

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

2/11/2025

300 E-Business Way, Fifth Floor
Cincinnati, OH 45241
USA

Dear Kyle Wagner,

Enclosed is the EMC test report for compliance testing of the Devicor Medical Products Inc., Mammotome AutoCore, Model: MAHC tested to the requirements of:

- Title 47 of the CFR, Part 15.225, Subpart C for Certification as an Intentional Radiator.
- RSS-210: Issue 11, License-Exempt Radio Apparatus: Category 1 Equipment

Thank you for using the services of Eurofins E&E North America. If you have any questions regarding these results or if we can be of further service to you, please feel free to contact me.

Sincerely,

A handwritten signature in blue ink that reads "Nancy LaBrecque".

Nancy LaBrecque
Documentation Department
Eurofins Electrical and Electronic Testing NA, Inc.

Reference: WIRA121643-FCC15.225_RSS-210_R3

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins E&E North America. While use of the A2LA logo in this report reflects Eurofins accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.

Eurofins MET Laboratories Inc. (Eurofins E&E North America) is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

Electromagnetic Compatibility Criteria Test Report

for the

**Devicor Medical Products Inc.
Mammotome AutoCore
Model: MAHC**

Tested under
the FCC Certification Rules
contained in
15.225 Subpart C and
RSS-210: Issue 11
for Intentional Radiators

Report: WIRA121643-FCC15.225_RSS-210_R3

2/11/2025

Prepared For:

**300 E-Business Way, Fifth Floor
Cincinnati, OH 45241
USA**

Prepared By:
Eurofins E&E North America
13501 McCallen Pass,
Austin, TX 78753

Electromagnetic Compatibility Criteria Test Report

for the

**Devicor Medical Products Inc.
Mammotome AutoCore
Model: MAHC**

Tested under
the FCC Certification Rules
contained in
15.225 Subpart C and
RSS-210: Issue 11
for Intentional Radiators

Bryan Taylor, Wireless Team Lead
Electromagnetic Compatibility Lab

Matthew Hinojosa
EMC Lab Manager

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.225 and RSS-210 Issue 11 under normal use and maintenance.

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	10/31/2024	Initial Issue.
1	12/3/2024	Reviewer Comments
2	1/6/2025	Reviewer Comments
3	2/11/2025	Reviewer Comments

Table of Contents

I.	Executive Summary	8
A.	Purpose of Test	8
B.	Executive Summary	8
II.	Equipment Configuration	9
A.	Overview.....	9
B.	References.....	10
C.	Test Site	11
D.	Measurement Uncertainty	11
E.	Description of Test Sample.....	12
F.	Support Equipment	13
G.	Ports and Cabling Information.....	13
H.	Modifications	13
a)	Modifications to EUT.....	13
b)	Modifications to Test Standard.....	13
I.	Disposition of EUT	13
	§ 15.203 Antenna Requirement	14
	20 dB Occupied Bandwidth.....	15
	RSS-GEN (6.6) Occupied Bandwidth	15
	§ 15.225(a) Spurious Emission Limits, within the band 13.553 – 13.567 MHz.....	19
	RSS-210 (B.6.b) Spurious Emission Limits, within the bands 13.410 – 13.553 MHz and 13.567 – 13.710 MHz	19
	§ 15.225(e) Frequency Stability	27

List of Tables

Table 1. Executive Summary	8
Table 2. EUT Summary Table.....	9
Table 3. References	10
Table 4. Uncertainty Calculations Summary.....	11
Table 5. Equipment Overview and Test Configuration Information.....	12
Table 6. Ports and Cabling Information	13
Table 7. 20 dB Emission Bandwidth Test Results	17
Table 8. 99% Occupied Bandwidth Test Results	17
Table 9. Occupied Bandwidth Test Equipment List.....	18
Table 10. Out Of Band Spurious Emissions	22
Table 11. In Band Emissions.....	22
Table 12. Spurious Emissions Within the Band 13.11 – 14.010 MHz, 0 degrees Antenna.....	23
Table 13. Spurious Emissions Within the Band 13.11 – 14.010 MHz, 90 degrees Antenna.....	23
Table 14. Spurious Emissions Test Equipment List.....	26
Table 15. Frequency Stability, Test Results	29

List of Figures

Figure 1. Block Diagram of Test Configuration.....	12
Figure 2. 20 dB Bandwidth and 99% Bandwidth Test Setup	16
Figure 3: Radiated Emissions (Below 30MHz), Test Setup.....	21
Figure 4. Radiated Emissions (Above 30MHz), Test Setup.....	21
Figure 5. Temperature Stability Test Setup.....	28
Figure 6. Frequency Stability Test Equipment List.....	30

List of Plots

Plot 1. Occupied Bandwidth Plot	17
Plot 2. Spurious Emissions 9 kHz – 30 MHz, 0 degrees Antenna.....	24
Plot 3. Spurious Emissions 9 kHz – 30MHz, 90 degrees Antenna.....	24
Plot 4. Spurious Emissions Above 30MHz, Out of Band, Horizontal Antenna	25
Plot 5. Spurious Emissions Above 30MHz, Out of Band, Vertical Antenna	25
Plot 6. Frequency Stability vs Temperature	29

Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Devicor Medical Products Inc. Mammotome AutoCore, with the requirements of Part 15, §15.225 and RSS-210 Issue10, Annex B, B.6. All references are to the most current version of Title 47 of the Code of Federal Regulations and RSS-210 in effect. The following data is presented in support of the Certification of the Mammotome AutoCore. Devicor Medical Products Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the Mammotome AutoCore, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.225 and RSS-210, in accordance with Devicor Medical Products Inc., under purchase order number D1253750. All tests were conducted using measurement procedures ANSI C63.4-2014 and C63.10-2013.

FCC Reference	ISED Reference	Description	Compliance
Part 15 §15.203	---	Antenna Requirement	Compliant
Part 15 §15.207(a)	RSS-Gen (8.8)	Conducted Emission Limits	NA
Part 15 §15.215	---	20dB Occupied Bandwidth	Compliant
---	RSS-Gen (6.7)	99% Occupied Bandwidth	Compliant
Part 15 §15.225(a)	RSS-210 (B.6.a.i)	Field Strength emissions within the band 13.553 – 13.567 MHz	Compliant
Part 15 §15.225(b)	RSS-210 (B.6.a.ii)	Field Strength emissions within the band 13.410 – 13.553 MHz and 13.567 – 13.710 MHz	Compliant
Part 15 §15.225(c)	RSS-210 (B.6.a.iii)	Field Strength emissions within the band 13.110 – 13.410 MHz and 13.710 – 14.010 MHz	Compliant
Part 15 §15.225(d)	RSS-210 (B.6.a.iv)	Outside-Band Field Strength emissions per 15.209 - 13.110 – 14.010 MHz	Compliant
Part 15 §15.225(e)	RSS-210 (B.6.b)	Frequency Tolerance of the Carrier	Compliant

Table 1. Executive Summary

Equipment Configuration

A. Overview

Eurofins E&E North America was contracted by Devicor Medical Products Inc. to perform testing on the Mammotome AutoCore.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Devicor Medical Products Inc. Mammotome AutoCore.

The results obtained relate only to the item(s) tested.

Product Name:	Mammotome AutoCore	
Model Number:	MAHC	
FCCID:	2ATMT-MAHC01	
Test Sample Number:	22609-2	
EUT Specifications:	Primary Power: Battery Powered	
	Type of Modulation(s):	ASK
	Equipment Code:	DXX
	Maximum field Strength:	50.59dBuV/m (fundamental)
	Antenna Type:	Internal
	Antenna Model Number:	None
	EUT Frequency Ranges:	13.56MHz
Analysis:	The results obtained relate only to the item(s) tested.	
Environmental Test Conditions:	Temperature: 15-35° C	
	Relative Humidity: 30-60%	
	Barometric Pressure: 860-1060 mbar	
Evaluated by:	Bryan Taylor	
Test Date(s):	10/06/2022 to 10/14/2022	

Table 2. EUT Summary Table

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

Table 3. References

C. Test Site

Eurofins MET Laboratories Inc. (Eurofins E&E North America) is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

All testing was performed at Eurofins E&E North America, 13501 McCallen Pass, Austin, TX 78753. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

Correlation between semi-anechoic chamber and OATS:

Two calibrated Loop antennas were used on an OATS. One antenna was driven by a signal generator with a known power. The receive antenna was initially placed 1m away from the transmit antenna. The two antennas were placed parallel to each other. The receive antenna was in turn connected to a calibrated spectrum analyzer. The emissions were swept from 9 kHz to 30 MHz. The receive antenna was then rotated 90 degrees and measurements re-taken. Additional measurements were taken when the receive antenna was placed at 3meters.

This same setup was taken to inside the semi-anechoic chamber and the measurements repeated.

The data was used to correlate the semi-anechoic chamber and OATS.

ISED Lab Info:

CAB Identifier: US0004
Company Number: 2043D

FCC Lab Info:

Designation Number: US1127

D. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	K	Confidence Level
RF Frequencies	±4.52 Hz	2	95%
RF Power Conducted Emissions	±2.97 dB	2	95%
RF Power Radiated Emissions	±2.95 dB	2	95%
Radiated Emissions, (30 MHz – 1 GHz)	±2.95	2	95%
Radiated Emissions, (1 GHz – 18 GHz)	±3.54	2	95%
Conducted Emission Voltage	±2.97	2	95%

Table 4. Uncertainty Calculations Summary

E. Description of Test Sample

Name of EUT/Model:	Mammotome AutoCore / MAHC
Description of EUT and its intended use:	The Mammotome AutoCore Single Insertion Core Biopsy System is a single insertion, automated, spring-loaded core needle device. The system is used to take breast biopsy samples. The system consists of a reusable motorized battery-powered holster, charging base, and disposable probes. The intended user is a breast surgeon in a hospital setting.
Selected Operation Mode(s):	During the testing the RFID radio was transmitting continuously.
Rationale for the selection of the Operation Mode(s):	The selected mode of operation allowed for measurement of the fundamental as well as spurious emissions.
Size (HxWxD)	8" x 2" x 1"
Test Sample Number:	22609-14

Table 5. Equipment Overview and Test Configuration Information

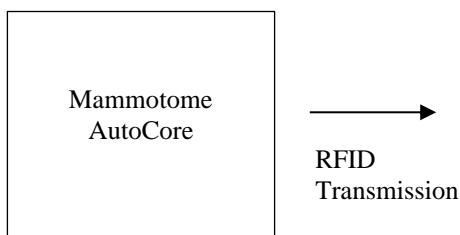


Figure 1. Block Diagram of Test Configuration

F. Support Equipment

EUT does not have any support equipment for the selected operating mode.

G. Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty	Length as tested (m)	Max Length (m)	Shielded? (Y/N)	Termination Box ID & Port Name
There were no cables associated with the selected operating mode							

Table 6. Ports and Cabling Information

H. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

I. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Devicor Medical Products Inc. upon completion of testing.

Antenna Requirements

§ 15.203 Antenna Requirement

Test Requirement: § 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The Mammotome AutoCore as evaluated, was compliant as the antenna was permanently attached.

Test Engineer(s): Bryan Taylor

Test Date(s): 10/6/2022

Occupied Bandwidth Measurements

§ 15.215(c) 20 dB Occupied Bandwidth

Test Requirement(s): **§ 15.215 (c)** Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Test Procedure: The transmitter was on and transmitting at the highest output power. The bandwidth of the fundamental frequency was measured with the spectrum analyzer. Per ANSI C63.10: 2020 the RBW should be between 1% and 5% of the occupied bandwidth. Due to the nature of the fundamental transmission being very “CW like” it was not possible to meet the RBW requirement. During the measurement the RBW was therefore set as narrow as possible. The 20 dB Bandwidth was measured and recorded.

RSS-GEN (6.7)

99% Occupied Bandwidth

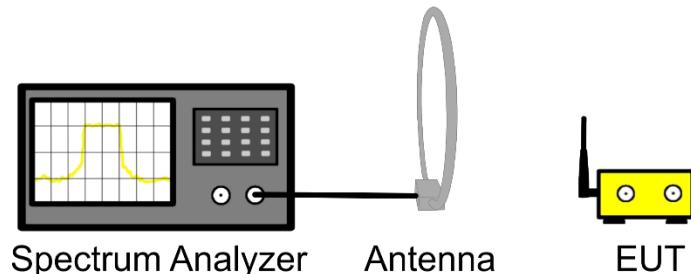
Test Requirements: The occupied bandwidth or the “99% emission bandwidth” is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

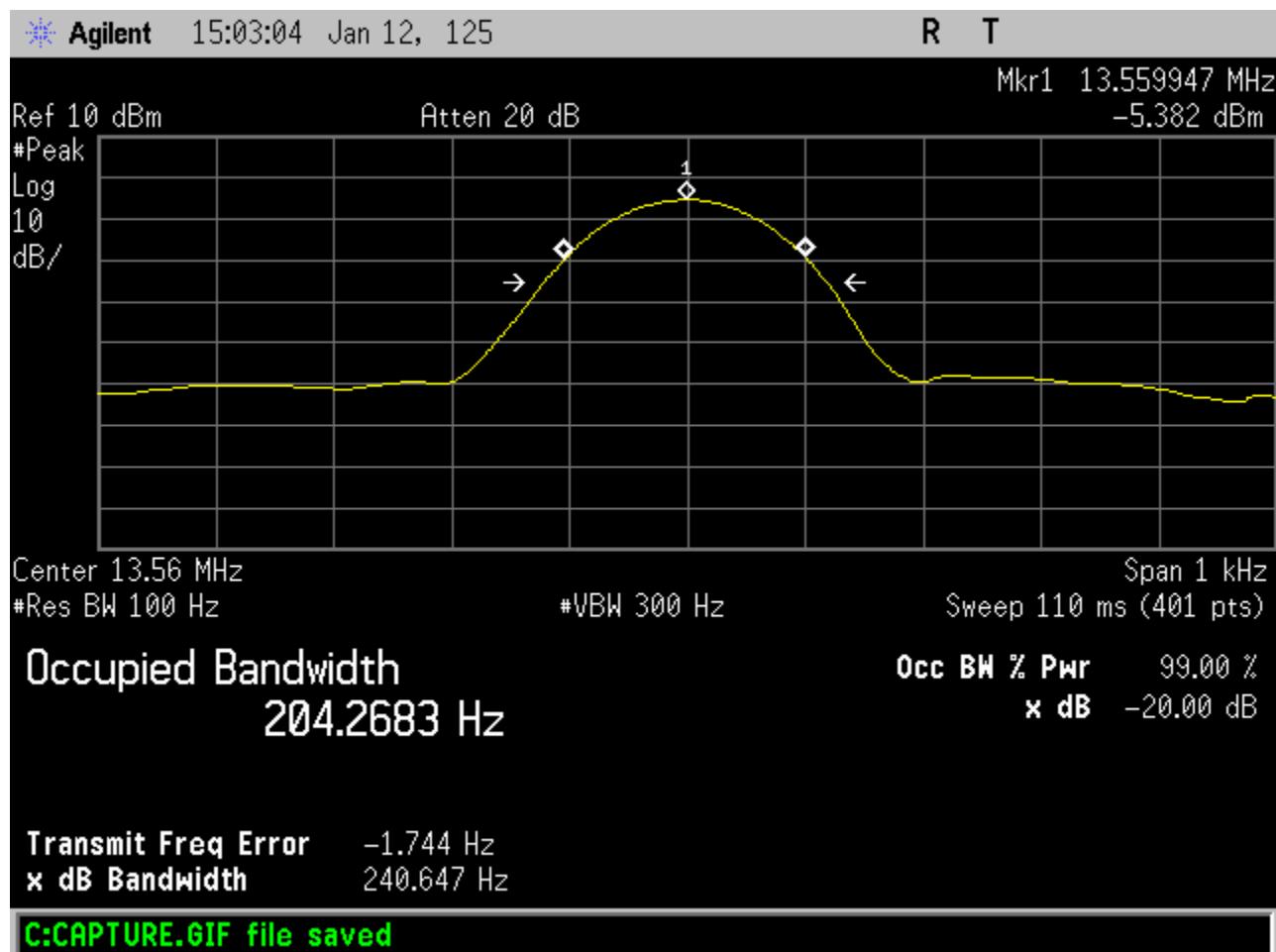
Test Procedure: The EUT was on and transmitting at the highest output power. The bandwidth of the fundamental frequency was measured with the spectrum analyzer. Per ANSI C63.10: 2020 the RBW should be between 1% and 5% of the occupied bandwidth. Due to the nature of the fundamental transmission being very “CW like” it was not possible to meet the RBW requirement. During the measurement the RBW was therefore set as narrow as possible. The 99% Bandwidth was measured and recorded.

Test Engineer(s): Bryan Taylor

Test Date(s): 2/10/2025

Test Results: The Mammotome AutoCore was compliant with these requirements. Both the 20dB and 99% bandwidth measurements are fully contained within the 13.11MHz – 14.01MHz designated band.




Figure 2. 20 dB Bandwidth and 99% Bandwidth Test Setup

Center Frequency (MHz)	20 dB Bandwidth of Emission (kHz)
13.56MHz	240.647Hz

Table 7. 20 dB Emission Bandwidth Test Results

Center Frequency (MHz)	99% Bandwidth of Emission (kHz)
13.56MHz	204.268Hz

Table 8. 99% Occupied Bandwidth Test Results

Plot 1. Occupied Bandwidth Plot (99% and -20dB Bandwidths)

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Test Name: Occupied Bandwidth				Test Date(s):	2/10/2025
MET Asset #	Description	Manufacturer	Model	Last Cal Date	Cal Due Date
1A1141	Spectrum Analyzer	Agilent	E4407B	4/29/2024	4/29/2025
1A1176	Active Loop Antenna	ETS-Lindgren	6502	8/24/2024	8/24/2026
Note:	Functionally tested equipment is verified using calibrated instrumentation at the time of testing.				

Table 9. Occupied Bandwidth Test Equipment List

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.225(a-d) Field Strength of Radiated Emissions

Test Requirement(s): **15.225 (a)** The field strength of any emissions within the band 13.553 – 13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

15.225 (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

15.225 (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

15.225 (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

RSS-210 (B.6.a(ii - iv)) Field Strength of Radiated Emissions

Test Requirement(s): **RSS-210 (B.6.a(i))** The field strength of any emissions within the band 13.553 – 13.567 MHz shall not exceed 15.848 mV/m (124 dB μ V/m) at 30meters.

RSS-210 (B.6.a(ii)) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 μ V/m (90.5 dB μ V/m) at 30meters.

RSS-210 (B.6.a(iii)) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 μ V/m (80.5 dB μ V/m) at 3 meters.

RSS-210 (B.6.a(iv)) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in RSS-GEN Section 8.9.

Test Procedure:

The EUT was set to transmit and placed on a 0.8 m-high wooden stand inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.10: 2013 were used. For measurements below 30 MHz a loop antenna placed 3m away from the unit was used. For measurements above 30 MHz a biconalog antenna placed 10 m away from the unit was used. Measurements below 30 MHz were conducted with the loop antenna at coaxial (parallel) and planar (perpendicular) orientations. Measurements above 30 MHz were conducted with the biconalog antenna in the vertical and horizontal polarizations. A peak detector was used to perform a pre-scan from 9 kHz to 10 times the fundamental frequency. Spurious emissions within 20 dB of the applicable limit were measured using a quasi-peak or average detector as appropriate for the frequency band and recorded in the subsequent section.

The measurements below 30MHz were performed in a semi-anechoic chamber that has been correlated to an open area test site.

For measurements made at 3m with the loop antenna (below 30MHz); the following extrapolation factor was applied to the limit in order to adjust it to the 3m measurement distance actually used.

$$40\log(30/3) = +40 \text{ dB}$$
$$40\log(300/3) = +80 \text{ dB}$$

For measurements made at 10m with the biconilog antenna (above 30MHz); the following extrapolation factor was applied to the limit in order to adjust it to the 10m measurement distance actually used.

$$20\log(3/10) = -10.46 \text{ dB}$$

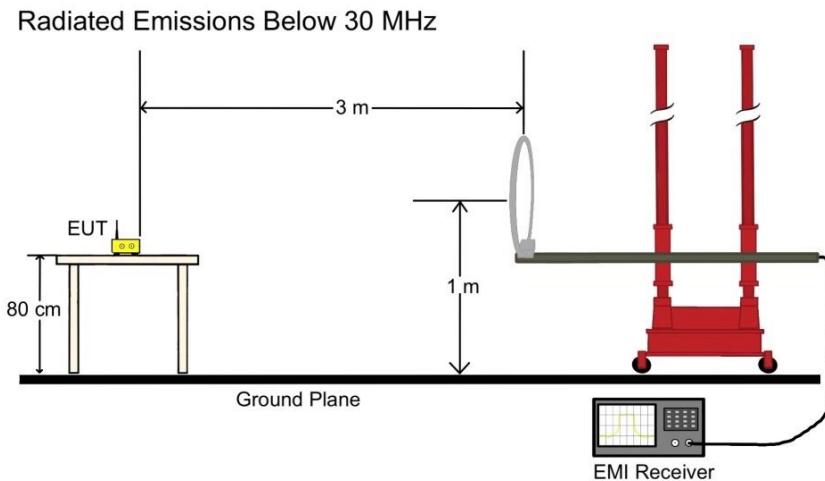


Figure 3: Radiated Emissions (Below 30MHz), Test Setup

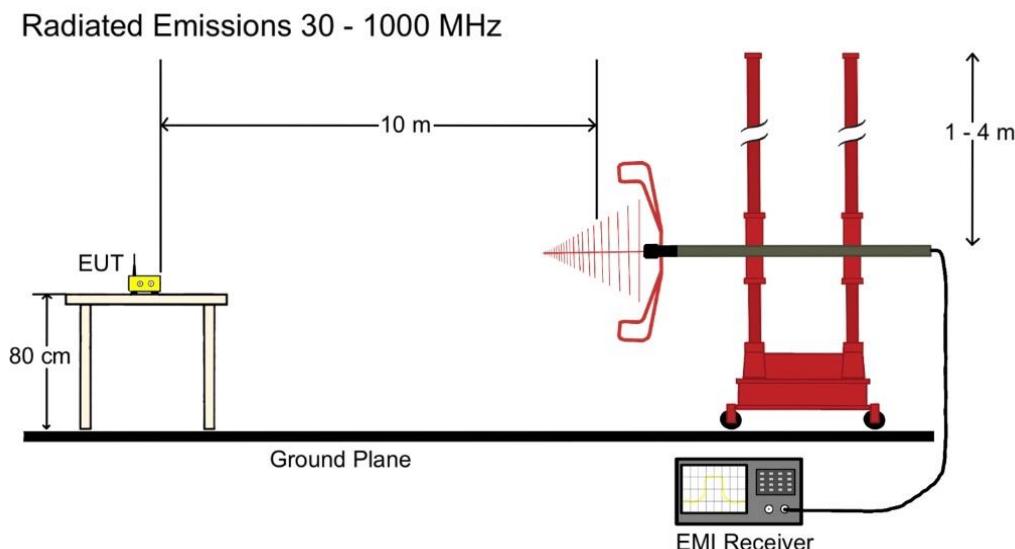
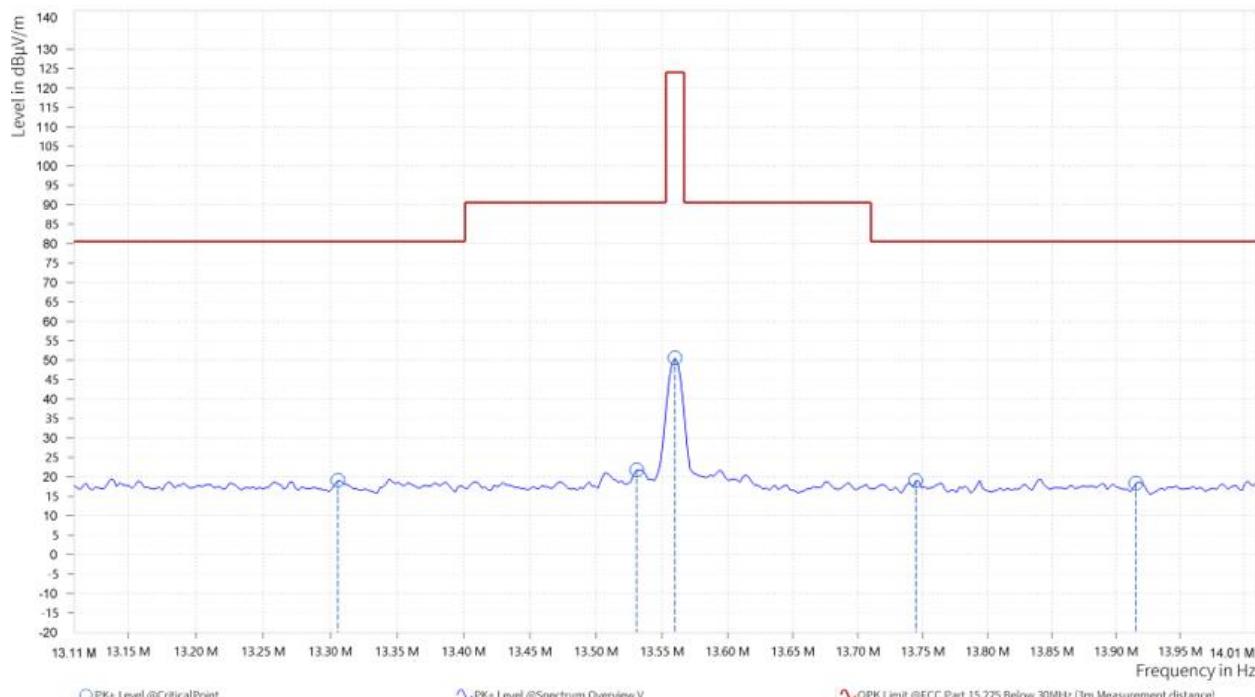


Figure 4. Radiated Emissions (Above 30MHz), Test Setup

Test Results: The Mammotome AutoCore was compliant with the requirements of §15.225(a - d) and RSS-210 RSS-210 (B.6.a(i, ii, iii, and iv)).

Test Engineer(s): Bryan Taylor

Test Date(s): 10/6/2022, 10/7/2022


Table 10. Out Of Band Spurious Emissions

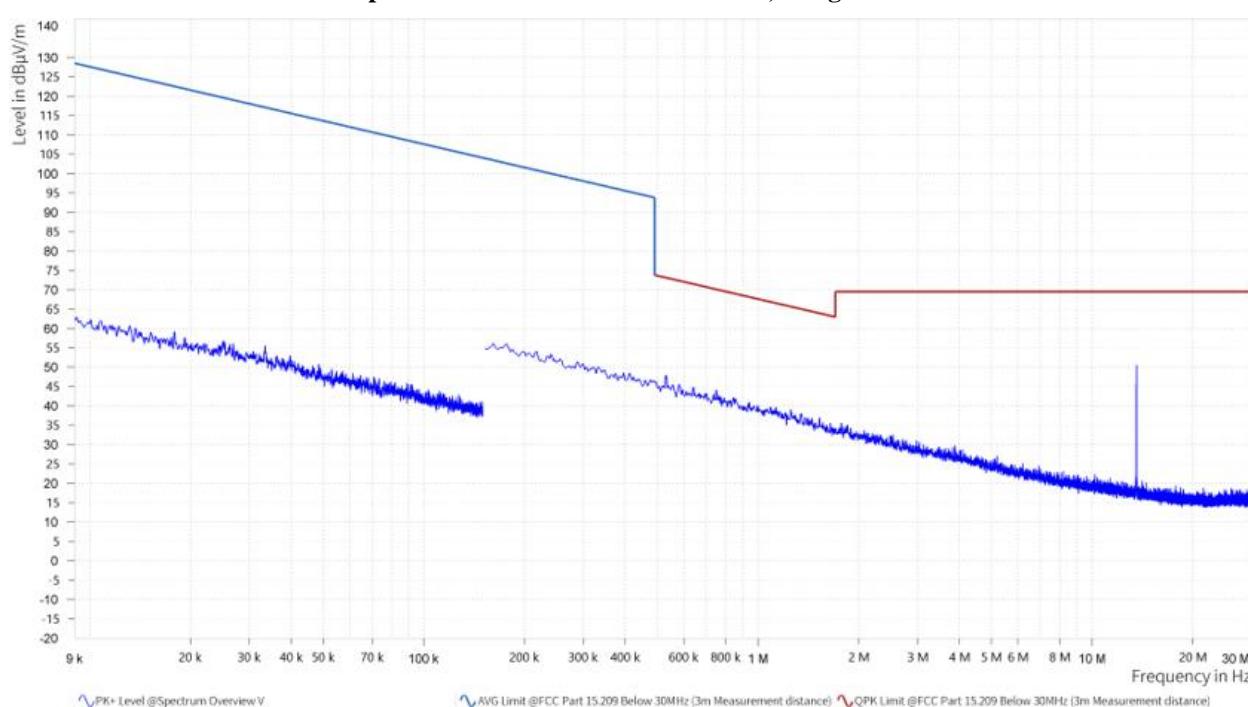
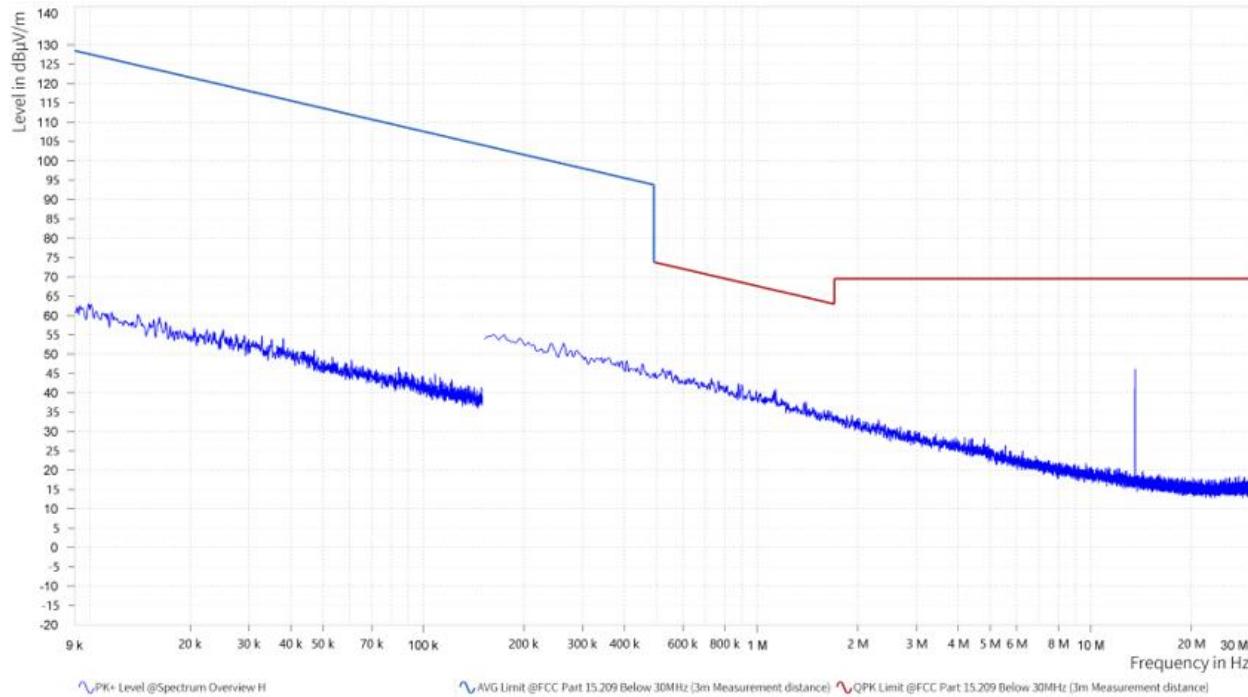


Frequency [MHz]	Level [dB μ V/m]	Detector	Limit [dB μ V/m]	Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result	Comment
232.800	16.11	QP	37.00	20.89	-8.43	V	130	1.34	120.000	Pass	Bilog Antena
263.820	13.72	QP	37.00	23.28	-5.64	H	135	3.42	120.000	Pass	Bilog Antena
401.880	22.64	QP	37.00	14.36	-2.47	V	287	1.17	120.000	Pass	Bilog Antena
412.380	21.27	QP	37.00	15.73	-1.80	H	33	3.58	120.000	Pass	Bilog Antena
569.490	22.85	QP	37.00	14.15	1.21	V	45	2.96	120.000	Pass	Bilog Antena
685.200	21.59	QP	37.00	15.41	1.98	H	327	1.08	120.000	Pass	Bilog Antena
0.2152	53.82	PK	113.63	59.81	11.62	0 Deg	330	1	9.000	Pass	Loop antenna
0.5302	47.99	PK	73.44	25.45	11.52	0 Deg	272	1	9.000	Pass	Loop antenna
0.9015	42.22	PK	70.12	27.9	11.67	90 Deg	187	1	9.000	Pass	Loop antenna
14.106	20.59	PK	69.50	48.91	10.74	90 Deg	223	1	9.000	Pass	Loop antenna

Table 11. In Band Emissions

Frequency [MHz]	Level [dB μ V/m]	Detector	Limit [dB μ V/m]	Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result	Comment
13.299	18.23	PK	80.50	62.27	10.78	0 Deg	360	1	9.000	Pass	Loop antenna
13.306	19.05	PK	80.50	61.45	10.78	90 Deg	330	1	9.000	Pass	Loop antenna
13.457	18.37	PK	90.50	72.13	10.78	0 Deg	150	1	9.000	Pass	Loop antenna
13.531	21.78	PK	90.50	68.72	10.77	90 Deg	360	1	9.000	Pass	Loop antenna
13.560	46.10	PK	124.00	77.9	10.77	0 Deg	270	1	9.000	Pass	Loop antenna
13.560	50.59	PK	124.00	73.41	10.77	90 Deg	180	1	9.000	Pass	Loop antenna
13.659	18.38	PK	90.50	72.12	10.77	0 Deg	0	1	9.000	Pass	Loop antenna
13.745	18.98	PK	80.50	61.52	10.76	90 Deg	90	1	9.000	Pass	Loop antenna
13.875	18.25	PK	80.50	62.25	10.76	0 Deg	150	1	9.000	Pass	Loop antenna
13.916	18.36	PK	80.50	62.14	10.75	90 Deg	270	1	9.000	Pass	Loop antenna

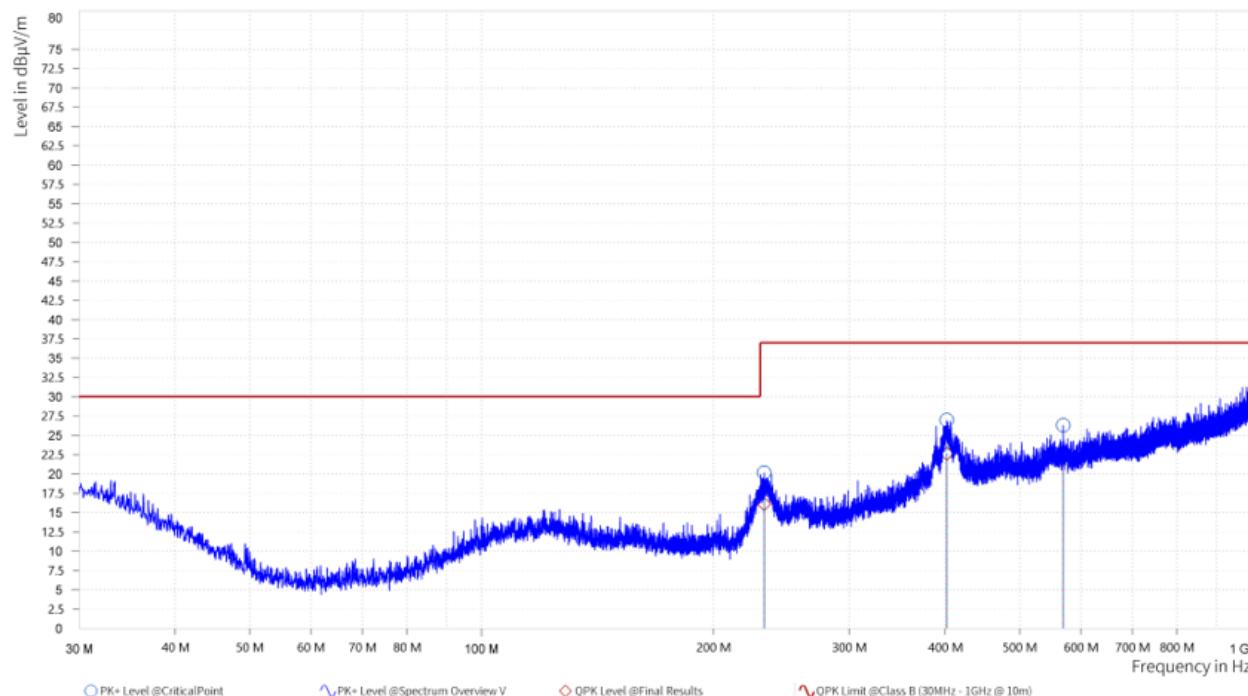

Radiated Field Strength

Table 12. Spurious Emissions Within the Band 13.11 – 14.010 MHz, 0 degrees Antenna

Table 13. Spurious Emissions Within the Band 13.11 – 14.010 MHz, 90 degrees Antenna

Plot 4. Spurious Emissions Above 30MHz, Out of Band, Horizontal Antenna

Plot 5. Spurious Emissions Above 30MHz, Out of Band, Vertical Antenna

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

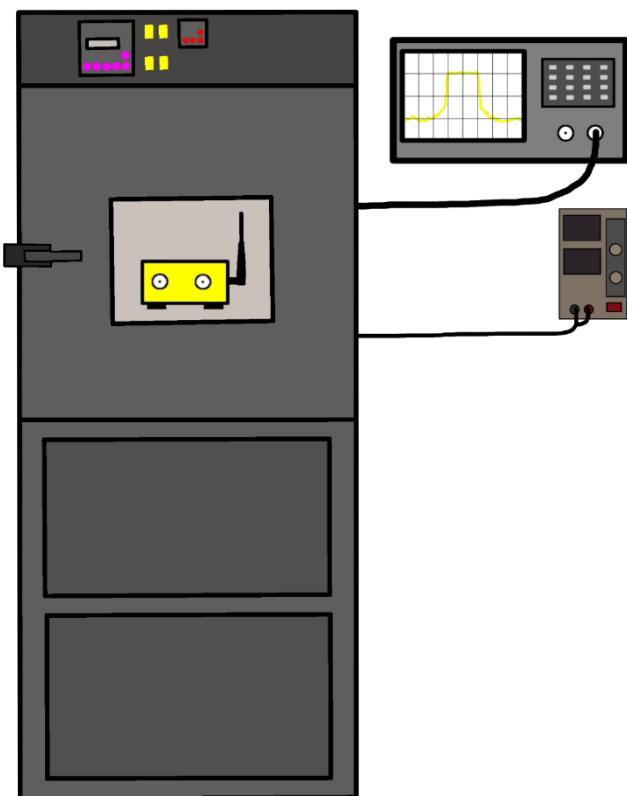
Test Name: Radiated Emissions				Test Date(s):	10/6/2022, 10/7/2022
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date
9 kHz - 30 MHz					
1A1083	Test Receiver	Rohde & Schwarz	ESU40	10/12/2021	10/12/2022
1A1088	Preamplifier	Rohde & Schwarz	TS-PR1	See Note	
1A1050	Bi-Log Antenna	Schaffner	CBL 6112D	12/01/2020	12/01/2022
1T9586	Active Loop Antenna	ETS-Lindgren	6502	06/01/2021	12/01/2022
3A3118	Temperature, Humidity and Pressure Recorder	Omega Engineering	OM-CP-PRHTEMP2000	10/22/2021	10/22/2022
1A1073	Multi Device Controller	ETS EMCO	2090	See Note	
1A1106	10 M Semi-Anechoic Chamber (NSA)	ETS - Lindgren	04X07	01/06/2022	01/06/2025
Note:	Functionally tested equipment is verified using calibrated instrumentation at the time of testing.				

Table 14. Spurious Emissions Test Equipment List

Electromagnetic Compatibility Criteria for Intentional Radiators

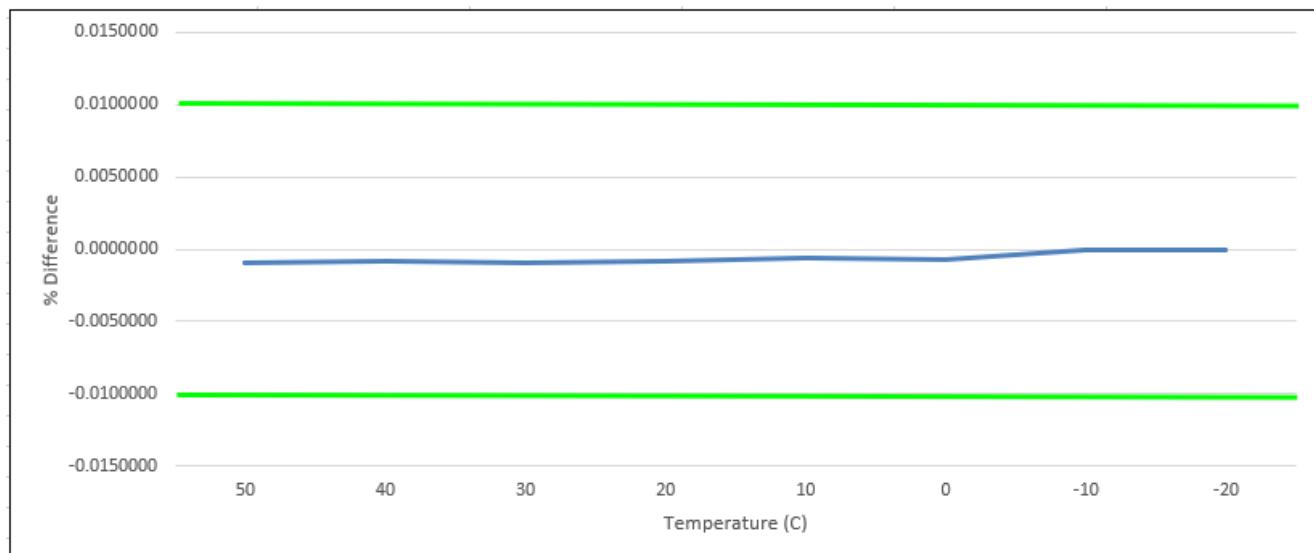
Frequency Stability

Test Requirement(s): **15.225(e)** The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


RSS-210 (B.6.b) The frequency tolerance of the carrier signal shall be maintained within +/-0.01% (± 100 ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Procedure: Measurements are in accordance with section 6.8 of ANSI C63.10. The EUT was placed in the Environmental Chamber and allowed to reach desired temperature. A spectrum analyzer was used to measure the frequency drift. The EUT was set to transmit in the operating frequency range. Frequency drift was investigated for the extreme temperatures and nominal temperature, until the unit is stabilized then recorded the reading in tabular format with the temperature range of -20° to 50°C.

Test Results: The Mammotome AutoCore was compliant with Part 15.225 (e) and RSS-210 (B.6.b) requirement(s) of this section.


Test Engineer(s): Bryan Taylor

Test Date(s): 10/10/2022

Figure 5. Temperature Stability Test Setup

Voltage Variation (%)	Temperature (°C)	Nominal Freq (MHz)	Result (MHz)	% Difference	Limit
V _{nom}	50	13.56	13.55986980	-0.0009602	±0.01%
	40	13.56	13.55989150	-0.0008001	
	30	13.56	13.55987700	-0.0009071	
	20	13.56	13.55988420	-0.0008540	
	10	13.56	13.55991320	-0.0006401	
	0	13.56	13.55990590	-0.0006940	
	-10	13.56	13.55999280	-0.0000531	
	-20	13.56	13.55999059	-0.0000694	
	15	20	13.55986970	-0.0009609	
	-15	20	13.55987150	-0.0009476	

Table 15. Frequency Stability, Test Results

Plot 6. Frequency Stability vs Temperature

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Test Name: Frequency Stability				Test Date(s):	10/10/2022
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date
9 kHz - 30 MHz					
1T9586	Active Loop Antenna	ETS-Lindgren	6502	06/01/2021	12/01/2022
3A3009	Programable Power Supply	KIKUSUI	PCR2000L	See Note	
1A1234	Spectrum Analyzer	Rohde & Schwarz	FSV 40	01/20/2022	01/20/2023
1A1225	Environmental Chamber	Espec	EXP-2H/New	03/18/2022	03/18/2023
Note:	Functionally tested equipment is verified using calibrated instrumentation at the time of testing.				

Figure 6. Frequency Stability Test Equipment List

End of Report