHz,VBW=27 kHz;30 MHz-1000 MHz;RBW=120 kHz,VBW=360 kHz,1000 MHz-25000 MHz;RBW=1 MHz,VBW=3 MHz.

Test environment conditions:  
 Temperature: 24.5°C  
 Relative humidity: 59%  
 Pressure: 99kPa


Emission profile of the EUT rotated along three orthogonal axes was investigated.  
 Recorded data represent worse case emission.

Site A

ANSI C63.10 (2013), KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019

Modification #1 was in place during testing.

Relief Technologies WO#: 102320 Sequence#: 2 Date: 7/16/2019  
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz



**Test Equipment:**

| ID  | Asset #  | Description                                | Model                          | Calibration Date | Cal Due Date |
|-----|----------|--------------------------------------------|--------------------------------|------------------|--------------|
| T1  | AN02672  | Spectrum Analyzer                          | E4446A                         | 3/13/2019        | 3/13/2021    |
| T2  | AN00849  | Horn Antenna                               | 3115                           | 3/14/2018        | 3/14/2020    |
| T3  | ANP07246 | Cable                                      | 32022-29094K-<br>29094K-24TC   | 7/5/2018         | 7/5/2020     |
| T4  | AN00786  | Preamp                                     | 83017A                         | 5/12/2018        | 5/12/2020    |
| T5  | ANP07139 | Cable                                      | ANDL1-<br>PNMNM-48             | 3/4/2019         | 3/4/2021     |
| T6  | AN03385  | High Pass Filter                           | 11SH10-<br>3000/T10000-<br>O/O | 5/13/2019        | 5/13/2021    |
| T7  | AN03367  | Horn Antenna-<br>ANSI C63.5<br>Calibration | 62-GH-62-25.                   | 8/24/2017        | 8/24/2019    |
| T8  | AN01995  | Biconilog Antenna                          | CBL6111C                       | 4/23/2018        | 4/23/2020    |
| T9  | ANP05275 | Attenuator                                 | 1W                             | 4/5/2018         | 4/5/2020     |
| T10 | ANP05198 | Cable-Amplitude<br>+15C to +45C (dB)       | 8268                           | 12/4/2018        | 12/4/2020    |
| T11 | AN00309  | Preamp                                     | 8447D                          | 2/19/2018        | 2/19/2020    |
| T12 | ANP05050 | Cable                                      | RG223/U                        | 12/24/2018       | 12/24/2020   |
|     | AN00314  | Loop Antenna                               | 6502                           | 5/13/2018        | 5/13/2020    |
|     | AN01413  | Horn Antenna-<br>ANSI C63.5 (dB/m)         | 84125-80008                    | 10/17/2018       | 10/17/2020   |

**Measurement Data:**

Reading listed by margin.

Test Distance: 3 Meters

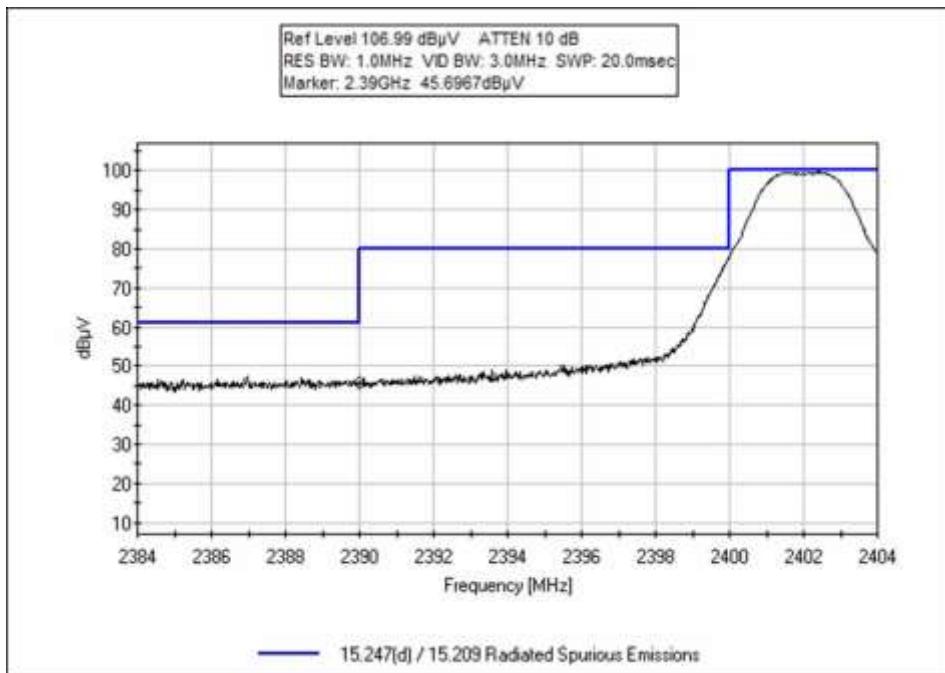
| # | Freq      | Rdng       | T1   | T2    | T3   | T4    | Dist  | Corr         | Spec         | Margin        | Polar |
|---|-----------|------------|------|-------|------|-------|-------|--------------|--------------|---------------|-------|
|   |           |            | T5   | T6    | T7   | T8    |       |              |              |               |       |
|   |           |            | T9   | T10   | T11  | T12   |       |              |              |               |       |
|   | MHz       | dB $\mu$ V | dB   | dB    | dB   | dB    | Table | dB $\mu$ V/m | dB $\mu$ V/m | dB            | Ant   |
| 1 | 7439.293M | 47.2       | +0.0 | +36.3 | +0.2 | -37.4 | +0.0  | 52.4         | 54.0         | -1.6          | Vert  |
|   | Ave       |            | +5.9 | +0.2  | +0.0 | +0.0  |       |              |              | H_y           |       |
|   |           |            | +0.0 | +0.0  | +0.0 | +0.0  |       |              |              |               |       |
| ^ | 7439.293M | 55.2       | +0.0 | +36.3 | +0.2 | -37.4 | +0.0  | 60.4         | 54.0         | +6.4          | Vert  |
|   |           |            | +5.9 | +0.2  | +0.0 | +0.0  |       |              |              | H_y           |       |
|   |           |            | +0.0 | +0.0  | +0.0 | +0.0  |       |              |              |               |       |
| 3 | 7440.843M | 47.0       | +0.0 | +36.3 | +0.2 | -37.4 | +0.0  | 52.2         | 54.0         | -1.8          | Vert  |
|   | Ave       |            | +5.9 | +0.2  | +0.0 | +0.0  |       |              |              | H_y           |       |
|   |           |            | +0.0 | +0.0  | +0.0 | +0.0  |       |              |              |               |       |
| ^ | 7440.843M | 54.4       | +0.0 | +36.3 | +0.2 | -37.4 | +0.0  | 59.6         | 54.0         | +5.6          | Vert  |
|   |           |            | +5.9 | +0.2  | +0.0 | +0.0  |       |              |              | H_y           |       |
|   |           |            | +0.0 | +0.0  | +0.0 | +0.0  |       |              |              |               |       |
| 5 | 2400.000M | 77.7       | +0.0 | +28.2 | +0.3 | -38.7 | +0.0  | 70.6         | 72.8         | -2.2          | Horiz |
|   |           |            | +3.1 | +0.0  | +0.0 | +0.0  |       |              |              | bandedge_3dBm |       |
|   |           |            | +0.0 | +0.0  | +0.0 | +0.0  |       |              |              |               |       |

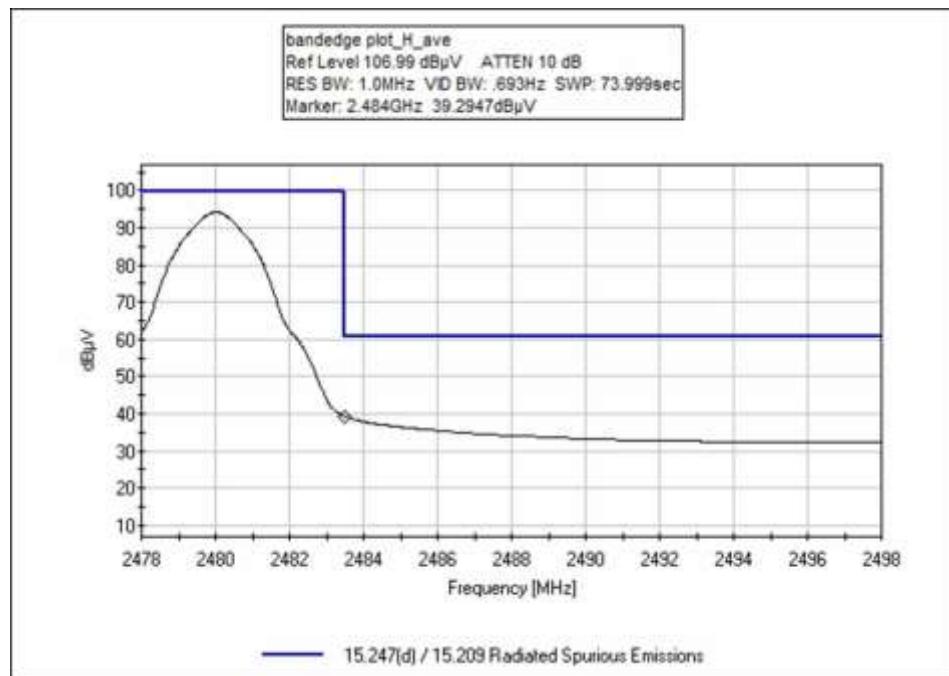
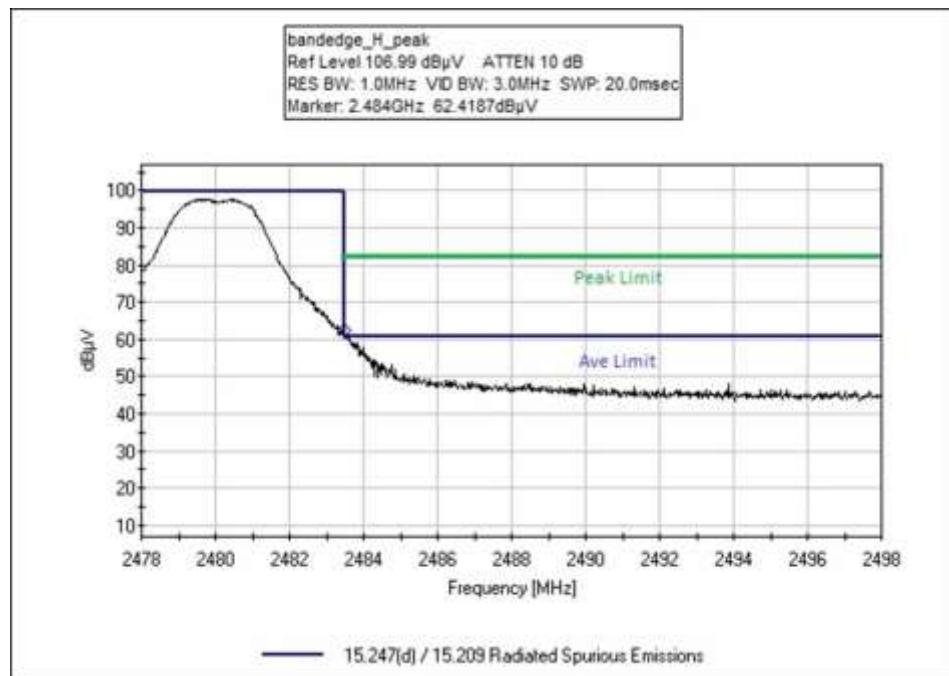
|    |           |      |      |       |      |       |      |      |      |      |       |
|----|-----------|------|------|-------|------|-------|------|------|------|------|-------|
| 6  | 7321.580M | 47.1 | +0.0 | +35.9 | +0.1 | -37.4 | +0.0 | 51.8 | 54.0 | -2.2 | Vert  |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      |      | M_y  |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| ^  | 7321.580M | 55.6 | +0.0 | +35.9 | +0.1 | -37.4 | +0.0 | 60.3 | 54.0 | +6.3 | Vert  |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | M_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 8  | 7318.480M | 46.3 | +0.0 | +35.9 | +0.1 | -37.4 | +0.0 | 51.0 | 54.0 | -3.0 | Vert  |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | M_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| ^  | 7318.480M | 55.1 | +0.0 | +35.9 | +0.1 | -37.4 | +0.0 | 59.8 | 54.0 | +5.8 | Vert  |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | M_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 10 | 7439.255M | 43.8 | +0.0 | +36.3 | +0.2 | -37.4 | +0.0 | 49.0 | 54.0 | -5.0 | Horiz |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | H_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| ^  | 7439.255M | 52.6 | +0.0 | +36.3 | +0.2 | -37.4 | +0.0 | 57.8 | 54.0 | +3.8 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | H_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 12 | 7440.855M | 43.7 | +0.0 | +36.3 | +0.2 | -37.4 | +0.0 | 48.9 | 54.0 | -5.1 | Horiz |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | H_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| ^  | 7440.855M | 51.3 | +0.0 | +36.3 | +0.2 | -37.4 | +0.0 | 56.5 | 54.0 | +2.5 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | H_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 14 | 7321.590M | 43.5 | +0.0 | +35.9 | +0.1 | -37.4 | +0.0 | 48.2 | 54.0 | -5.8 | Horiz |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | M_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| ^  | 7321.590M | 52.5 | +0.0 | +35.9 | +0.1 | -37.4 | +0.0 | 57.2 | 54.0 | +3.2 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | M_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 16 | 7318.540M | 43.0 | +0.0 | +35.9 | +0.1 | -37.4 | +0.0 | 47.7 | 54.0 | -6.3 | Horiz |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | M_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| ^  | 7318.540M | 51.9 | +0.0 | +35.9 | +0.1 | -37.4 | +0.0 | 56.6 | 54.0 | +2.6 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | M_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 18 | 4960.480M | 44.2 | +0.0 | +33.8 | +0.4 | -37.6 | +0.0 | 46.0 | 54.0 | -8.0 | Horiz |
|    |           |      | +4.8 | +0.4  | +0.0 | +0.0  |      | H_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 19 | 4805.000M | 44.8 | +0.0 | +33.3 | +0.4 | -37.6 | +0.0 | 46.0 | 54.0 | -8.0 | Horiz |
|    |           |      | +4.8 | +0.3  | +0.0 | +0.0  |      | L_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 20 | 4960.480M | 43.5 | +0.0 | +33.8 | +0.4 | -37.6 | +0.0 | 45.3 | 54.0 | -8.7 | Vert  |
|    |           |      | +4.8 | +0.4  | +0.0 | +0.0  |      | H_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 21 | 4879.040M | 43.7 | +0.0 | +33.5 | +0.4 | -37.6 | +0.0 | 45.1 | 54.0 | -8.9 | Horiz |
|    |           |      | +4.8 | +0.3  | +0.0 | +0.0  |      | M_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |
| 22 | 4804.250M | 43.9 | +0.0 | +33.3 | +0.4 | -37.6 | +0.0 | 45.1 | 54.0 | -8.9 | Vert  |
|    |           |      | +4.8 | +0.3  | +0.0 | +0.0  |      | L_y  |      |      |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |      |       |

|     |           |      |      |       |       |       |      |      |      |       |               |
|-----|-----------|------|------|-------|-------|-------|------|------|------|-------|---------------|
| 23  | 4881.100M | 41.7 | +0.0 | +33.5 | +0.4  | -37.6 | +0.0 | 43.1 | 54.0 | -10.9 | Vert          |
|     |           |      | +4.8 | +0.3  | +0.0  | +0.0  |      |      |      |       | M_y           |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| 24  | 2390.000M | 45.7 | +0.0 | +28.3 | +0.3  | -38.7 | +0.0 | 38.7 | 54.0 | -15.3 | Horiz         |
|     |           |      | +3.1 | +0.0  | +0.0  | +0.0  |      |      |      |       | bandedge_3dBm |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| 25  | 109.200M  | 34.7 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 25.4 | 43.5 | -18.1 | Horiz         |
|     |           |      | +0.0 | +0.0  | +0.0  | +10.9 |      |      |      |       |               |
|     |           |      | +6.0 | +1.8  | -28.1 | +0.1  |      |      |      |       |               |
| 26  | 172.100M  | 34.9 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 25.2 | 43.5 | -18.3 | Horiz         |
|     |           |      | +0.0 | +0.0  | +0.0  | +9.7  |      |      |      |       |               |
|     |           |      | +6.0 | +2.4  | -28.0 | +0.2  |      |      |      |       |               |
| 27  | 112.700M  | 33.8 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 24.9 | 43.5 | -18.6 | Horiz         |
|     |           |      | +0.0 | +0.0  | +0.0  | +11.1 |      |      |      |       |               |
|     |           |      | +6.0 | +1.9  | -28.0 | +0.1  |      |      |      |       |               |
| 28  | 115.700M  | 32.5 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 23.9 | 43.5 | -19.6 | Horiz         |
|     |           |      | +0.0 | +0.0  | +0.0  | +11.4 |      |      |      |       |               |
|     |           |      | +6.0 | +1.9  | -28.0 | +0.1  |      |      |      |       |               |
| 29  | 7204.490M | 48.2 | +0.0 | +35.5 | +0.1  | -37.4 | +0.0 | 52.5 | 72.8 | -20.3 | Vert          |
| Ave |           |      | +5.9 | +0.2  | +0.0  | +0.0  |      |      |      |       | L_y ***       |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| 30  | 7204.504M | 47.4 | +0.0 | +35.5 | +0.1  | -37.4 | +0.0 | 51.7 | 72.8 | -21.1 | Horiz         |
| Ave |           |      | +5.9 | +0.2  | +0.0  | +0.0  |      |      |      |       | L_x           |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| 31  | 7207.590M | 47.3 | +0.0 | +35.5 | +0.1  | -37.4 | +0.0 | 51.6 | 72.8 | -21.2 | Vert          |
| Ave |           |      | +5.9 | +0.2  | +0.0  | +0.0  |      |      |      |       | L_y           |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| 32  | 12402.700 | 31.4 | +0.0 | +0.0  | +0.7  | -36.3 | +0.0 | 32.8 | 54.0 | -21.2 | Horiz         |
| M   |           |      | +7.8 | +0.5  | +28.7 | +0.0  |      |      |      |       |               |
| Ave |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       | H_y           |
| ^   | 12402.700 | 43.2 | +0.0 | +0.0  | +0.7  | -36.3 | +0.0 | 44.6 | 54.0 | -9.4  | Horiz         |
| M   |           |      | +7.8 | +0.5  | +28.7 | +0.0  |      |      |      |       |               |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       | H_y           |
| 34  | 2483.500M | 39.3 | +0.0 | +28.5 | +0.3  | -38.7 | +0.0 | 32.6 | 54.0 | -21.4 | Horiz         |
| Ave |           |      | +3.2 | +0.0  | +0.0  | +0.0  |      |      |      |       | bandedge_3dBm |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| ^   | 2483.500M | 62.4 | +0.0 | +28.5 | +0.3  | -38.7 | +0.0 | 55.7 | 54.0 | +1.7  | Horiz         |
|     |           |      | +3.2 | +0.0  | +0.0  | +0.0  |      |      |      |       | bandedge_3dBm |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| 36  | 7207.554M | 46.8 | +0.0 | +35.5 | +0.1  | -37.4 | +0.0 | 51.1 | 72.8 | -21.7 | Horiz         |
| Ave |           |      | +5.9 | +0.2  | +0.0  | +0.0  |      |      |      |       | L_x           |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| 37  | 9609.890M | 41.9 | +0.0 | +37.7 | +0.5  | -36.5 | +0.0 | 50.7 | 72.8 | -22.1 | Vert          |
|     |           |      | +6.9 | +0.2  | +0.0  | +0.0  |      |      |      |       | L_y           |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| 38  | 7204.600M | 45.9 | +0.0 | +35.5 | +0.1  | -37.4 | +0.0 | 50.2 | 72.8 | -22.6 | Vert          |
| Ave |           |      | +5.9 | +0.2  | +0.0  | +0.0  |      |      |      |       | L_x           |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |
| ^   | 7204.600M | 54.8 | +0.0 | +35.5 | +0.1  | -37.4 | +0.0 | 59.1 | 72.8 | -13.7 | Vert          |
|     |           |      | +5.9 | +0.2  | +0.0  | +0.0  |      |      |      |       | L_x           |
|     |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |               |

|    |           |      |      |       |      |       |      |      |      |       |       |
|----|-----------|------|------|-------|------|-------|------|------|------|-------|-------|
| 40 | 7204.490M | 45.6 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 49.9 | 72.8 | -22.9 | Vert  |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      |      | L_z  |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| ^  | 7204.490M | 56.9 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 61.2 | 72.8 | -11.6 | Vert  |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_y  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| ^  | 7204.490M | 55.3 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 59.6 | 72.8 | -13.2 | Vert  |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_z  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| 43 | 7204.540M | 45.5 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 49.8 | 72.8 | -23.0 | Horiz |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_z  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| 44 | 7207.540M | 45.4 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 49.7 | 72.8 | -23.1 | Vert  |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_z  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| 45 | 9758.670M | 40.2 | +0.0 | +37.9 | +0.5 | -36.4 | +0.0 | 49.5 | 72.8 | -23.3 | Vert  |
|    |           |      | +7.0 | +0.3  | +0.0 | +0.0  |      | M_y  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| 46 | 7207.590M | 45.1 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 49.4 | 72.8 | -23.4 | Horiz |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_z  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| ^  | 7207.590M | 54.2 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 58.5 | 72.8 | -14.3 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_z  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| 48 | 9920.620M | 39.4 | +0.0 | +38.0 | +0.5 | -36.4 | +0.0 | 49.2 | 72.8 | -23.6 | Vert  |
|    |           |      | +7.3 | +0.4  | +0.0 | +0.0  |      | H_y  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| 49 | 7204.580M | 44.8 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 49.1 | 72.8 | -23.7 | Horiz |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_y  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| ^  | 7204.504M | 56.3 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 60.6 | 72.8 | -12.2 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_x  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| ^  | 7204.540M | 54.6 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 58.9 | 72.8 | -13.9 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_z  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| ^  | 7204.580M | 53.7 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 58.0 | 72.8 | -14.8 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_y  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| 53 | 7207.574M | 44.5 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 48.8 | 72.8 | -24.0 | Vert  |
|    | Ave       |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_x  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| ^  | 7207.590M | 56.2 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 60.5 | 72.8 | -12.3 | Vert  |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_y  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| ^  | 7207.540M | 54.2 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 58.5 | 72.8 | -14.3 | Vert  |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_z  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |
| ^  | 7207.574M | 53.6 | +0.0 | +35.5 | +0.1 | -37.4 | +0.0 | 57.9 | 72.8 | -14.9 | Vert  |
|    |           |      | +5.9 | +0.2  | +0.0 | +0.0  |      | L_x  |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0 | +0.0  |      |      |      |       |       |

|    |           |      |      |       |       |       |      |      |      |       |       |
|----|-----------|------|------|-------|-------|-------|------|------|------|-------|-------|
| 57 | 9761.390M | 39.4 | +0.0 | +37.9 | +0.5  | -36.4 | +0.0 | 48.7 | 72.8 | -24.1 | Horiz |
|    |           |      | +7.0 | +0.3  | +0.0  | +0.0  |      |      | M_y  |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |       |
| 58 | 7207.480M | 44.0 | +0.0 | +35.5 | +0.1  | -37.4 | +0.0 | 48.3 | 72.8 | -24.5 | Horiz |
|    | Ave       |      | +5.9 | +0.2  | +0.0  | +0.0  |      |      | L_y  |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |       |
| ^  | 7207.554M | 55.8 | +0.0 | +35.5 | +0.1  | -37.4 | +0.0 | 60.1 | 72.8 | -12.7 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0  | +0.0  |      |      | L_x  |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |       |
| ^  | 7207.480M | 52.7 | +0.0 | +35.5 | +0.1  | -37.4 | +0.0 | 57.0 | 72.8 | -15.8 | Horiz |
|    |           |      | +5.9 | +0.2  | +0.0  | +0.0  |      |      | L_y  |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      |      |       |       |
| 61 | 12197.550 | 27.1 | +0.0 | +0.0  | +0.6  | -36.4 | +0.0 | 28.2 | 54.0 | -25.8 | Vert  |
|    | M         |      | +7.7 | +0.5  | +28.7 | +0.0  |      |      |      |       |       |
|    | Ave       |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      | M_y  |       |       |
| ^  | 12197.550 | 38.3 | +0.0 | +0.0  | +0.6  | -36.4 | +0.0 | 39.4 | 54.0 | -14.6 | Vert  |
|    | M         |      | +7.7 | +0.5  | +28.7 | +0.0  |      |      |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0  |      |      | M_y  |       |       |
| 63 | 51.500M   | 48.1 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 35.2 | 72.8 | -37.6 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +7.9  |      |      |      |       |       |
|    |           |      | +6.0 | +1.2  | -28.1 | +0.1  |      |      |      |       |       |
| 64 | 55.750M   | 46.8 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 32.8 | 72.8 | -40.0 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +6.7  |      |      |      |       |       |
|    |           |      | +6.0 | +1.3  | -28.1 | +0.1  |      |      |      |       |       |
| 65 | 60.500M   | 45.4 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 30.5 | 72.8 | -42.3 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +5.7  |      |      |      |       |       |
|    |           |      | +6.0 | +1.4  | -28.1 | +0.1  |      |      |      |       |       |
| 66 | 63.750M   | 44.3 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 29.6 | 72.8 | -43.2 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +5.9  |      |      |      |       |       |
|    |           |      | +6.0 | +1.4  | -28.1 | +0.1  |      |      |      |       |       |
| 67 | 87.250M   | 40.9 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 29.1 | 72.8 | -43.7 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +8.5  |      |      |      |       |       |
|    |           |      | +6.0 | +1.7  | -28.1 | +0.1  |      |      |      |       |       |
| 68 | 65.250M   | 43.0 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 28.4 | 72.8 | -44.4 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +5.9  |      |      |      |       |       |
|    |           |      | +6.0 | +1.5  | -28.1 | +0.1  |      |      |      |       |       |
| 69 | 86.000M   | 40.2 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 28.3 | 72.8 | -44.5 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +8.4  |      |      |      |       |       |
|    |           |      | +6.0 | +1.7  | -28.1 | +0.1  |      |      |      |       |       |
| 70 | 82.750M   | 38.7 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 26.4 | 72.8 | -46.4 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +8.1  |      |      |      |       |       |
|    |           |      | +6.0 | +1.6  | -28.1 | +0.1  |      |      |      |       |       |
| 71 | 83.750M   | 38.3 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 26.1 | 72.8 | -46.7 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +8.2  |      |      |      |       |       |
|    |           |      | +6.0 | +1.6  | -28.1 | +0.1  |      |      |      |       |       |
| 72 | 84.400M   | 33.1 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 20.9 | 72.8 | -51.9 | Horiz |
|    |           |      | +0.0 | +0.0  | +0.0  | +8.2  |      |      |      |       |       |
|    |           |      | +6.0 | +1.6  | -28.1 | +0.1  |      |      |      |       |       |
| 73 | 62.650M   | 32.0 | +0.0 | +0.0  | +0.0  | +0.0  | +0.0 | 17.2 | 72.8 | -55.6 | Horiz |
|    |           |      | +0.0 | +0.0  | +0.0  | +5.8  |      |      |      |       |       |
|    |           |      | +6.0 | +1.4  | -28.1 | +0.1  |      |      |      |       |       |


## Band Edge



### Band Edge Summary

| Frequency (MHz) | Modulation | Ant. Type | Field Strength (dBuV/m @3m) | Limit (dBuV/m @3m) | Results |
|-----------------|------------|-----------|-----------------------------|--------------------|---------|
| 2390.0          | GFSK       | Integral  | 38.7                        | <54                | Pass    |
| 2400.0          | GFSK       | Integral  | 70.6                        | <72.8              | Pass    |
| 2483.5          | GFSK       | Integral  | 32.6 *                      | <54                | Pass    |

\* average

## Band Edge Plots



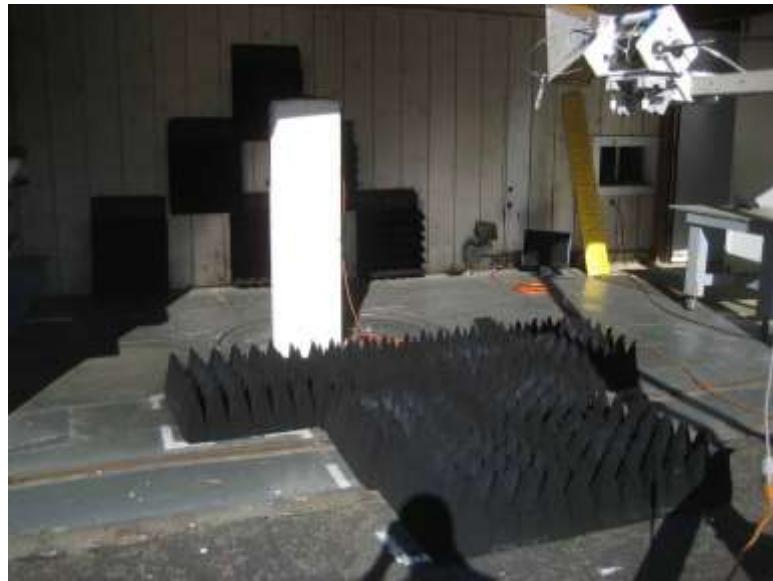


**Test Setup Photo(s)**



Below 1 GHz




Below 1 GHz




Above 1 GHz



Above 1 GHz



Above 1 GHz



Above 1 GHz



X-Axis



Y Axis



Z-Axis

## 15.207 AC Conducted Emissions

### Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112  
 Customer: **Relief Technologies**  
 Specification: **15.207 AC Mains - Average**  
 Work Order #: **102320** Date: 4/18/2019  
 Test Type: **Conducted Emissions** Time: 14:36:18  
 Tested By: E. Wong Sequence#: 3  
 Software: EMITest 5.03.12 120/60Hz

***Equipment Tested:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Support Equipment:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Test Conditions / Notes:***

Removed from nonconductive enclosure, the EUT is placed on the Styrofoam platform.  
 A charger is connected to the device; rechargeable battery is fully charged.

TX freq 2440 MHz

Test software setting

Channel 40

Power: Pos3dBm

Data rate: ble-2Mbit

Frequency range of measurement = 150kHz- 30MHz.

150 kHz-30 MHz;RBW=9 kHz,VBW=30kHz

Test environment conditions:


Temperature: 20°C

Relative humidity: 52%

Pressure: 99kPa

Site A

ANSI C63.10 (2013)

Relief Technologies WO#: 102320 Sequence#: 3 Date: 4/18/2019  
 15.207 AC Mains - Average Test Lead: 120/60Hz L1-Line


**Test Equipment:**

| ID | Asset #  | Description           | Model               | Calibration Date | Cal Due Date |
|----|----------|-----------------------|---------------------|------------------|--------------|
|    | AN02672  | Spectrum Analyzer     | E4446A              | 3/13/2019        | 3/13/2021    |
| T1 | AN02610  | High Pass Filter      | HE9615-150K-50-720B | 10/25/2017       | 10/25/2019   |
| T2 | ANP07338 | Cable                 | 2249-Y-240          | 2/19/2018        | 2/19/2020    |
| T3 | ANP07545 | Attenuator            | SA18N10W-06         | 1/18/2019        | 1/18/2021    |
| T4 | ANP06986 | Cable-Line L1(dB)     | 90cm-extcord        | 3/31/2018        | 3/31/2020    |
|    | ANP06986 | Cable-Neutral L2(dB)  | 90cm-extcord        | 3/31/2018        | 3/31/2020    |
| T5 | AN00969A | 50uH LISN-Line (dB)   | 3816/2NM            | 3/11/2019        | 3/11/2021    |
|    | AN00969A | 50uH LISN-Return (dB) | 3816/2NM            | 3/11/2019        | 3/11/2021    |

**Measurement Data:** Reading listed by margin.

**Test Lead: L1-Line**

| #  | Freq     | Rdng       | T1<br>T5            | T2   | T3   | T4   | Dist  | Corr       | Spec       | Margin | Polar |
|----|----------|------------|---------------------|------|------|------|-------|------------|------------|--------|-------|
|    | MHz      | dB $\mu$ V | dB                  | dB   | dB   | dB   | Table | dB $\mu$ V | dB $\mu$ V | dB     | Ant   |
| 1  | 347.800k | 36.3       | +0.2<br>+0.0        | +0.0 | +5.8 | +0.0 | +0.0  | 42.3       | 49.0       | -6.7   | L1-Li |
| 2  | 4.288M   | 31.1       | +0.1<br>+0.2        | +0.2 | +5.8 | +0.1 | +0.0  | 37.5       | 46.0       | -8.5   | L1-Li |
| 3  | 330.347k | 34.8       | +0.1<br>+0.1        | +0.0 | +5.8 | +0.0 | +0.0  | 40.8       | 49.4       | -8.6   | L1-Li |
| 4  | 17.157M  | 32.2       | +0.2<br>+0.6        | +0.3 | +5.8 | +0.7 | +0.0  | 39.8       | 50.0       | -10.2  | L1-Li |
| 5  | 1.094M   | 29.0       | +0.2<br>+0.1        | +0.1 | +5.8 | +0.0 | +0.0  | 35.2       | 46.0       | -10.8  | L1-Li |
| 6  | 640.864k | 28.7       | +0.2<br>+0.1        | +0.1 | +5.8 | +0.0 | +0.0  | 34.9       | 46.0       | -11.1  | L1-Li |
| 7  | 1.115M   | 28.2       | +0.2<br>+0.1        | +0.1 | +5.8 | +0.0 | +0.0  | 34.4       | 46.0       | -11.6  | L1-Li |
| 8  | 367.480k | 30.9       | +0.2<br>Ave<br>+0.1 | +0.0 | +5.8 | +0.0 | +0.0  | 37.0       | 48.6       | -11.6  | L1-Li |
| ^  | 365.980k | 41.7       | +0.2<br>+0.1        | +0.0 | +5.8 | +0.0 | +0.0  | 47.8       | 48.6       | -0.8   | L1-Li |
| 10 | 902.721k | 28.2       | +0.2<br>+0.1        | +0.1 | +5.8 | +0.0 | +0.0  | 34.4       | 46.0       | -11.6  | L1-Li |
| 11 | 1.315M   | 28.1       | +0.2<br>+0.1        | +0.1 | +5.8 | +0.0 | +0.0  | 34.3       | 46.0       | -11.7  | L1-Li |
| 12 | 1.022M   | 28.0       | +0.2<br>+0.1        | +0.1 | +5.8 | +0.0 | +0.0  | 34.2       | 46.0       | -11.8  | L1-Li |
| 13 | 1.405M   | 28.0       | +0.2<br>+0.1        | +0.1 | +5.8 | +0.0 | +0.0  | 34.2       | 46.0       | -11.8  | L1-Li |
| 14 | 1.843M   | 27.9       | +0.2<br>+0.1        | +0.1 | +5.8 | +0.1 | +0.0  | 34.2       | 46.0       | -11.8  | L1-Li |
| 15 | 15.725M  | 30.6       | +0.2<br>+0.5        | +0.3 | +5.8 | +0.7 | +0.0  | 38.1       | 50.0       | -11.9  | L1-Li |
| 16 | 1.817M   | 27.5       | +0.2<br>+0.1        | +0.1 | +5.8 | +0.1 | +0.0  | 33.8       | 46.0       | -12.2  | L1-Li |



Test Location: CKC Laboratories, Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112  
Customer: **Relief Technologies**  
Specification: **15.207 AC Mains - Average**  
Work Order #: **102320** Date: 4/18/2019  
Test Type: **Conducted Emissions** Time: 2:37:40 PM  
Tested By: E. Wong Sequence#: 4  
Software: EMITest 5.03.12 120/60Hz

***Equipment Tested:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Support Equipment:***

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

***Test Conditions / Notes:***

Removed from nonconductive enclosure, the EUT is placed on the Styrofoam platform.  
A charger is connected to the device; rechargeable battery is fully charged.

TX freq 2440 MHz

Test software setting

Channel 40

Power: Pos3dBm

Data rate: ble-2Mbit

Frequency range of measurement = 150kHz- 30MHz.  
150 kHz-30 MHz;RBW=9 kHz,VBW=30kHz

Test environment conditions:

Temperature: 20°C


Relative humidity: 52%

Pressure: 99kPa

Site A

ANSI C63.10-2013

Relief Technologies WO#: 102320 Sequence#: 4 Date: 4/18/2019  
15.207 AC Mains - Average Test Lead: 120/60Hz L2-Neutral



**Test Equipment:**

| ID | Asset #  | Description           | Model               | Calibration Date | Cal Due Date |
|----|----------|-----------------------|---------------------|------------------|--------------|
|    | AN02672  | Spectrum Analyzer     | E4446A              | 3/13/2019        | 3/13/2021    |
| T1 | AN02610  | High Pass Filter      | HE9615-150K-50-720B | 10/25/2017       | 10/25/2019   |
| T2 | ANP07338 | Cable                 | 2249-Y-240          | 2/19/2018        | 2/19/2020    |
| T3 | ANP07545 | Attenuator            | SA18N10W-06         | 1/18/2019        | 1/18/2021    |
|    | ANP06986 | Cable-Line L1(dB)     | 90cm-extcord        | 3/31/2018        | 3/31/2020    |
| T4 | ANP06986 | Cable-Neutral L2(dB)  | 90cm-extcord        | 3/31/2018        | 3/31/2020    |
|    | AN00969A | 50uH LISN-Line (dB)   | 3816/2NM            | 3/11/2019        | 3/11/2021    |
| T5 | AN00969A | 50uH LISN-Return (dB) | 3816/2NM            | 3/11/2019        | 3/11/2021    |

**Measurement Data:**

Reading listed by margin.

Test Lead: L2-Neutral

| #  | Freq<br>MHz | Rdng<br>dB $\mu$ V | T1<br>dB | T2<br>dB | T3<br>dB | T4<br>dB | Dist<br>Table | Corr<br>dB $\mu$ V | Spec<br>dB $\mu$ V | Margin<br>dB | Polar<br>Ant |
|----|-------------|--------------------|----------|----------|----------|----------|---------------|--------------------|--------------------|--------------|--------------|
| 1  | 357.980k    | 37.7<br>+0.1       | +0.2     | +0.0     | +5.8     | +0.0     | +0.0          | 43.8               | 48.8               | -5.0         | L2-Ne        |
| 2  | 371.797k    | 34.1<br>+0.1       | +0.2     | +0.0     | +5.8     | +0.0     | +0.0          | 40.2               | 48.5               | -8.3         | L2-Ne        |
| 3  | 343.436k    | 31.7<br>+0.1       | +0.1     | +0.0     | +5.8     | +0.0     | +0.0          | 37.7               | 49.1               | -11.4        | L2-Ne        |
| 4  | 15.706M     | 30.7<br>+0.5       | +0.2     | +0.3     | +5.8     | +0.7     | +0.0          | 38.2               | 50.0               | -11.8        | L2-Ne        |
| 5  | 336.891k    | 30.7<br>+0.1       | +0.1     | +0.0     | +5.8     | +0.0     | +0.0          | 36.7               | 49.3               | -12.6        | L2-Ne        |
| 6  | 346.345k    | 30.3<br>+0.1       | +0.1     | +0.0     | +5.8     | +0.0     | +0.0          | 36.3               | 49.0               | -12.7        | L2-Ne        |
| 7  | 688.132k    | 25.9<br>+0.1       | +0.2     | +0.1     | +5.8     | +0.0     | +0.0          | 32.1               | 46.0               | -13.9        | L2-Ne        |
| 8  | 4.288M      | 25.6<br>+0.2       | +0.1     | +0.2     | +5.8     | +0.1     | +0.0          | 32.0               | 46.0               | -14.0        | L2-Ne        |
| 9  | 1.838M      | 25.5<br>+0.1       | +0.2     | +0.1     | +5.8     | +0.1     | +0.0          | 31.8               | 46.0               | -14.2        | L2-Ne        |
| 10 | 1.860M      | 25.5<br>+0.1       | +0.2     | +0.1     | +5.8     | +0.1     | +0.0          | 31.8               | 46.0               | -14.2        | L2-Ne        |
| 11 | 1.064M      | 25.1<br>+0.1       | +0.2     | +0.1     | +5.8     | +0.0     | +0.0          | 31.3               | 46.0               | -14.7        | L2-Ne        |
| 12 | 1.821M      | 24.7<br>+0.1       | +0.2     | +0.1     | +5.8     | +0.1     | +0.0          | 31.0               | 46.0               | -15.0        | L2-Ne        |
| 13 | 669.952k    | 24.8<br>+0.1       | +0.2     | +0.1     | +5.8     | +0.0     | +0.0          | 31.0               | 46.0               | -15.0        | L2-Ne        |
| 14 | 2.315M      | 24.7<br>+0.1       | +0.2     | +0.1     | +5.8     | +0.1     | +0.0          | 31.0               | 46.0               | -15.0        | L2-Ne        |
| 15 | 2.140M      | 24.7<br>+0.1       | +0.2     | +0.1     | +5.8     | +0.1     | +0.0          | 31.0               | 46.0               | -15.0        | L2-Ne        |

**Test Setup Photo(s)**



## SUPPLEMENTAL INFORMATION

### Measurement Uncertainty

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

### Emissions Test Details

#### TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB $\mu$ V/m, the spectrum analyzer reading in dB $\mu$ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

| SAMPLE CALCULATIONS   |                |
|-----------------------|----------------|
| Meter reading         | (dB $\mu$ V)   |
| + Antenna Factor      | (dB/m)         |
| + Cable Loss          | (dB)           |
| - Distance Correction | (dB)           |
| - Preamplifier Gain   | (dB)           |
| = Corrected Reading   | (dB $\mu$ V/m) |

## TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |                     |                  |                   |
|------------------------------------------------------------|---------------------|------------------|-------------------|
| TEST                                                       | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| CONDUCTED EMISSIONS                                        | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                         | 9 kHz               | 150 kHz          | 200 Hz            |
| RADIATED EMISSIONS                                         | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                         | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS                                         | 1000 MHz            | >1 GHz           | 1 MHz             |

## SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

### Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

### Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.