

Shenzhen ZhongjianNanfang Testing Co., Ltd.

Report No: CCISE200709006

FCC REPORT

Applicant: Wings Mobile Telecom SL

Address of Applicant: c/Beethoven 15, piso 4, Barcelona, Spain

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: W4

Trade mark: Wings Mobile

FCC ID: 2ATQIW4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.225

Date of sample receipt: 24 Jul., 2020

Date of Test: 24 Jul., to 08 Sep., 2020

Date of report issue: 09 Sep., 2020

Test Result: PASS*

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	09 Sep., 2020	Original

3 Contents

			Page
2	VE	RSION	2
3	СО	ONTENTS	3
4	TE	ST SUMMARY	4
5	GE	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST MODE AND TEST SAMPLES PLANS	5
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTSLIST	
6	TE	ST RESULTS ANDMEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	RADIATED EMISSION	9
	6.3	20dB Bandwidth	16
	6.4	FREQUENCY TOLERANCE	
	6.5	CONDUCTED EMISSION	20
7	TE	ST SETUP PHOTOS	23
8 F	EUT C	CONSTRUCTIONAL DETAILS	25

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
Field strength of the fundamental signal	15.225 (a)	Pass
Spurious emissions	15.225(d)& 15.209	Pass
20dB Bandwidth	15.215(c)	Pass
Frequency tolerance	15.225 (e)	Pass
Conducted Emission	15.207	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.4-2014 ANSI C63.10-2013

5 General Information

5.1 Client Information

Applicant:	Wings Mobile Telecom SL	
Address: c/Beethoven 15, piso 4, Barcelona, Spain		
Manufacturer/ Factory:	SHENZHEN KOOBEE COMUNICATION CO., LTD	
Address:	Block A,18 Floor, No.11 Keyuan Road, Technology Park Community, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province, China	

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	W4
Operation Frequency:	13.56MHz
Channel numbers:	1
Modulation type:	ASK
Antenna Type:	Induction Coil Antenna
Power supply:	Rechargeable Li-ion polymer Battery model: BL-99CT DC3.85V/3930mAh Rechargeable Li-ion polymer Battery model: BL-A3CT DC3.85V/3900mAh
AC adapter:	Model: HJ-0502000N2-US Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test mode and test samples plans

210 1 001 1110 did dillid 1001 0dillipito pidillo						
Transmitting mode:	itting mode: Keep the EUT in transmitting mode with modulation					
Pre-Test Mode:						
CCIS has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:						
Axis X Y Z						
Field Strength(dBuV/m)	47.69	48.43	47.36			

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
SHENZHEN HONOR	AC ADAPTER	ADS-65H1-19A-2	200310110000128	N/A

Report No: CCISE200709006

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link; https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

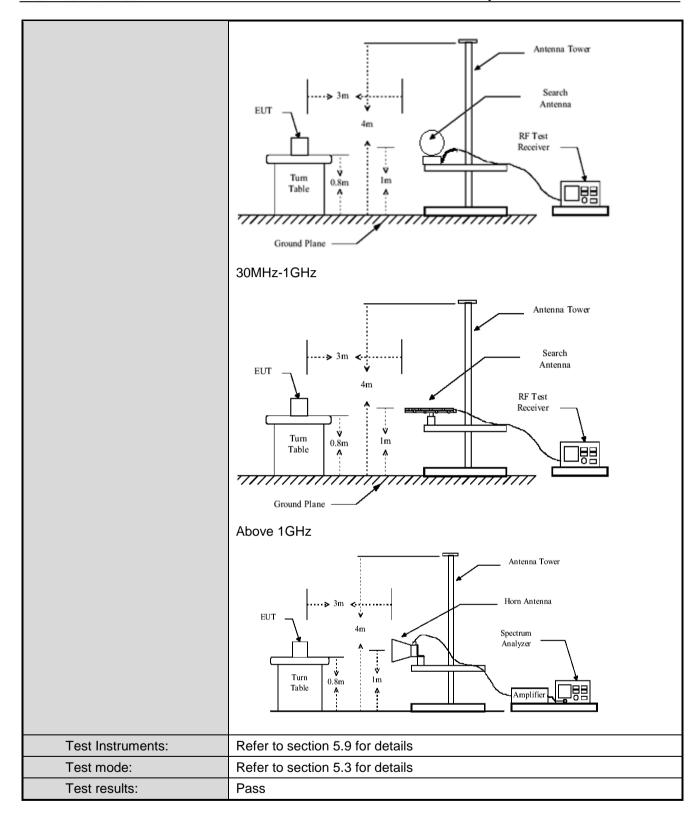
5.9 Test Instrumentslist

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020		
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2020	06-21-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020		
Loop Antenna	SCHWARZBECK	FMZB 1519 B	00044	03-18-2019	03-17-2020		
EMI Test Software	AUDIX	E3	V	Version: 6.110919b			
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020		
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020		
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-18-2019	03-17-2020		
Signal Generator	R&S	SMR20	1008100050	03-18-2019	03-17-2020		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020		
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020		

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	07-22-2020	07-21-2021		
EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-18-2019	03-17-2020		
LISN	CHASE	MN2050D	CCIS0074	03-18-2019	03-17-2020		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021		
Coaxial Cable	CCIS	N/A	CCIS0086	03-18-2019	03-17-2020		
EMI Test Software	AUDIX	E3	V	Version: 6.110919b			

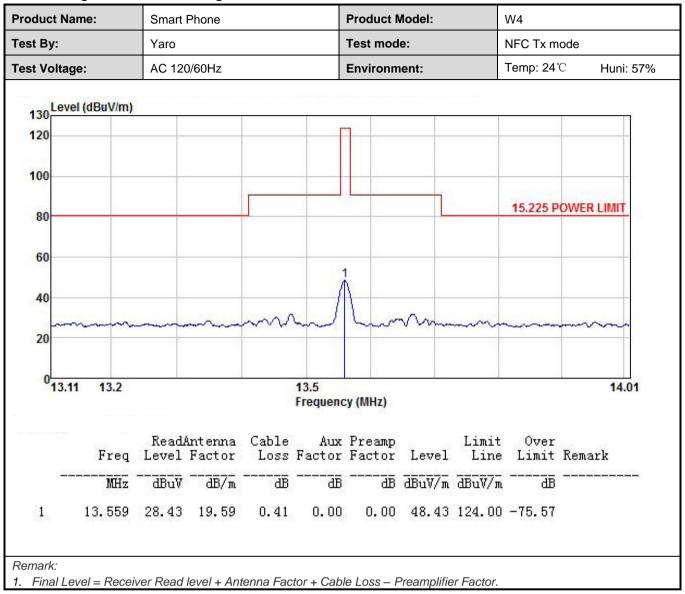
6 Test results and Measurement Data

6.1 Antenna requirement


Standard requirement:	FCC Part15 C Section 15.203		
responsible party shall be us antenna that uses a unique of	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an oupling to the intentional radiator, the manufacturer may design the unit so e replaced by the user, but the use of a standard antenna jack or electrical		
E.U.T Antenna:			
The EUT make use of an Induction coil antenna.			

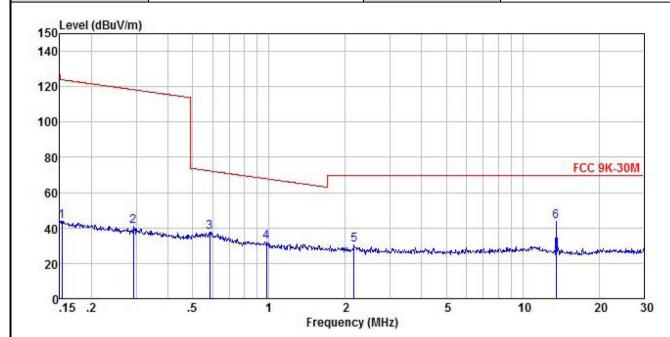
6.2 Radiated Emission

U.Z Kadiated Lillis		45.0	205()	1.45.000			1
Test Requirement:		FCC Part15 C Section 15.225(a) and 15.209					
TestFrequencyRang		9 kHz to 1000MHz					
Test site:	Measurement D	Measurement Distance: 3m(Semi-Anechoic Chamber)					
Receiver setup:	Frequency	Detector	r	RBW VE		BW	Remark
	9kHz-150kHz	Quasi-pea	ak	200Hz	600Hz		Quasi-peak Value
	150kHz-30MHz	Quasi-pea	ak	9kHz	30kHz		Quasi-peak Value
	30MHz-1GHz	Quasi-pea	ak	120kHz	300)KHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz		1Hz Peak Value	
Limit:	Frequenc		Limit (uV/m @30r	n)	Limit (dBuV/m @3m)	
(Field strength of the				15848			124.0
fundamental signal)	13.410MHz-13.55 13.567MHz-13.7			334			90.5
	13.110MHz-13.41 13.710MHz-14.0			106			80.5
Limit:	than specified, the distance by using	e field streng the square of conjunction	of an inv with the	ts shall be e erse linear	extrapo distano distar	lated to ce extra	nce which is closer the specified polation factor (i.e., ned in §15.3(hh) of Distance (m)
(Spurious Emissions	0.009-0.49	0	2400/F(kHz)			300	
(0)	0.490-1.70	5	24000/F(kHz)		30		
	1.705-30		30		30		
	30-88		100		3		
	88-216			150		3	
	216-960			200			3
	Above 1GF		500			3	
Test Procedure:	the grounda 360 degrees b. The EUT wa antenna, wh tower. c. The antenna ground to de horizontal a measureme d. For each su and thenthe and the rota find the max e. The test-rec SpecifiedBa f. If the emiss the limitspec of the EUT have 10dB	 a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees todetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatabletable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data 				able was rotated radiation. Se-receiving sheight antenna meters above the strength. Both re set to make the d to its worst case ster to 4 meters 360 degrees to action and odB lower than the peak values as that did not ang peak, quasi-	
Test setup:	9kHz-30MHz						



Measurement Data:

Field Strength of fundamental signal:



Spurious Emissions:

Test frequency range: 9 kHz- 30 MHz

Product Name:	Smart Phone	Product Model:	W4
Test By:	Yaro	Test mode:	NCF Tx mode
Test Frequency:	150 kHz ~ 30 MHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1	0.153	23.72	20.21	0.03	0.00	0.00	43.96	123.92	-79.96	Peak
2	0.292	20.40	20.53	0.06	0.00	0.00	40.99	118.29	-77.30	Peak
3	0.585	16.67	20.73	0.09	0.00	0.00	37.49	72.26	-34.77	Peak
4	0.979	11.69	20.51	0.14	0.00	0.00	32.34	67.81	-35.47	Peak
5	2.167	9.64	20.43	0.18	0.00	0.00	30.25	69.50	-39.25	Peak
1 2 3 4 5 6	13.551	23.92	19.59	0.41	0.00	0.00	43.92	69.50	-25.58	Peak

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, not show in test report.

Smart Phone Product Model: W4					
Yaro	Te	Test mode: NFC Tx m		ode	
150 kHz ~ 30 MHz	Po	olarization:	Horizontal		
AC 120/60Hz	E	nvironment:	Temp: 24℃	Huni: 57%	
			FCC	9K-30M	
			rcc	- SK-JUM	
			6		
2 3					
matrix de la contraction de la	and be for the particular of the same	-deriver	and the state of t	market and a second	
5 1	2	5	10	20 30	
	Frequency (MHz		10	20 50	
	Yaro 150 kHz ~ 30 MHz AC 120/60Hz	Yaro T 150 kHz ~ 30 MHz P AC 120/60Hz E	Yaro Test mode: 150 kHz ~ 30 MHz Polarization: AC 120/60Hz Environment:	Yaro Test mode: NFC Tx mode: 150 kHz ~ 30 MHz Polarization: Environment: Temp: 24°C FCC 6 6 7 150 kHz ~ 30 MHz Temp: 24°C	

Remark:

23

4

5

MHz

0.175

0.341

0.576

0.844

2.594

13.551

dBuV

23.21

17.49

16.16

12.16

28.02

8.58

dB/m

20.28

20.61

20.74

20.57

20.41

19.59

碅

0.04

0.06

0.09

0.10

0.21

0.41

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, not show in test report.

dB

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

dB dBuV/m dBuV/m

36.99

32.83

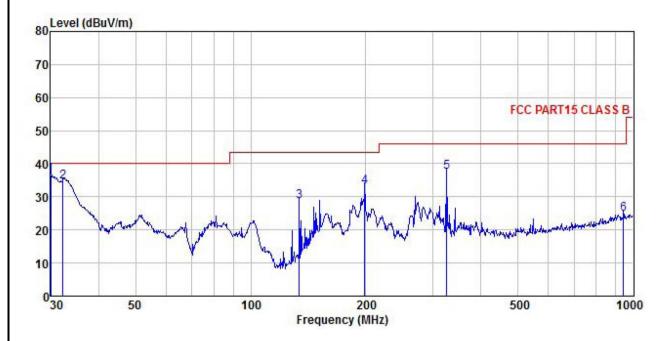
29.20

48.02

43.53 122.76 -79.23 Peak 38.16 116.95 -78.79 Peak

72.40 -35.41 Peak

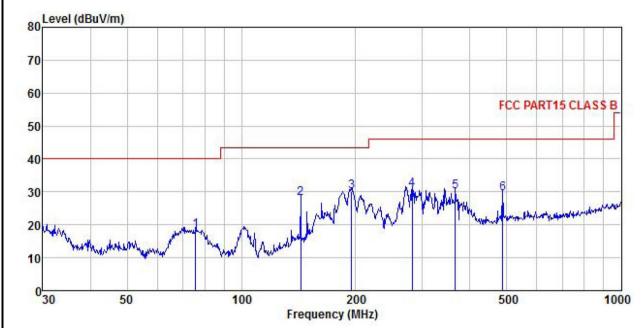
69.09 -36.26 Peak


69.50 -40.30 Peak

69.50 -21.48 Peak

Test frequency range: 30MHz-1000MHz

Product Name:	Smart Phone	Product Model:	W4
Test By:	Yaro	Test mode:	NFC Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u> /m		<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	30,000	54.33	11.80	0.40	0.00	29.98	36.55	40.00	-3.45	QP
2	32.293	51.95	12.18	0.37	0.00	29.97	34.53	40.00	-5.47	QP
2	134.088	44.29	13.19	0.59	0.00	29.31	28.76	43.50	-14.74	QP
4	198.588	43.17	18.16	0.72					-10.29	
5	325.596	46.48	18.75	0.90					-8.38	000 000 C
6	942.131	28.26	22.77	1.55		27.75	24.83	46.00	-21.17	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

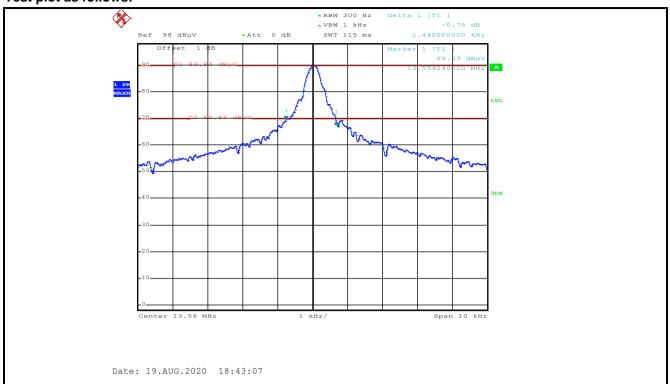
Product Name:	Smart Phone	Product Model:	W4
Test By:	Yaro	Test mode:	NFC Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor					Limit Line	Over Limit	Remark
-	MHz	dBu∀	<u>dB</u> /m		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	75.711	35.80	11.71	0.46	0.00	29.67	18.30	40.00	-21.70	QP
2	143.326	42.69	13.87	0.61	0.00	29.25			-15.58	
3	195.137	40.55	17.80	0.71	0.00	28.86	30.20	43.50	-13.30	QP
4	281.995	39.60	18.63	0.84	0.00	28.48	30.59	46.00	-15.41	QP
5	365.539	39.03	18.89	0.95					-15.76	(-
6	487.315	37.90	19.35	1.09				46.00	-16.59	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

6.3 20dB Bandwidth


Test Requirement:	FCC Part15 C Section 15.215 (c)			
Receiver setup:	RBW=200Hz, VBW=300Hz, detector: Peak			
Limit:	The fundamental emission be kept within at least the central 80% of the permitted band			
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

20dB bandwidth (kHz)	Limit (kHz)	Results			
1.440	11.2	Passed			
Note: For 13.56MHz, permitted Band is 14 kHz, so the Limit is 11.2 kHz.					

Test plot as follows:

6.4 Frequency Tolerance

Test Requirement:	FCC Part15 C Section 15.225 (e)
Receiver setup:	RBW=200Hz, VBW=300Hz, span=14kHz, detector: Peak
Limit:	±0.01% of the operating frequency
Test mode:	Transmitting mode
Test Procedure:	Frequency stability V.S. Temperature measurement
rest riocedule.	 The equipment under test was powered by a fresh battery. RF output was connected to spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to −20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement Set chamber temperature to 25°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-
Test setup:	15%) and endpoint, record the maximum frequency change. Spectrum Analyzer
	Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

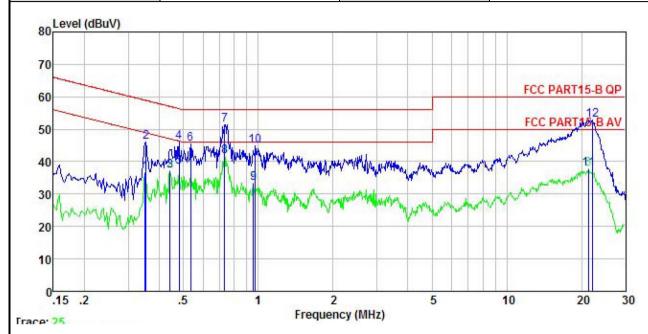
Measurement Data:

a) Frequency stability V.S. Temperature measurement

Voltage (Vdc)	Temperature (°C)	Frequency Tolerance (MHz)	Frequency Error (%)	Limit (%)	Results
	-20	0.078	0.0058	±0.01	Pass
	-10	0.085	0.0063	±0.01	Pass
	0	-0.074	-0.0055	±0.01	Pass
3.85V	+10	0.079	0.0058	±0.01	Pass
3.03 V	+20	-0.066	-0.0049	±0.01	Pass
	+30	0.084	0.0062	±0.01	Pass
	+40	0.067	0.0049	±0.01	Pass
	+50	-0.036	-0.0027	±0.01	Pass

b) Frequency stability V.S. Voltage measurement

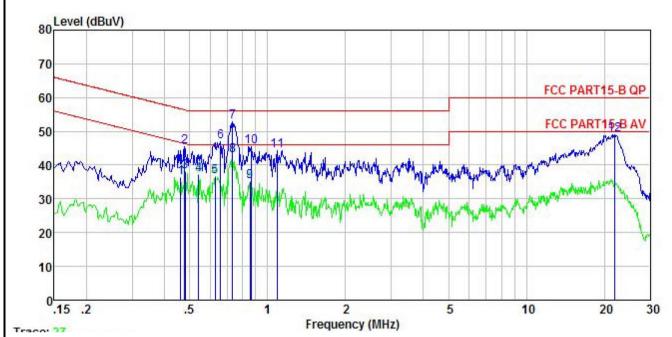
Temperature (°C)	Voltage (Vdc)	Frequency Tolerance (MHz)	Frequency Error (%)	Limit (%)	Results
, ,	3.85V	-0.085	-0.0063	±0.01	Pass
25.0	3.50V	0.071	0.0052	±0.01	Pass
	4.40V	0.092	0.0068	±0.01	Pass


6.5 Conducted Emission

Test Requirement:	FCC Part15 B Section 15	.207				
TestFrequencyRange:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz	<u>'</u>				
Limit:	Limit (dRuV)					
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	<u>56</u> 60	46			
	0.5-30	50				
Test setup:	* Decreases with the loga	rithm of the frequency.				
Tost procedure	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Nets Test table height=0.8m	EMI Receiver	power			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 					
Test Instruments:	Refer to section 5.9 for de	etails				
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement Data:

Product name:	Smart Phone	Product model:	W4
Test by:	Yaro	Test mode:	NFC Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	<u>ab</u>	<u>dB</u>	dBu₹	dBu∇	<u>dB</u>	
1	0.350	26.21	-0.51	10.73	0.10	36.53	48.96	-12.43	Average
2	0.354	35.55	-0.51	10.73	0.14	45.91	58.87	-12.96	QP
3	0.442	26.75	-0.46	10.74	0.08	37.11	47.02	-9.91	Average
4	0.481	35.92	-0.44	10.75	-0.24	45.99	56.32	-10.33	
2 3 4 5 6	0.481	28.20	-0.44	10.75	-0.24	38.27	46.32	-8.05	Average
6	0.535	35.37	-0.45	10.76	-0.36	45.32	56.00	-10.68	
7	0.731	41.35	-0.54	10.78	-0.30	51.29	56.00		
7 8 9	0.731	31.59	-0.54	10.78	-0.30	41.53	46.00		Average
9	0.958	22.79	-0.61	10.86	0.34	33.38	46.00		Average
10	0.974	34.11	-0.61	10.86	0.38	44.74		-11.26	
11	21.260	26.84	-0.93	10.91	0.92	37.74			Average
12	22.063	41.92	-0.95	10.90	0.93	52.80	60.00	-7.20	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Smart Phone	Product model:	W4
Test by:	Yaro	Test mode:	NFC Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
<u> </u>	MHz	dBu∀	<u>ab</u>	<u>dB</u>	<u>dB</u>	dBu∜	dBu₹	<u>dB</u>	
1	0.461	26.27	-0.64	10.74	0.00	36.37	46.67	-10.30	Average
2	0.479	35.42	-0.65	10.75	0.01	45.53	56.36	-10.83	QP
3	0.481	27.91	-0.65	10.75	0.02	38.03	46.32	-8.29	Average
4	0.541	27.11	-0.65	10.76	0.03	37.25	46.00	-8.75	Average
1 2 3 4 5 6	0.627	26.31	-0.64	10.77	0.04	36.48	46.00	-9.52	Average
6	0.658	36.63	-0.64	10.77	0.04	46.80	56.00	-9.20	QP
7	0.731	42.81	-0.64	10.78	0.04	52.99	56.00	-3.01	QP
8	0.731	32.70	-0.64	10.78	0.04	42.88	46.00	-3.12	Average
7 8 9	0.857	24.87	-0.66	10.83	0.06	35.10	46.00	-10.90	Average
10	0.862	35.22	-0.66	10.83	0.06	45.45	56.00	-10.55	QP
11	1.094	34.13	-0.68	10.88	0.09	44.42	56.00	-11.58	QP
12	21.946	39.02	-1.30	10.91	0.43	49.06	60.00	-10.94	QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

8 EUT Constructional Details

Reference to the test report No.: CCISE200709001

-----End of report-----