

Test Report

Prepared for: Luna Products LLC

Model: LP.SMHT01.345.1

Description: Single Station Multicriteria Smoke Alarm

Serial Number: NA

FCC ID: 2ATK4LPSMHT013451

To

FCC Part 15.231 And **RSS-210**

Test Result: PASS

Date of Issue: June 24, 2024

Luna Products LLC On the behalf of the applicant:

3145 Tiger Run CT. STE 110

Carlsbad, CA 92010

United States

Attention of: Robert Reichert, Sr. Regulatory Engineer

Ph: 833-586-2776

E-mail: rreichert@lunaproducts.com

Prepared by **Compliance Testing, LLC** 1724 S. Nevada Way Mesa, AZ 85204

(480) 926-3100 phone / (480) 926-3598 fax www.compliancetesting.com

Project No: p2440024

Project Test Engineer John Michalowicz

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested.

Test Results Summary

Specification	Specification Test Name		Comments
15.231(a),(e)	Fundamental Field Strength	Pass	
15.231(d)	Out of Band Spurious Emissions	Pass	
15.231(c), RSS-210	99% Occupied Bandwidth	Pass	

Statements of conformity are reported as:

- Pass the measured value is below the acceptance limit, acceptance limit = test limit.
- Fail the measured value is above the acceptance limit, acceptance limit = test limit.

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	June 24, 2024	John Michalowicz	Original Document
2.0	July 31, 2024	John Michalowicz	Updated bandwidth measurement data

Table of Contents

<u>Description</u>	<u>Page</u>
TEST RESULTS SUMMARY	2
STANDARD TEST CONDITIONS ENGINEERING PRACTICES	7
FUNDAMENTAL FIELD STRENGTH	9
RADIATED SPURIOUS EMISSIONS	12
99% OCCUPIED BANDWIDTH	17
TEST EQUIPMENT UTILIZED	18

ANAB

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

FCC Site Reg. #349717

IC Site Reg. #2044A-2

The applicant has been cautioned as to the following

15.21: Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a): Special Accessories

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator the responsible part may employ other methods of ensuring that the special accessories are provided to the consumer, without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Standard Test Conditions Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.10-2009 and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104°F) unless the particular equipment requirements specified testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Measurement results, unless otherwise noted, are worst-case measurements.

Environmental Conditions						
Temperature (°C)	Temperature Humidity Pressure (°C) (%) (Mbar)					
26.3 – 27.5	25 - 42	966.8 – 970.2				

EUT Description

Model: LP.SMHT01.345.1

Description: Single Station Multicriteria Smoke Alarm

Firmware: N/A Software: 0

Serial Number: NA

Highest Clock Frequency: 345 MHz (Transmitter)

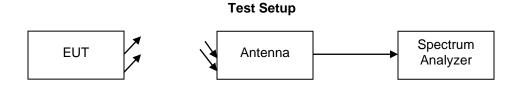
Additional Information: The EUT is a battery powered smoke detector with wireless capability. The EUT transmits on

345 MHz

EUT Operation during Tests

The EUT was powered with 2 CR1234A batteries and placed in a constant transmit mode during testing.

Accessories: NA
Cables: NA
Modifications: NA


Fundamental Field Strength

Engineer: John Michalowicz

Test Date: 6/18/24

Test Procedure

The EUT was tested in a semi-anechoic chamber at a distance of 3 meters from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the requirements for Fundamental Field Strength.

Spectrum Analyzer Settings

Detector Settings	RBW	VBW	Span	
peak	300 kHz	2.0 MHz	As Necessary	

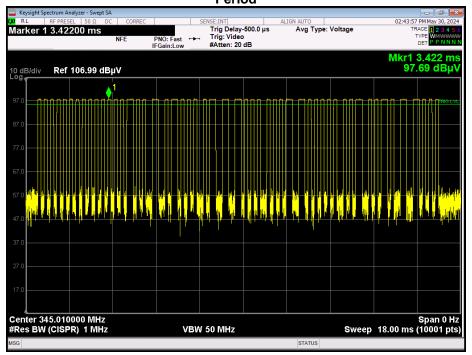
Sample Calculations:

Correction Factors include Antenna and cable insertion loss.

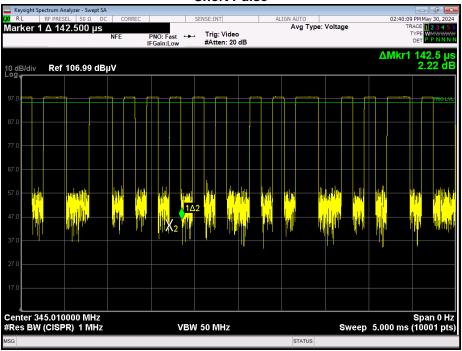
Measured Level includes correction factors that were entered into the spectrum analyzer before recording test data. All following limits were converted to dBuV/m by the calculation stated below: 20*LOG(uV/m)

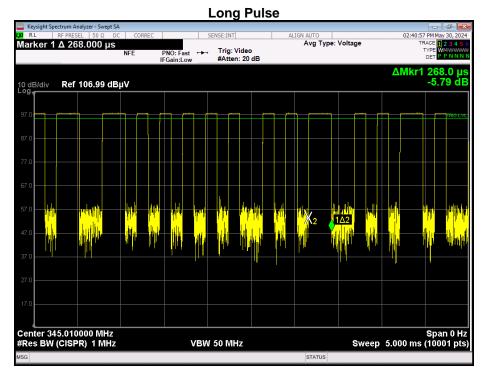
Fundamental Frequency (MHz)		Field Strength of Fundamental (uV/m)	Field Strength of Spurious Emissions (uV/m)	
	260 - 470	3750 to 12500	375 to 1250	

^{*}Linear interpolations


Fundamental Field Strength

Tuned Frequency (MHz)	Peak Measured Level (dBuV/m)	Level Peak. Limit A		Avg. Limit (dBuV/m)	Result
345	94.94	97.26	73.94	77.26	Pass

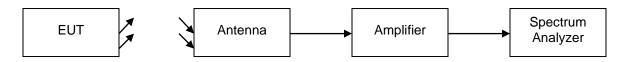

Duty cycle correction = -21.0 dB


Period

Short Pulse

Pulse 1	Pulse 1	Pulse 2	Pulse 2	Ise 2 Summation Duty	
ms	count	ms	count	ms	dB
0.142	40	0.268	12	8.91	-21

Radiated Spurious Emissions


Engineer: John Michalowicz

Test Date: 6/3/24

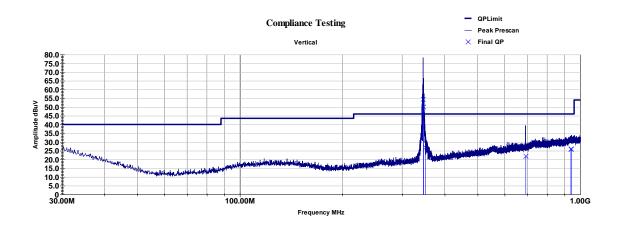
Test Procedure

The EUT was tested in a semi-anechoic chamber set 3m from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the limits for Radiated Spurious Emissions. The antenna, band reject filter, amplifier and cable correction factors were input into the spectrum analyzer before recording data. The spectrum for each tuned frequency was examined to the 10th harmonic.

Test Setup

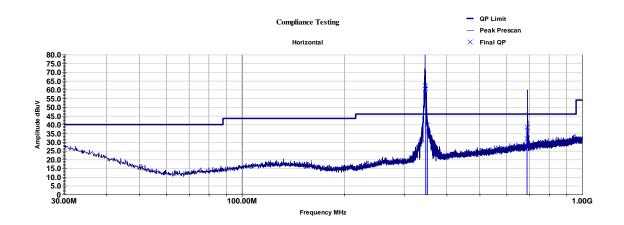
Analyzer Settings

Detector Settings RBW (MHz)		VBW (MHz)	Span
Peak	1	3	As Necessary
Average	1	3	As Necessary


Sample Calculations:

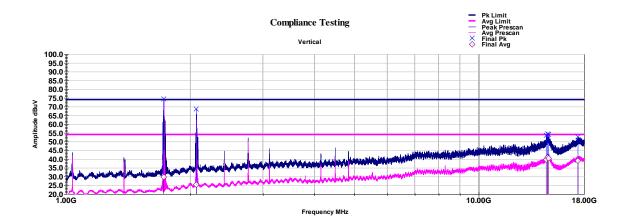
Correction Factors include Antenna and cable insertion loss correction factors.

Measured Level includes correction factors that were input to the spectrum analyzer before recording test data


30 - 1000 MHz

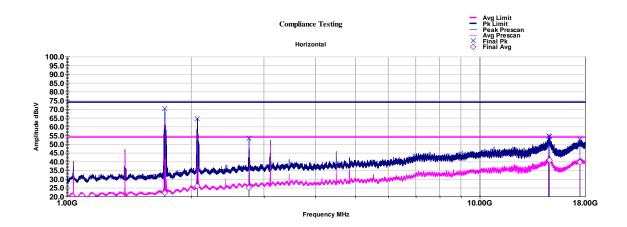
Frequency	Azimuth	Height	Raw QP	Correction	Final QP	Limit	QP Margin
MHz	deg	cm	dBuV	dB	dBuV/m	dBuV/m	dB
346.3	276.00	351.00	NA	NA	NA	NA	NA
346.3	276.00	351.00	NA	NA	NA	NA	NA
346.54	258.00	325.00	NA	NA	NA	NA	NA
346.3	276.00	351.00	NA	NA	NA	NA	NA
351.808	284.00	339.00	45.31	-18.46	26.80	46.00	-19.20
692.442	16.00	175.00	33.25	-11.56	21.70	46.00	-24.30
939.335	38.00	218.00	33.08	-7.17	25.90	46.00	-20.10
942.473	283.00	136.00	33.15	-7.17	26.00	46.00	-20.00
Final = Raw + Path Loss							

Margin = Final - Limit



Frequency	Azimuth	Height	Raw QP	Correction	Final QP	Limit	QP Margin
MHz	deg	cm	dBuV	dB	dBuV/m	dBuV/m	dB
346.31	340.00	113.00	NA	NA	NA	NA	NA
347.429	340.00	100.00	NA	NA	NA	NA	NA
350.384	340.00	113.00	58.20	-18.25	40.00	46.00	-6.00
350.384	340.00	113.00	58.20	-18.25	40.00	46.00	-6.00
351.348	340.00	100.00	54.41	-18.21	36.20	46.00	-9.80
350.384	340.00	113.00	58.20	-18.25	40.00	46.00	-6.00
687.916	167.00	113.00	43.41	-11.37	32.00	46.00	-14.00
689.503	167.00	100.00	49.78	-11.37	38.40	46.00	-7.60
Final = Raw	+ Path Los	ss					

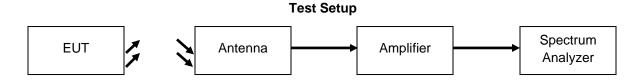
Margin = Final - Limit



1 - 18 GHz

Frequency	Azimuth	Height	Raw Pk	Raw Avg	Correction	Final Pk	Pk Limit	Pk Margin	Final Avg	Avg Limit	Avg Margin
MHz	deg	cm	dBuV	dBuV	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dB
1724892500	272.00	264.00	90.15	45.50	-15.89	74.26	77.00	-2.74	53.26	57	-3.74
2069850750	310.00	120.00	80.89	37.88	-12.41	68.48	77.00	-8.52	47.48	57	-9.52
14570269500	76.00	100.00	48.18	34.03	5.49	53.67	77.00	-23.33	32.67	57	-24.33
14677330500	76.00	148.00	47.69	34.33	6.57	54.26	77.00	-22.74	33.26	57	-23.74
14770440000	0.00	163.00	48.05	34.36	6.16	54.21	77.00	-22.79	33.21	57	-23.79
17393223250	359.00	213.00	44.93	31.35	7.72	52.65	77.00	-24.35	31.65	57	-25.35
Final = Raw + Path Loss											
Margin = Final - Limit											

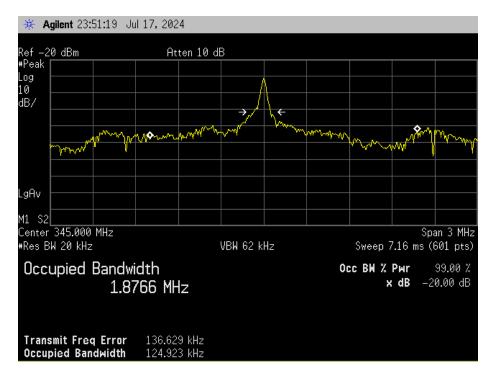
Frequency	Azimuth	Height	Raw Pk	Raw Avg	Correction	Final Pk	Pk Limit	Pk Margin	Final Avg	Avg Limit	Avg Margin
MHz	deg	cm	dBuV	dBuV	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dB
1725055750	261.00	100.00	86.17	38.03	-15.89	70.29	77.00	-6.71	49.29	57	-7.71
2070090500	359.00	100.00	76.91	38.41	-12.41	64.50	77.00	-12.50	43.50	57	-13.50
2759936000	211.00	100.00	63.96	35.64	-10.64	53.32	77.00	-23.68	32.32	57	-24.68
14675323500	192.00	100.00	48.05	34.51	6.57	54.61	77.00	-22.39	33.61	57	-23.39
14767460000	106.00	373.00	48.17	34.38	6.19	54.37	77.00	-22.63	33.37	57	-23.63
17485900750	359.00	125.00	44.79	31.40	8.05	52.83	77.00	-24.17	31.83	57	-25.17
Final = Raw + Path Loss											
Margin = Final - Limit									·		



99% Occupied Bandwidth Engineer: John Michalowicz

Test Date: 5/30/24

Test Procedure


The EUT was tested in a semi-anechoic chamber at a distance of 3 meter from the receiving antenna. The Span was set wide enough to capture the entire transmit spectrum and the resolution bandwidth was set to at least 1% of the span. The analyzer was set to max hold while the 99% bandwidth was measured.

Occupied Bandwidth Summary

Frequency (MHz)	Recorded Measurement (kHz)	Result
345	1876	Pass

Bandwidth

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna	ARA	DRG-118/A	i00271	8/11/22	8/11/24
Bi-Log Antenna	Schaffner CBL 6111D		i00349	2/7/23	2/7/25
3 Meter Semi-Anechoic Chamber	Panashield	3 Meter Semi-Anechoic Chamber	i00428	6/27/23	6/27/24
MXE EMI receiver	Keysight	N9038A	i00552	3/1/24	3/1/25
Temp./humidity/pressure monitor (rad. immunity)	Omega Engineering	iBTHX-W-5	i00629	1/25/24	1/25/25

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

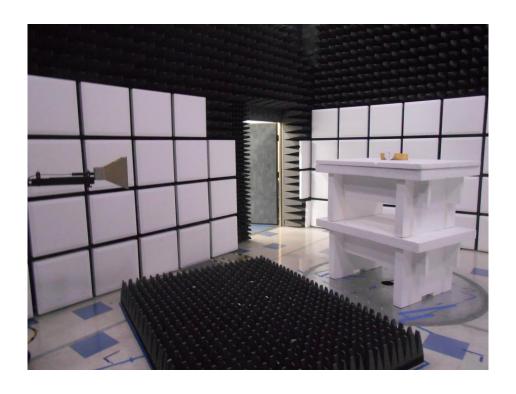
Measurement Uncertainty

Measurement Uncertainty (U_{lab}) for Compliance Testing is listed in the table below.

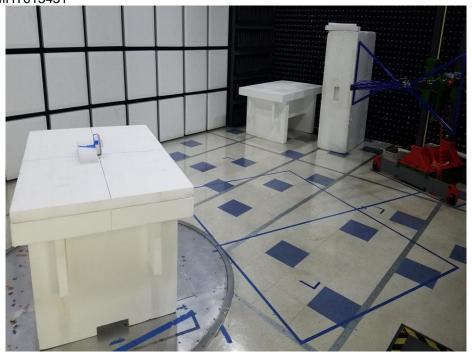
Measurement	U _{lab}			
Radio Frequency	± 3.3 x 10 ⁻⁸			
RF Power, conducted	± 1.5 dB			
RF Power Density, conducted	± 1.0 dB			
Conducted Emissions	± 1.8 dB			
Radiated Emissions	± 4.5 dB			
Temperature	± 1.5 deg C			
Humidity	± 4.3 %			
DC voltage	± 0.20 VDC			
AC Voltage	± 1.2 VAC			

The reported expanded uncertainty +/- U_{lab}(dB) has been estimated at a 95% confidence level (k=2)

 U_{lab} is less than or equal to U_{ETSI} therefore


- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit
- Non-Compliance is deemed to occur if any measured disturbance exceeds the disturbance limit

END OF TEST REPORT


Test Setup Photos FCC ID: 2ATK4LPSMHT013451

Test Setup Photos FCC ID: 2ATK4LPSMHT013451

