

Partial FCC Test Report

(PART 22)

Report No.: RF190918C14

FCC ID: 2ATM8EC25A

Test Model: EC25-A

Received Date: Sep. 18, 2019

Test Date: Oct. 15 ~ Oct. 16, 2019

Issued Date: Dec. 13, 2019

Applicant: Hawkeye Tech Co., Ltd.

Address: 13F. No.736, Zhongzheng Rd., Zhonghe Dist., New Taipei City 235, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: B2F., No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan

FCC Registration / 427177 / TW0011

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record	3
1 Certificate of Conformity	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty.....	5
2.2 Test Site and Instruments	6
3 General Information	7
3.1 General Description of EUT	7
3.2 Configuration of System under Test.....	8
3.2.1 Description of Support Units.....	8
3.3 Test Mode Applicability and Tested Channel Detail.....	9
3.4 EUT Operating Conditions	9
3.5 General Description of Applied Standards.....	9
4 Test Types and Results	10
4.1 Output Power Measurement.....	10
4.1.1 Limits of Output Power Measurement.....	10
4.1.2 Test Procedures.....	10
4.1.3 Test Setup.....	11
4.1.4 Test Results	12
4.2 Radiated Emission Measurement.....	13
4.2.1 Limits of Radiated Emission Measurement.....	13
4.2.2 Test Procedure	13
4.2.3 Deviation from Test Standard	13
4.2.4 Test Setup.....	14
4.2.5 Test Results	15
5 Pictures of Test Arrangements	21
Appendix – Information of the Testing Laboratories	22

Release Control Record

Issue No.	Description	Date Issued
RF190918C14	Original Release	Dec. 13, 2019

1 Certificate of Conformity

Product: LTE Module

Brand: Quectel

Test Model: EC25-A

Sample Status: Engineering Sample

Applicant: Hawkeye Tech Co., Ltd.

Test Date: Oct. 15 ~ Oct. 16, 2019

Standards: FCC Part 22, Subpart H

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : Pettie Chen, **Date:** Dec. 13, 2019

Pettie Chen / Senior Specialist

Approved by : Bruce Chen, **Date:** Dec. 13, 2019

Bruce Chen / Senior Project Engineer

2 Summary of Test Results

Applied Standard: FCC Part 22 & Part 2			
FCC Clause	Test Item	Result	Remarks
2.1046 22.913 (a)	Effective Radiated Power	Pass	Meet the requirement of limit.
2.1047	Modulation Characteristics	N/A	Refer to Note
2.1046 22.913 (d)	Peak to Average Ratio	N/A	Refer to Note
2.1055 22.355	Frequency Stability	N/A	Refer to Note
2.1049	Occupied Bandwidth	N/A	Refer to Note
22.917	Band Edge Measurements	N/A	Refer to Note
2.1051 22.917	Conducted Spurious Emissions	N/A	Refer to Note
2.1053 22.917	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -35.18 dB at 194.97 MHz.

Note:

1. This report is a partial report. Therefore, only test item of Effective Radiated Power and Radiated Spurious Emissions tests were performed for this report. Other testing data please refer Bay Area Compliance Laboratories Corp.(Taiwan) report no.: RTWK160705001-00 for module (Brand: Quectel, Model: EC25-A)
2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	9 kHz ~ 30 MHz	3.0400 dB
	30 MHz ~ 200 MHz	2.0153 dB
	200 MHz ~ 1000 MHz	2.0224 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.0121 dB
	18 GHz ~ 40 GHz	1.1508 dB

2.2 Test Site and Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Aug. 26, 2019	Aug. 25, 2020
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Apr. 15, 2019	Apr. 14, 2020
BILOG Antenna SCHWARZBECK	VULB 9168	9168-616	Nov. 27, 2018	Nov. 26, 2019
HORN Antenna ETS-Lindgren	3117	00143293	Nov. 25, 2018	Nov. 24, 2019
BILOG Antenna SCHWARZBECK	VULB9168	9168-631	Nov. 26, 2018	Nov. 25, 2019
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020
MXG Vector signal generator Agilent	N5182B	MY53050430	Nov. 19, 2018	Nov. 18, 2019
Preamplifier Agilent	310N	187226	Jun. 18, 2019	Jun. 17, 2020
Preamplifier Agilent	83017A	MY39501357	Jun. 18, 2019	Jun. 17, 2020
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(RFC-SMS-100-SMS-120+RFC-SMS-100-SMS-400)	Jun. 18, 2019	Jun. 17, 2020
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(RFC-SMS-100-SMS-24)	Jun. 18, 2019	Jun. 17, 2020
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower & Turn Table Controller MF	MF-7802	NA	NA	NA
Communications Tester-Wireless Agilent	8960 Series 10	MY53201073	Jul. 01, 2019	Jun. 30, 2020
Radio Communication Analyzer Anritsu	MT8820C	6201300640	Aug. 19, 2019	Aug. 18, 2020

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 2. The test was performed in HsinTien Chamber 1.

3 General Information

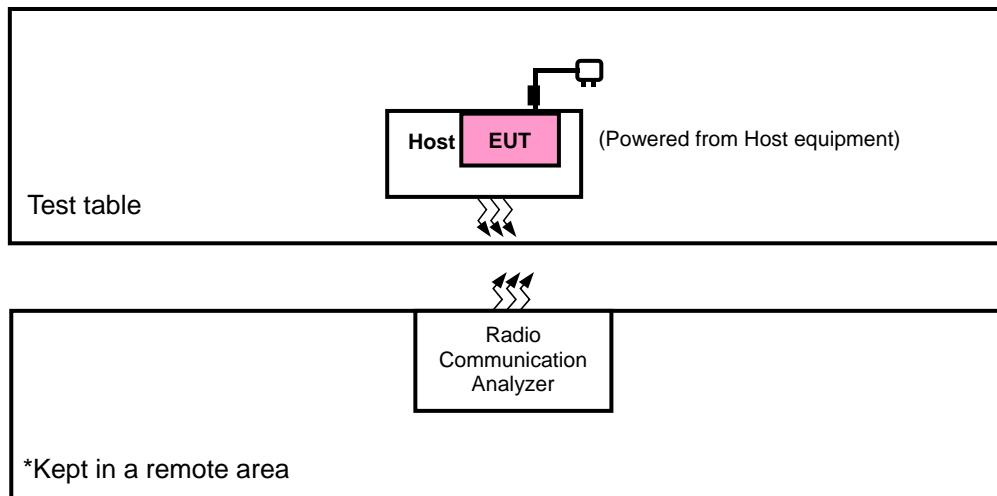
3.1 General Description of EUT

Product	LTE Module	
Brand	Quectel	
Test Model	EC25-A	
Status of EUT	Engineering Sample	
Power Supply Rating	3.8Vdc(Host equipment)	
Modulation Type	WCDMA	QPSK
Frequency Range	WCDMA	826.4 ~ 846.6 MHz
Max. ERP Power	WCDMA	259.30 mW
Antenna Type	Dipole Antenna with 0.3 dBi gain	
Accessory Device	N/A	
Data Cable Supplied	N/A	

Note:

1. The EUT was installed in a specific End-product.

Product	Brand	Model	FCC ID
veeaHub	veeaHub	VHH10XXX (X=A-Z, 0-9, blank or "-")	2ARXKVHH10


2. The End-product uses following adapter and PoE (Support unit).

Product	Brand	Model	Description
Adapter	EDACPOWER ELEC.	EA1062SGR-480	I/P: 100-240 Vac, 50/60 Hz, 2.5A O/P: 48 Vdc, 1.35 A 1.2m DC cable with 1 core
PoE	-	APOE02-WM	O/P: 48 Vdc

3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Configuration of System under Test

<Radiated Emission Test> & <E.R.P. Test>

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Radio Communication Analyzer	Anritsu	MT8820C	6201300640	N/A

Note:

1. All power cords of the above support units are non-shielded (1.8m).
2. Items 1 acted as communication partners to transfer data.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, antenna degree 90° and 180°, and antenna ports.

The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

Band	ERP	Radiated Emission
WCDMA	90°	90°

WCDMA

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Mode
-	ERP	4132 to 4233	4132, 4182, 4233	WCDMA
-	Radiated Emission	4132 to 4233	4132, 4182, 4233	WCDMA

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
ERP	25 deg. C, 65 % RH	3.8 Vdc	Charles Hsiao
Radiated Emission	25 deg. C, 65 % RH	120 Vac, 60 Hz	Charles Hsiao

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2

FCC 47 CFR Part 22

KDB 971168 D01 Power Meas License Digital Systems v03r01

ANSI/TIA/EIA-603-E 2016

ANSI 63.26-2015

Note: All test items have been performed and recorded as per the above standards.

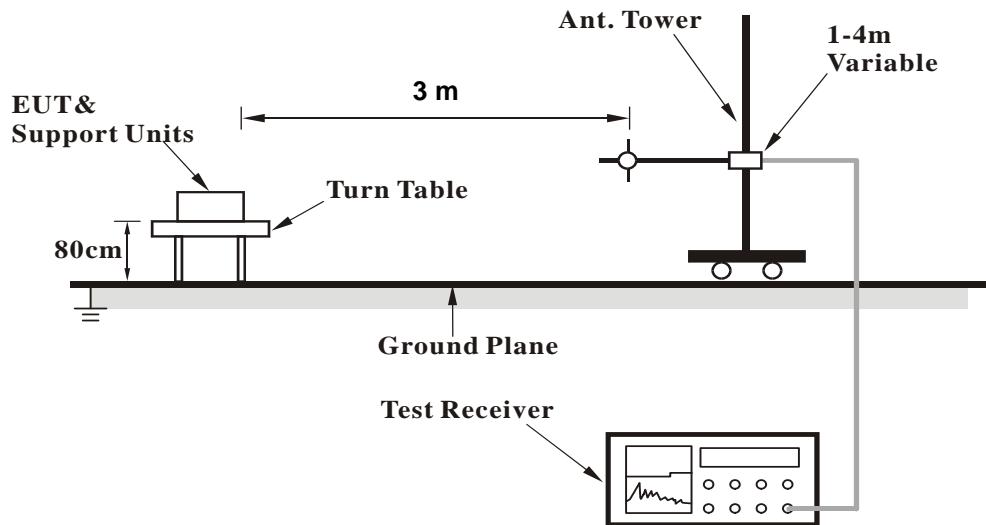
4 Test Types and Results

4.1 Output Power Measurement

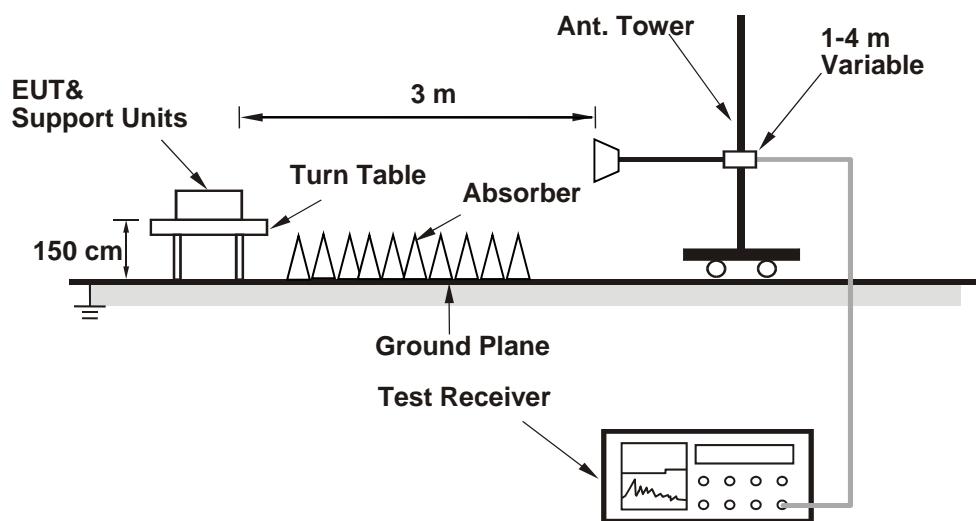
4.1.1 Limits of Output Power Measurement

Mobile / Portable station are limited to 7 watts e.r.p.

4.1.2 Test Procedures


EIRP / ERP Measurement:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 5 MHz for WCDMA mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G.
- d. $EIRP = \text{Output power level of S.G} - \text{TX cable loss} + \text{Antenna gain of substitution horn}$. E.R.P power can be calculated from E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15 dB.


4.1.3 Test Setup

EIRP / ERP Measurement:

<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.4 Test Results

ERP Power (dBm)

WCDMA							
Plane	Channel	Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (mW)	Polarization (H/V)
90°	4132	826.4	-4.92	31.208	24.14	259.30	H
	4182	836.4	-5.04	31.300	24.11	257.63	
	4233	846.6	-5.04	31.222	24.03	253.05	
	4132	826.4	-8.23	31.504	21.12	129.54	V
	4182	836.4	-7.89	31.117	21.08	128.14	
	4233	846.6	-8.77	31.922	21.00	125.95	

Note: ERP (dBm) = Reading (dBm) + Correction Factor (dB) – 2.15

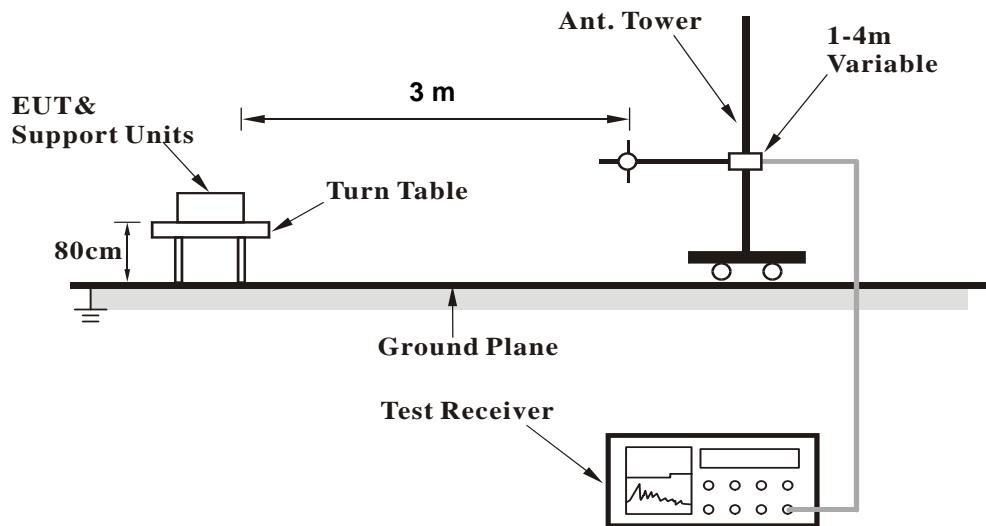
4.2 Radiated Emission Measurement

4.2.1 Limits of Radiated Emission Measurement

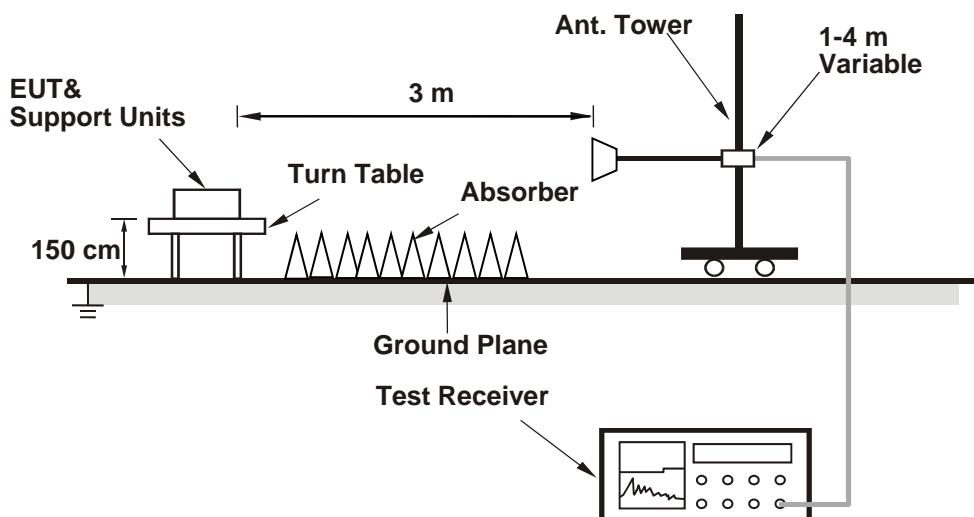
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit is equal to -13 dBm.

4.2.2 Test Procedure

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G – TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15 dB.


NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz/3 MHz.

4.2.3 Deviation from Test Standard


No deviation.

4.2.4 Test Setup

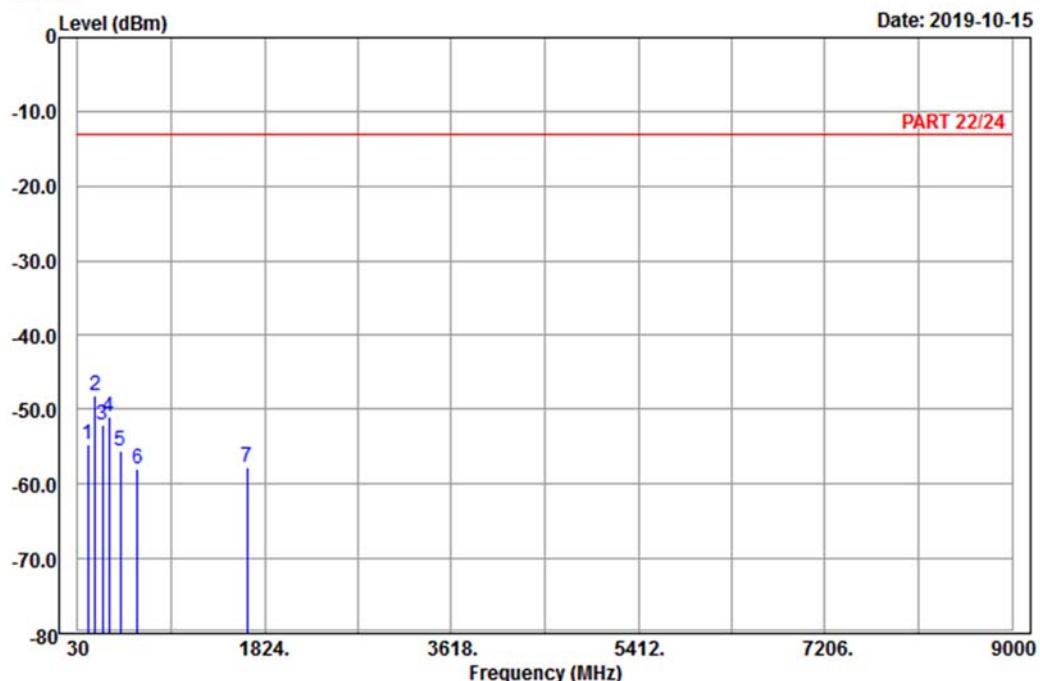
<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.5 Test Results

WCDMA:

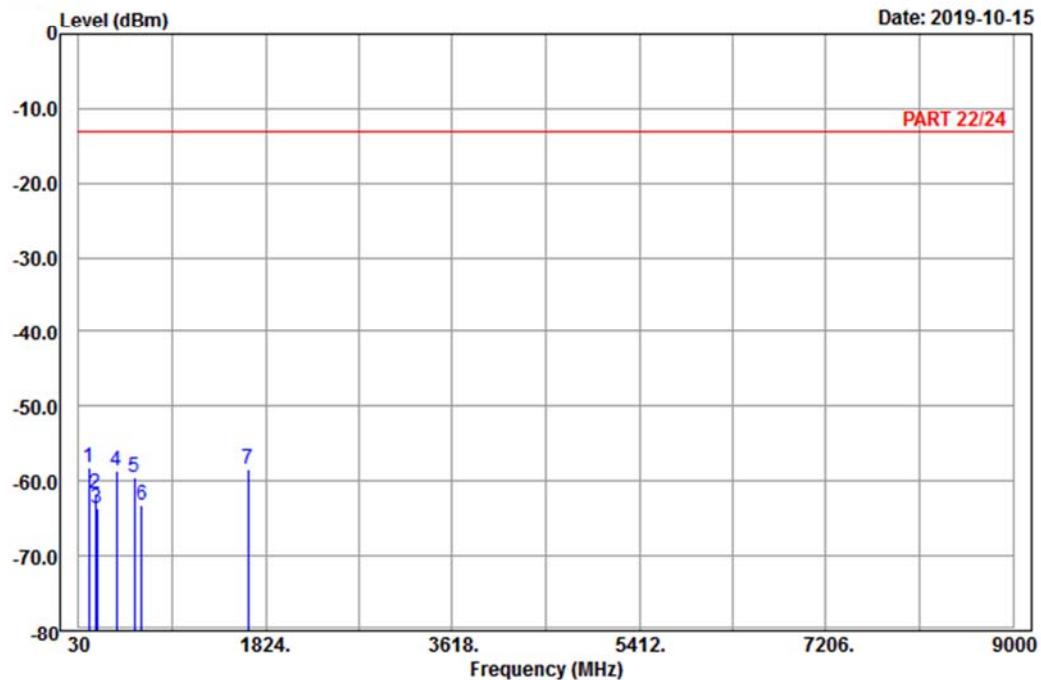

Low Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 9

Site : 966 chamber 1
 Condition: PART 22/24 Horizontal
 Remark : Band V_Link_L-Ch
 Tested by: Charles Hsiao


Freq	Read		Limit Factor	Limit Line	Over Limit	Remark
	MHz	dBm		dBm	dBm	
1	129.09	-54.71	-47.00	-7.71	-13.00	-41.71 Peak
2 pp	194.97	-48.18	-42.22	-5.96	-13.00	-35.18 Peak
3	264.63	-52.21	-46.57	-5.64	-13.00	-39.21 Peak
4	331.50	-51.12	-45.53	-5.59	-13.00	-38.12 Peak
5	441.40	-55.54	-51.89	-3.65	-13.00	-42.54 Peak
6	599.60	-58.08	-58.47	0.39	-13.00	-45.08 Peak
7	1652.80	-57.76	-65.49	7.73	-13.00	-44.76 Peak

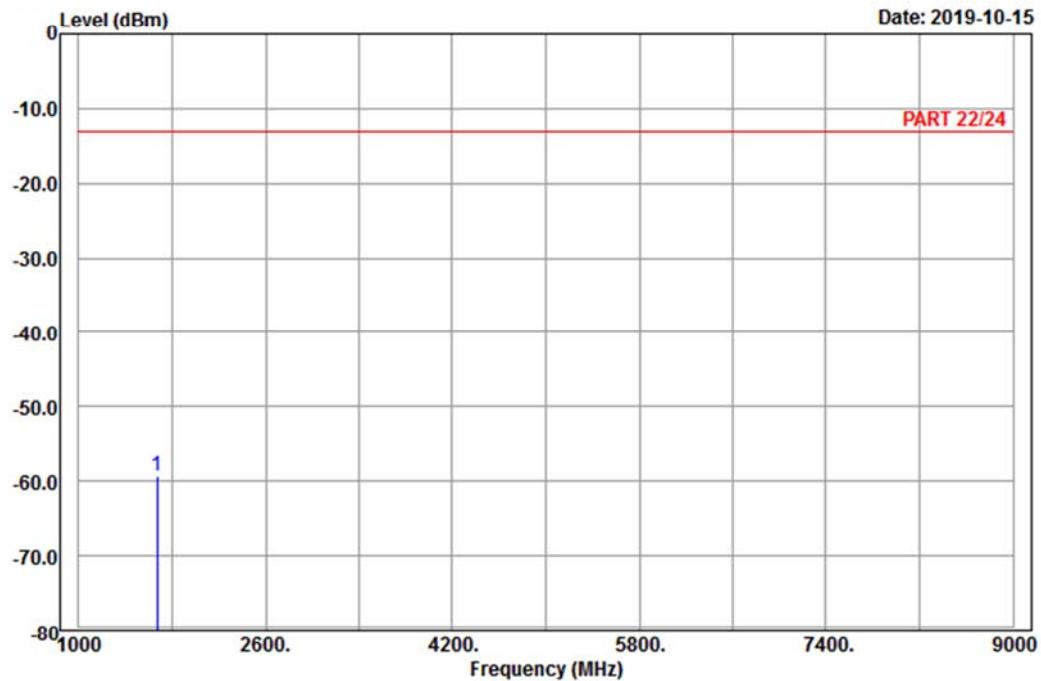
Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 10

Site : 966 chamber 1
 Condition: PART 22/24 Vertical
 Remark : Band V_Link_L-Ch
 Tested by: Charles Hsiao

Freq	MHz	Read	Limit	Over	Remark	
		Level	Level Factor	Line		
1 pp	125.04	-58.13	-50.18	-7.95	-13.00	-45.13 Peak
2	188.22	-61.74	-56.04	-5.70	-13.00	-48.74 Peak
3	208.20	-63.63	-57.56	-6.07	-13.00	-50.63 Peak
4	395.90	-58.57	-55.62	-2.95	-13.00	-45.57 Peak
5	563.90	-59.44	-58.34	-1.10	-13.00	-46.44 Peak
6	631.10	-63.23	-63.30	0.07	-13.00	-50.23 Peak
7	1652.80	-58.47	-66.20	7.73	-13.00	-45.47 Peak

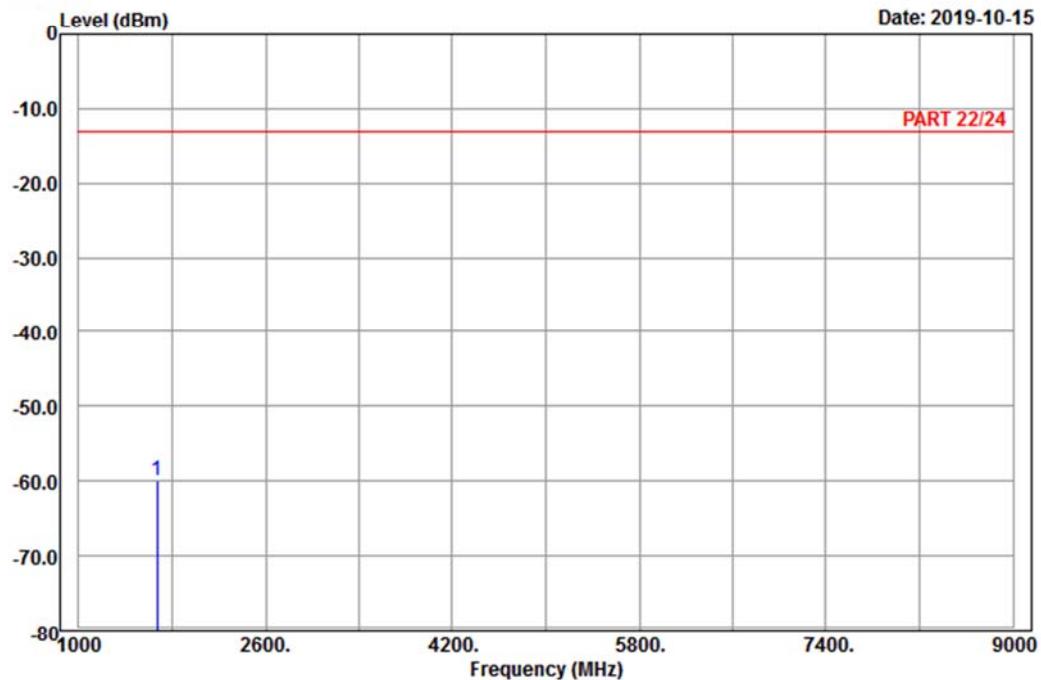

Middle Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 5

Site : 966 chamber 1
Condition: PART 22/24 Horizontal
Remark : Band V_Link_M-Ch
Tested by: Charles Hsiao


Freq	Read		Limit	Over	Remark
	Level	Level			
MHz	dBm	dBm	dB	dBm	dB
1 pp	1672.80	-59.24	-67.15	7.91	-13.00 -46.24 Peak

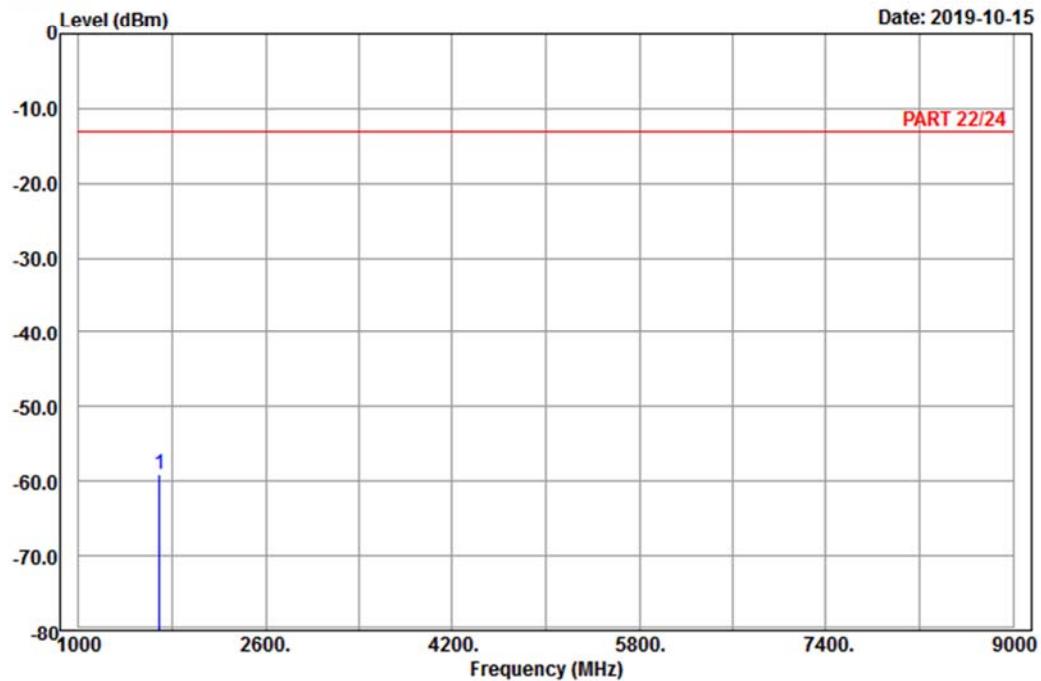
Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 6

Site : 966 chamber 1
Condition: PART 22/24 Vertical
Remark : Band V_Link_M-Ch
Tested by: Charles Hsiao

Freq	Read		Limit	Over	Remark	
	Level	Level Factor				
MHz	dBm	dBm	dB	dBm	dB	
1 pp	1672.80	-59.99	-67.90	7.91	-13.00	-46.99 Peak


High Channel

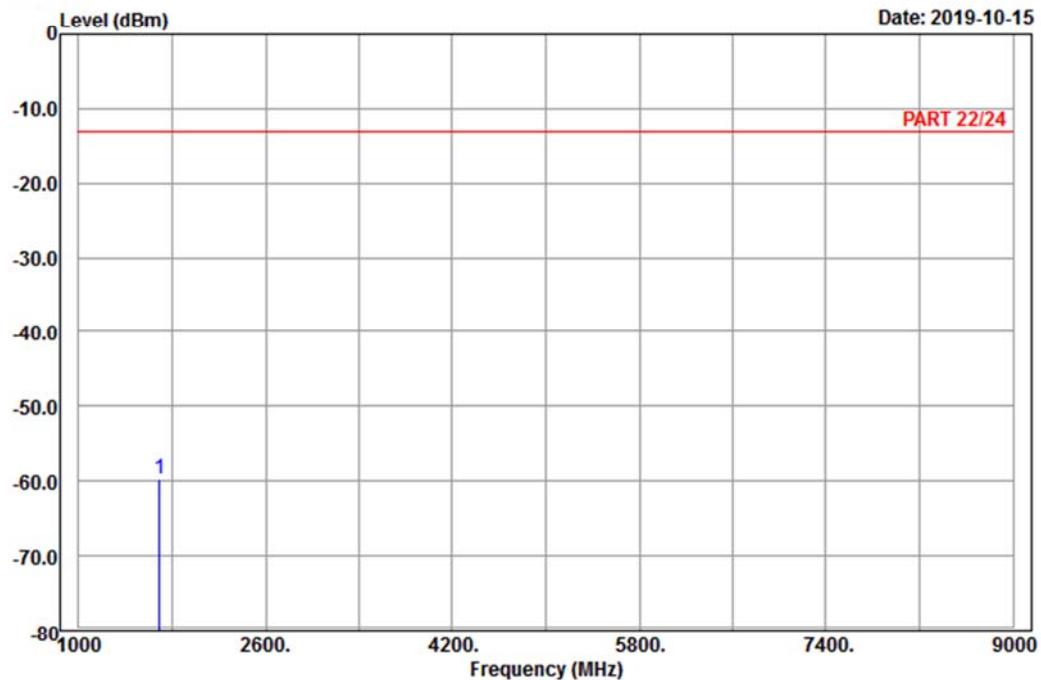
Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 5

Site : 966 chamber 1
Condition: PART 22/24 Horizontal
Remark : Band V_Link_H-Ch
Tested by: Charles Hsiao

Freq	Read Level	Limit Level	Factor	Over Line	Over Limit	Remark
MHz	dBm	dBm		dB	dBm	dB


1 pp 1693.20 -59.10 -67.24 8.14 -13.00 -46.10 Peak

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 6

Site : 966 chamber 1
Condition: PART 22/24 Vertical
Remark : Band V_Link_H-Ch
Tested by: Charles Hsiao

	Read	Limit	Over	
Freq	Level	Level Factor	Line	Limit Remark
MHz	dBm	dBm	dB	dBm dB
1 pp	1693.20	-59.82	-67.96	8.14 -13.00 -46.82 Peak

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---