

FCC TEST REPORT

FCC ID:2ATM75029

Report Number.: **DLE-250407001R**

Date of Test..... Mar. 18, 2025 to Mar. 27, 2025

Date of issue..... Mar. 27, 2025

Total number of pages 27

Test Result **PASS**

Testing Laboratory..... : **Shenzhen DL Testing Technology Co., Ltd.**

Address 101-201, Building C, Shuanghuan, No.8, Baoqing Roa Baolong
Industrial Zone, Baolong Street, Longgang Shenzhen, Guangdong,
China.

Applicant's name : **YoSmart Inc.**

Address 25172 Arctic Ocean Drive, Suite 106, Lake Forest, California, United
States 92630

Manufacturer's name : **YoSmart Inc.**

Address 25172 Arctic Ocean Drive, Suite 106, Lake Forest, California, United
States 92630

Test specification:

Standard : FCC CFR Title 47 Part 15 Subpart C Section 15.249
ANSI C63.10:2013

Test procedure : /

Non-standard test method : N/A

Test Report Form No. : /

Test Report Form(s) Originator : DL Testing

Master TRF : Dated: 2020-01-06

This device described above has been tested by DL, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of DL, this document may be altered or revised by DL, personal only, and shall be noted in the revision of the document.

Product name..... : **FlowSmart LeakStop 2 Channel**

Trademark : YOLINK

Model/Type reference : YS5029-UC
YS5029-UA

Ratings..... : Input: 3V== (2*AA 1.5V)

Testing procedure and testing location:

Testing Laboratory.....: **Shenzhen DL Testing Technology Co., Ltd.**

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Roa
Baolong Industrial Zone, Baolong Street, Longgang
Shenzhen, Guangdong, China.

Tested by (name + signature): Jim Liu

Reviewer (name + signature).....: Jackson Fang

Approved (name + signature): Jade Yang

Table of Contents

	Page
1. VERSION	4
2. TEST SUMMARY.....	5
2.1 TEST FACILITY	6
2.2 MEASUREMENT UNCERTAINTY	6
3.1 GENERAL DESCRIPTION OF EUT.....	7
3.2 Test Setup Configuration.....	8
3.3 Support Equipment.....	8
4. EMC EMISSION TEST.....	12
4.1 Conducted emissions	12
4.1.1 POWER LINE CONDUCTED EMISSION Limits	12
4.1.2 TEST PROCEDURE	12
4.1.3 DEVIATION FROM TEST STANDARD.....	12
4.1.4 TEST SETUP	13
4.1.5 EUT OPERATING CONDITIONS.....	13
4.1.6 Test Result	13
4.2 Radiated emissions	14
4.2.1 Radiated Emission Limits	14
4.2.2 TEST PROCEDURE	15
4.2.3 DEVIATION FROM TEST STANDARD.....	15
4.2.4 TEST SETUP	15
4.2.5 EUT OPERATING CONDITIONS.....	16
4.2.6 TEST RESULTS.....	16
4.2.7 Field Strength Calculation	20
5. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	21
5.1 Block Diagram Of Test Setup	21
5.2 Applicable Standard	21
5.3 Test Procedure.....	21
5.4 EUT Operating Conditions	21
5.5 Test Result	22
6. 20DB BANDWIDTH	24
6.1 Test Setup	24
6.2 Limit.....	24
6.3 Test procedure	24
6.4 EUT Operation Conditions	24
6.5 Test Result	25
7. ANTENNA REQUIREMENT	26
8. TEST SETUP PHOTO	27
9. EUT CONSTRUCTIONAL DETAILS	27

1. VERSION

Report No.	Version	Description	Approved
DLE-250407001R	Rev.01	Initial issue of report	Mar. 27, 2025

2. TEST SUMMARY

Test procedures according to the technical standards:

FCC Part15 (15.249) , Subpart C			
Standard Section	Test Item	Result	Remark
15.203	Antenna Requirement	PASS	
15.207	AC Power Line Conducted Emission	N/A	
15.215 (c)	20dB Occupied Bandwidth	PASS	
15.209/15.249	Radiated Emission and Fundamental	PASS	
15.205/15.209	Restricted Band	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen DL Testing Technology Co., Ltd.

Address : 101-201, Building C, Shuanghuan, No.8, Baoqing Roa Baolong Industrial Zone, Baolong Street, Longgang Shenzhen, Guangdong, China.

FCC Test Firm Registration Number: 854456

Designation Number: CN1307

IC Registered No.: 27485

CAB ID.: CN0118

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$ · where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$ · providing a level of confidence of approximately 95 % .

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9KHz-30MHz)	$U=4.5\text{dB}$
2	3m chamber Radiated spurious emission(30MHz-1GHz)	$U=4.8\text{dB}$
3	3m chamber Radiated spurious emission(1GHz-6GHz)	$U=4.9\text{dB}$
4	3m chamber Radiated spurious emission(6GHz-40GHz)	$U=5.0\text{dB}$
5	Conducted disturbance	$U=3.2\text{dB}$
6	RF Band Edge	$U=1.68\text{dB}$
7	RF Occupied Bandwidth	$U=1.8\text{MHz}$
8	humidity uncertainty	$U=5.3\%$
9	Temperature uncertainty	$U=0.59^\circ\text{C}$

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	FlowSmart LeakStop 2 Channel
Model No.:	YS5029-UC
Serial model No.:	YS5029-UA
Model Different.:	Only the model name is different.
Sample(s) Status:	Engineer sample
Channel numbers:	1 CH
Operation Frequency:	910.3MHz
Type of Modulation:	LoRa
Antenna Type:	Spring Antenna
Antenna gain:	0.82dBi
Ratings:	Input: 3V ==== (2*AA 1.5V)
AC/DC Adapter:	N/A
AC/DC Adapter Mode:	N/A

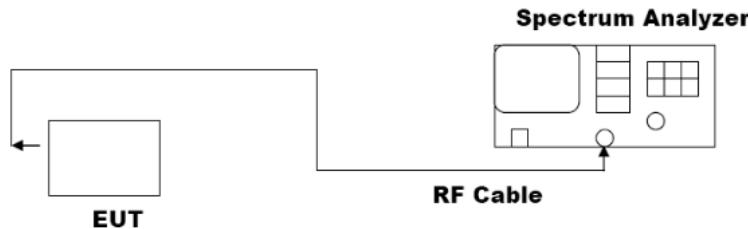
Channel List

CH	Frequency (MHz)
1	910.3

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency
1	910.3MHz



3.2 Test Setup Configuration

Operation of EUT during Conducted and Radiation testing:

Operation of EUT during RF Conducted testing:

3.3 Support Equipment

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	FlowSmart LeakStop 2 Channel	YOLINK	YS5029-UC	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.

3.4 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode
1	Transmitting

Transmitting mode	Keep the EUT in continuously transmitting mode.
Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.	

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Sep. 30, 2024	Sep. 29, 2025
2	LISN	CYBERTEK	EM5040A	E1850400149	N/A	Sep. 30, 2024	Sep. 29, 2025
3	Test Cable	N/A	C-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
4	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Sep. 29, 2024	Sep. 28, 2025
5	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	N/A	\	\

Radiation Emissions & Radiation Spurious Emissions Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	N9020A	MY55370835	A.17.05	Sep. 29, 2024	Sep. 28, 2025
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Sep. 30, 2024	Sep. 29, 2025
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	100969	4.32	Sep. 29, 2024	Sep. 28, 2025
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	00877	N/A	Sep. 30, 2024	Sep. 29, 2025
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	N/A	Sep. 30, 2024	Sep. 29, 2025
6	Horn Antenna (15GHz-40GHz)	A.H.System	SAS-574	588	N/A	Sep. 30, 2024	Sep. 29, 2025
7	Loop Antenna	TESEQ	HLA6121	58357	N/A	Oct. 11, 2024	Oct. 10, 2025
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	60747	N/A	Sep. 29, 2024	Sep. 28, 2025
9	Amplifier (1GHz-26.5GHz)	HuiPu	8449B	3008A00315	N/A	Sep. 29, 2024	Sep. 28, 2025
10	Amplifier (500MHz-40GHz)	QuanJuDa	DLE-161	097	N/A	Sep. 30, 2024	Sep. 29, 2025
11	Test Cable	N/A	R-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
12	Test Cable	N/A	R-02	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
13	Test Cable	N/A	R-03	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
14	D.C. Power Supply	LongWei	TPR-6405D	N/A	N/A	Sep. 29, 2024	Sep. 28, 2025
15	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	\	\
16	Turntable	MF	MF-7802BS	N/A	N/A	\	\
17	Antenna tower	MF	MF-7802BS	N/A	N/A	\	\

RF Conducted Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	N9020A	MY55370835	A.17.05	Sep. 29, 2024	Sep. 28, 2025
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Sep. 30, 2024	Sep. 29, 2025
3	Test Cable	N/A	RF-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
4	Test Cable	N/A	RF-02	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
5	Test Cable	N/A	RF-03	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
6	ESG Signal Generator	Agilent	E4421B	GB40051203	B.03.84	Sep. 29, 2024	Sep. 28, 2025
7	Signal Generator	Agilent	N5182A	MY47420215	A.01.87	Sep. 29, 2024	Sep. 28, 2025
8	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	N/A	Sep. 29, 2024	Sep. 28, 2025
9	Van der Hoofden measuring head	Schwarzbeck Mess-elektronik	VDHH 9502	9502-039	N/A	Sep. 30, 2024	Sep. 29, 2025
10	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Sep. 30, 2024	Sep. 29, 2025
11	MWRF Power Meter Test system	MW	MW100-RF CB	10371	N/A	Sep. 29, 2024	Sep. 28, 2025
12	Power Meter	KEYSIGHT	N1912AP	926431	A.05.00	Sep. 29, 2024	Sep. 28, 2025
13	D.C. Power Supply	LongWei	TPR-6405 D	GQ7516	N/A	Sep. 29, 2024	Sep. 28, 2025
14	RF Software	MW	MTS8310	V2.0.0.0	N/A	\	\

4. EMC EMISSION TEST

4.1 Conducted emissions

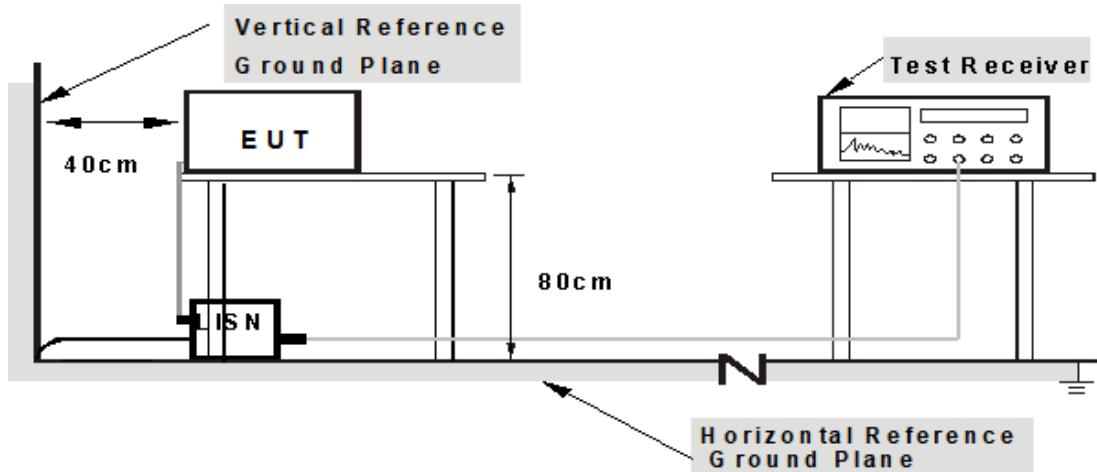
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (dBuV)		Standard
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.


4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 Test Result

N/A

Only AC products need to test this item, DC products are not applicable.

4.2 Radiated emissions

Test Requirement:	FCC Part15 C Section 15.209/15.249				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	9kHz to 25GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	9KHz-150KHz	Quasi-peak	200Hz	MX5Hz	Quasi-peak
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
		Peak	1MHz	10Hz	Average

4.2.1 Radiated Emission Limits

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RADIATED EMISSION MEASUREMENT

Fundamental Frequency	Field Strength of Fundamental @3m (millivolts/meter)	Average Limit @3m (dBuV/m)	Peak Limit @3m (dBuV/m)
900-928MHz	50	94	114
2400-2483.5MHz	50	94	114
5725-5875MHz	50	94	114
24.0-24.25GHz	250	108	128

Note :

1. Average Limit (dB μ V/m)=20×log[1000×Field Strength (mV/m)].
2. Peak Limit (dB μ V/m)= Average Limit (dB μ V/m)+20dB

4.2.2 TEST PROCEDURE

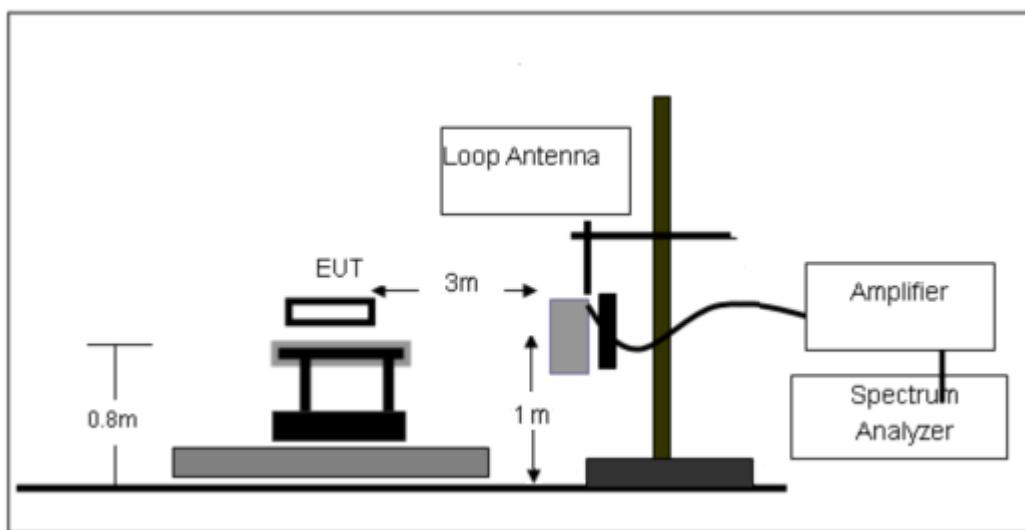
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

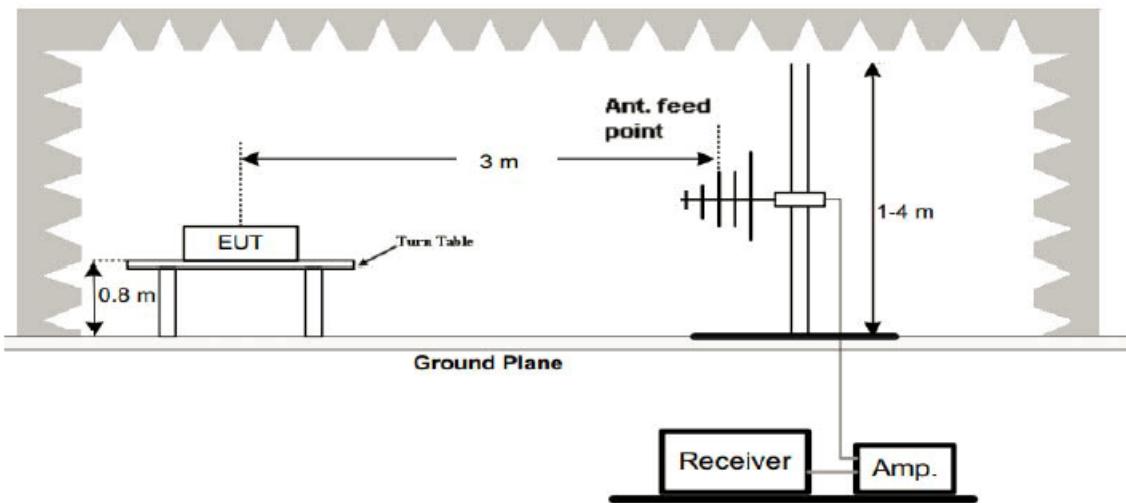
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

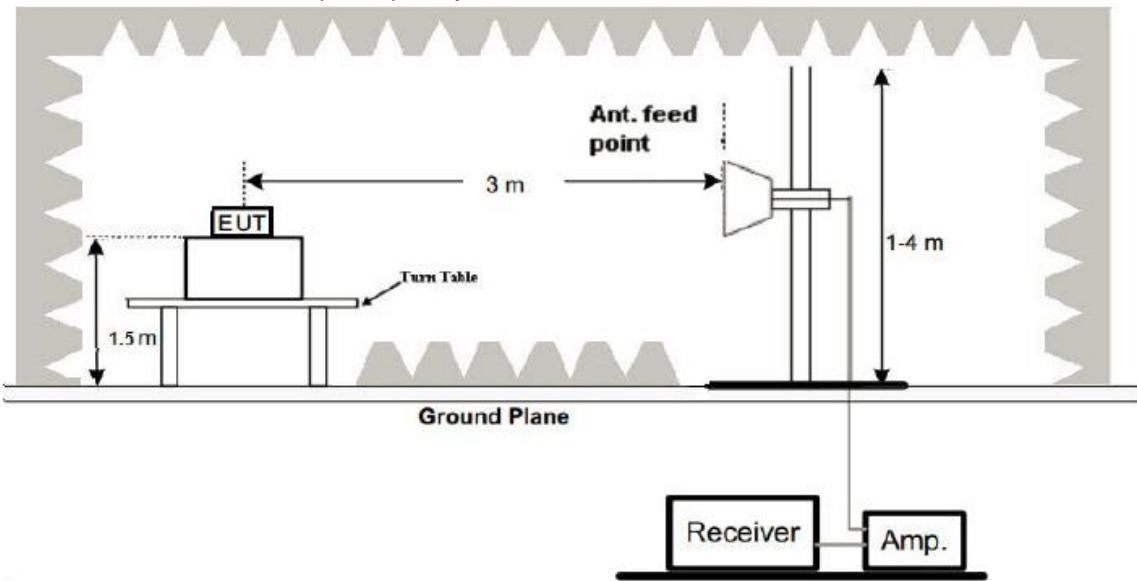
Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD


No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

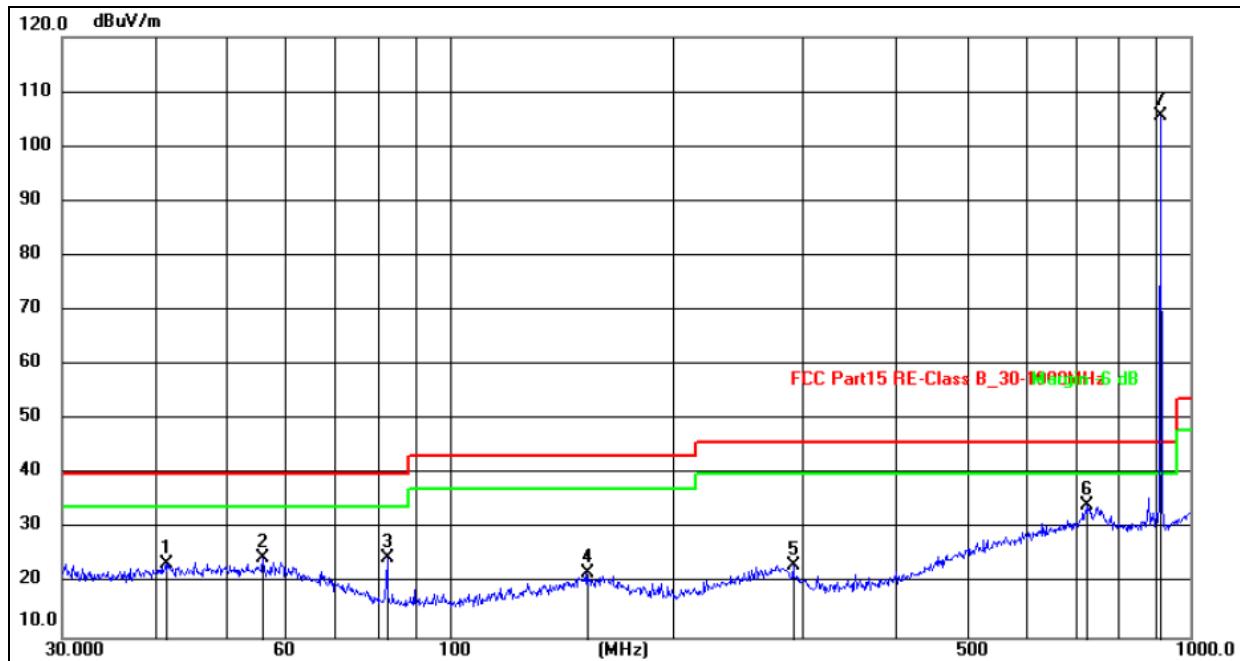
(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

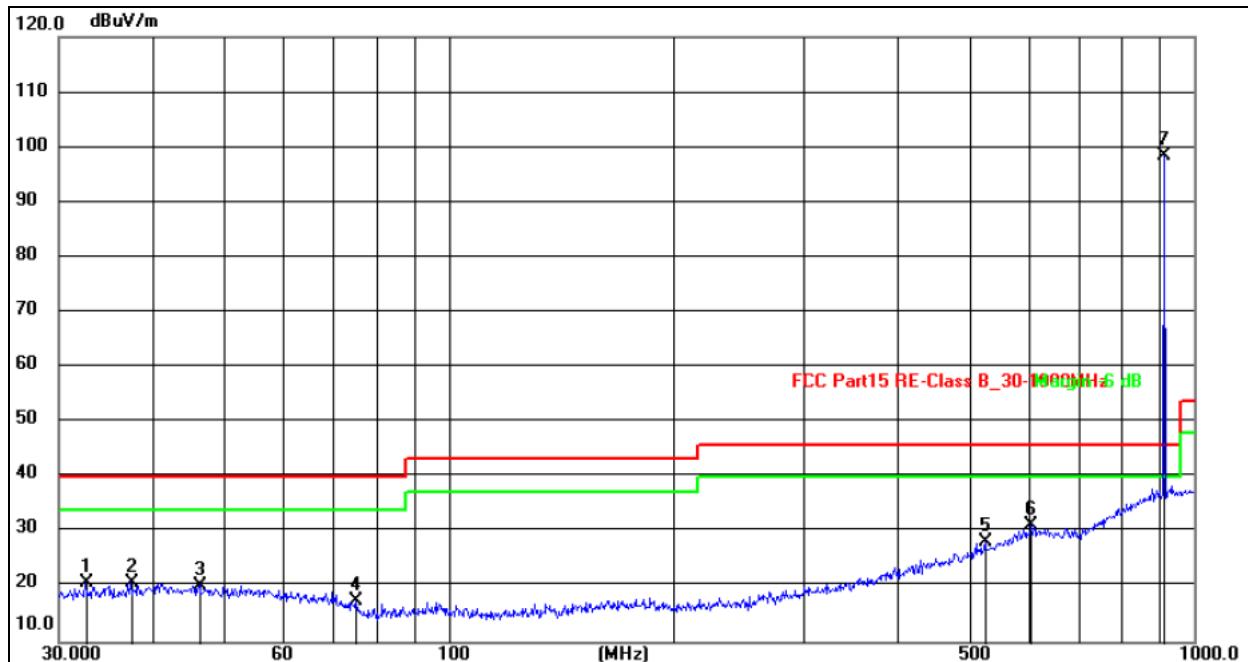
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.2.6 TEST RESULTS


Between 9KHz – 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Between 30MHz – 1GHz


Temperature:	26°C	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 3V	Test Channel :	910.3MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	41.4215	37.63	-14.02	23.61	40.00	-16.39	QP
2	56.0007	38.75	-14.05	24.70	40.00	-15.30	QP
3	82.3588	44.15	-19.52	24.63	40.00	-15.37	QP
4	153.2004	38.27	-16.23	22.04	43.50	-21.46	QP
5	291.0360	38.81	-15.38	23.43	46.00	-22.57	QP
6	726.8052	40.96	-6.49	34.47	46.00	-11.53	QP
7	910.3620	111.97	-6.41	105.56	114.00	-8.44	peak

Temperature:	26°C	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 3V	Test Channel :	910.3MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	32.5198	38.81	-17.92	20.89	40.00	-19.11	QP
2	37.4165	38.05	-17.15	20.90	40.00	-19.10	QP
3	46.3402	37.48	-17.03	20.45	40.00	-19.55	QP
4	75.1822	38.09	-20.54	17.55	40.00	-22.45	QP
5	524.5541	38.29	-10.08	28.21	46.00	-17.79	QP
6	605.6592	38.52	-7.34	31.18	46.00	-14.82	QP
7	910.3620	98.85	-0.37	98.48	114.00	-15.52	peak

Remarks:

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
- 2.The emission levels of other frequencies are very lower than the limit and not show in test report.

(Above 1000 MHz)

Normal Voltage 910.3MHz

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	1820.60	54.08	-3.47	50.61	74.00	-23.39	Pk
V	1820.60	45.91	-3.47	42.44	54.00	-11.56	AV
V	2730.90	43.23	-3.74	39.49	74.00	-34.51	Pk
V	2730.90	33.48	-3.74	29.74	54.00	-24.26	AV
V	3641.20	54.16	-4.59	49.57	74.00	-24.43	Pk
V	3641.20	43.29	-4.59	38.70	54.00	-15.30	AV
H	1820.60	51.93	-3.47	48.46	74.00	-25.54	Pk
H	1820.60	41.32	-3.47	37.85	54.00	-16.15	AV
H	2730.90	41.79	-3.74	38.05	74.00	-35.95	Pk
H	2730.90	33.34	-3.74	29.60	54.00	-24.40	AV
H	3641.20	55.52	-4.59	50.93	74.00	-23.07	Pk
H	3641.20	46.72	-4.59	42.13	54.00	-11.87	AV

Remark:

Absolute Level= Reading Level+ Factor, Margin= Limit- Absolute Level

Other harmonics emissions are lower than 20dB below the allowable limit.

4.2.7 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS=RA+AF+CL-AG$$

FS=Field Strength	CL=Cable Attenuation Factor (Cable Loss)
RA=Reading Amplitude	AG=Amplifier Gain
AF=Antenna Factor	

Test Result:

Temperature:	26°C	Relative Humidity:	54%
Pressure:	101kPa	Polarization :	Horizontal
Test Voltage :	DC 3V		
Test Mode :	Mode 1		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)	
910.3	111.97	-6.41	105.56	114.00	-8.44	Peak
910.3	97.23	-6.41	90.82	94.00	-3.18	Average

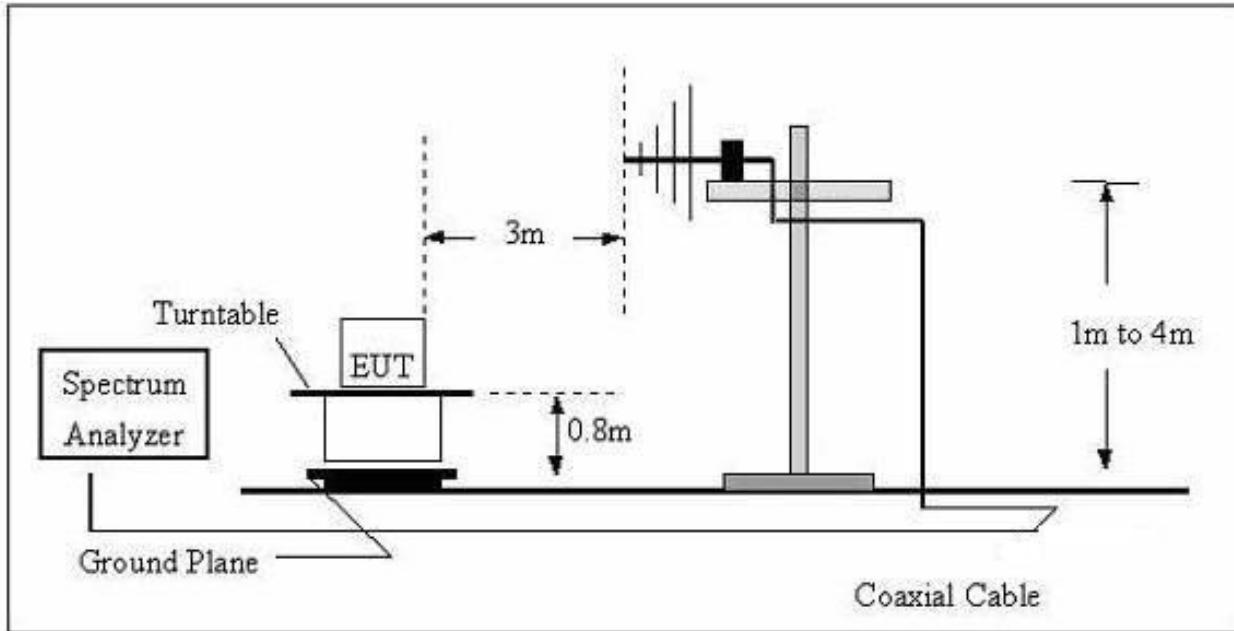
Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All interfaces was connected, and TX mode

Temperature:	26°C	Relative Humidity:	54%
Pressure:	101kPa	Polarization :	Vertical
Test Voltage :	DC 3V		
Test Mode :	Mode 1		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dB μ V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)	
910.3	104.89	-6.41	98.48	114.00	-15.52	Peak
910.3	92.76	-6.41	86.35	94.00	-7.65	Average


Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All interfaces was connected, and TX mode

5. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE

5.1 Block Diagram Of Test Setup

5.2 Applicable Standard

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be

attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation

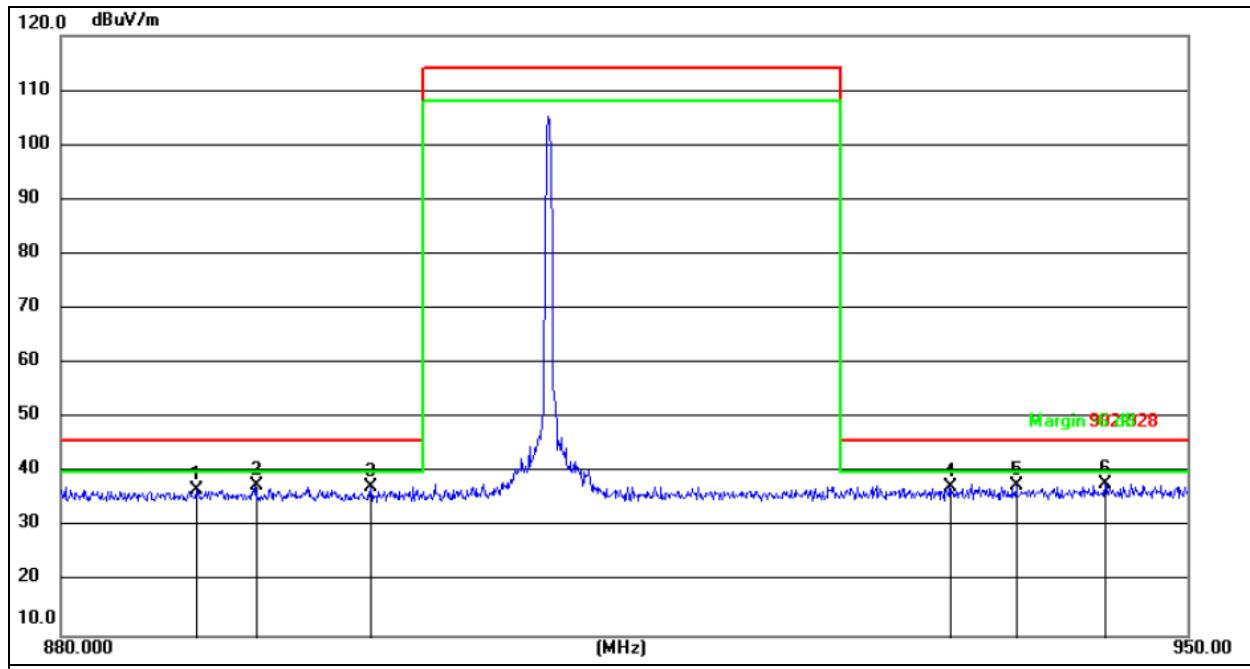
5.3 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c. VBW for Peak, Quasi-peak, or Average Detector Function: $3 \times \text{RBW}$
- d. Repeat above procedures until all measured frequencies were complete.

Note:

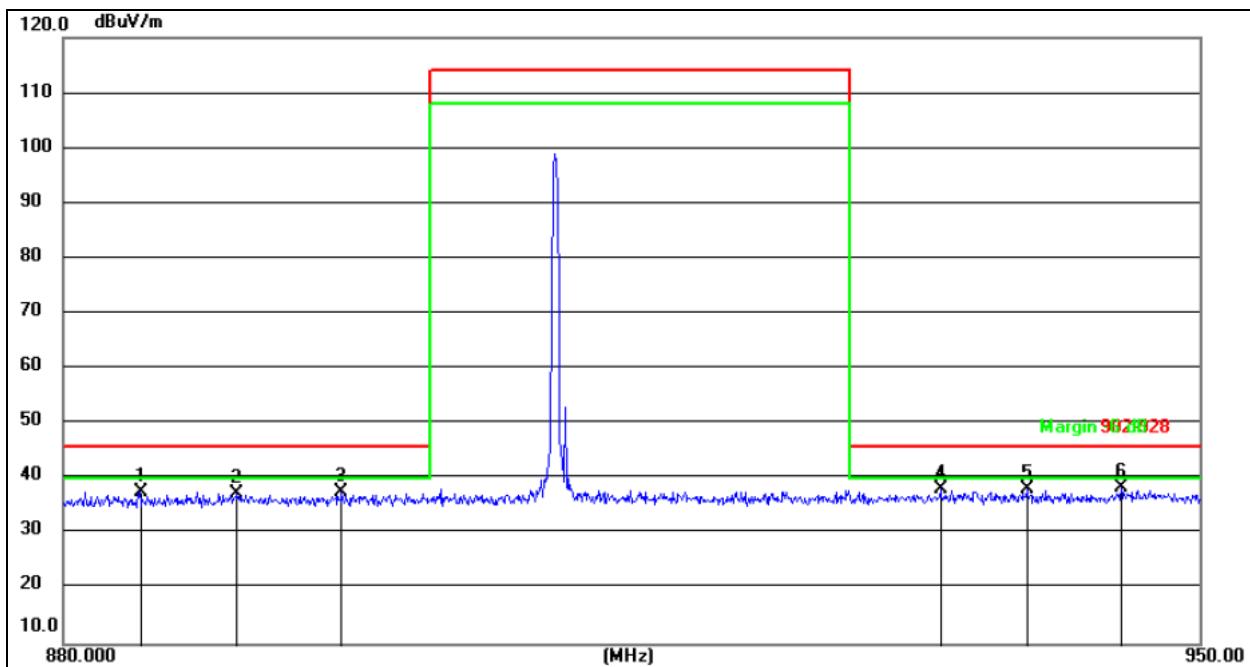
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

5.4 EUT Operating Conditions


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.5 Test Result

Temperature:	26 °C	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage :	DC 3V
Test Mode :	Transmitting		


910.3MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	888.1199	43.45	-6.68	36.77	46.00	-9.23	QP
2	891.7300	44.40	-6.68	37.72	46.00	-8.28	QP
3	898.7190	43.95	-6.68	37.27	46.00	-8.73	QP
4	934.7808	43.40	-5.95	37.45	46.00	-8.55	QP
5	939.0117	43.38	-5.86	37.52	46.00	-8.48	QP
6	944.7067	43.61	-5.74	37.87	46.00	-8.13	QP

910.3MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	884.5244	38.42	-0.88	37.54	46.00	-8.46	QP
2	890.3659	37.98	-0.71	37.27	46.00	-8.73	QP
3	896.6577	38.27	-0.53	37.74	46.00	-8.26	QP
4	933.5652	38.38	-0.27	38.11	46.00	-7.89	QP
5	939.0117	38.36	-0.23	38.13	46.00	-7.87	QP
6	944.9960	38.57	-0.20	38.37	46.00	-7.63	QP

6. 20DB BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.215
Test Method:	ANSI C63.10:2013

6.1 Test Setup

6.2 Limit

FCC Part15 (15.249) , Subpart C			
Section	Test Item	Frequency Range (MHz)	Result
15.249(c)	Bandwidth	902~928	PASS

6.3 Test procedure

1. Set resolution bandwidth (RBW) = 1 ~ 5% of 20dB bandwidth.
2. Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

6.4 EUT Operation Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature :	26°C	Relative Humidity :	54%
Test Voltage :	DC 3V	Remark	N/A

Channel	Frequency (MHz)	20dB bandwidth (KHz)
01	910.3	145.5

CH01

7. Antenna Requirement

Standard requirement:	FCC Part15 C Section 15.203
<p>15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.</p>	
<p>EUT Antenna:</p>	
<p>The antenna is Spring Antenna, the best case gain of the antennas is 0.82dBi, reference to the appendix II for details</p>	

8. Test Setup Photo

Reference to the appendix I for details.

9. EUT Constructional Details

Reference to the appendix II for details.

***** END OF REPORT *****