

FCC RADIO TEST REPORT

FCC ID: 2ATGY-PWB1116

Product: Power Bank

Trade Name: ubiolabs

Model Name: PWB1116

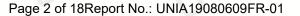
PWB1116PG, PWB1116SG, PWB1116XX

Serial Model: (where X should be any Arabian or English

later or blank)

Report No.: UNIA19080609FR-01

Prepared for


Ubio Labs, Inc.

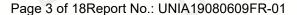
2821 Northup Way, Suite 250, Bellevue, WA 98004, USA

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION


Applicant's name:	Ubio Labs, Inc.
Address:	2821 Northup Way, Suite 250, Bellevue, WA 98004, USA
Manufacture's Name:	Shenzhen PYS Industrial Co., LTD
Address:	1F, 3F, 5F, 6F, 7F, 8F, 10F, 11F, 12F, NO.9 LIANHUA INDUSTRIAL LONGYUAN ROAD LONGHUA OFFICE LONGHUA NEW DISTRICT SHENZHEN, GUANGDONG 518109 CHINA
Product description	
Product name:	Power Bank
Trade Mark:	ubiolabs
Model and/or type reference .:	PWB1116, PWB1116PG, PWB1116SG, PWB1116XX (where X should be any Arabian or English later or blank)
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.209 ANSI C63.10: 2013
Co., Ltd., and the test results	has been tested by Shenzhen United Testing Technology show that the equipment under test (EUT) is in compliance and it is applicable only to the tested sample identified in the
document may be altered or i	duced except in full, without the written approval of UNI, this revised by Shenzhen United Testing Technology Co., Ltd., noted in the revision of the document.
Date of Test	· · · · · · · · · · · · · · · · · · ·
Date (s) of performance of tests.	: Aug.06, 2019 ~Aug.12, 2019
Date of Issue	: Aug.12, 2019
Test Result	: Pass
Prepared by:	Kaln Yang

Sherwin Qian/Supervisor

Approved & Authorized Signer:

Liuze/Manager

Reviewer:

Page

1 TEST SUMMARY	4
2 GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	
2.2 Carrier Frequency of Channels	
2.3 Operation of EUT during testing	6
2.4DESCRIPTION OF TEST SETUP	6
2.5MEASUREMENT INSTRUMENTS LIST	7
3 CONDUCTED EMISSION TEST	8
3.1 Conducted Power Line Emission Limit	8
3.2 Test Setup	8
3.3 Test Procedure	8
3.4 Test Result	8
4 RADIATED EMISSION TEST	11

4.1 Block Diagram of Test Setup114.2 Rules and specifications124.3 Test Procedure134.4 Test Result13

5 ANTENNA REQUIREMENT...... 16

6PHOTOGRAPH OF TEST......17

Table of Contents

Page 4 of 18Report No.: UNIA19080609FR-01

1 TEST SUMMARY

TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	STANGARD	RESULT
CONDUCTED EMISSION TEST	FCC Part 15.207	COMPLIANT
RADIA TED EMISSION TEST	FCC Part 15.209	COMPLIANT
ANTENNA REQUIREMENT	FCC Part 15.203	COMPLIANT

TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address :2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

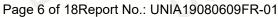
Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

MEASUREMENT UNCERTAINTY

Measurement Uncertainty


Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Power Bank
ubiolabs
PWB1116
PWB1116PG, PWB1116SG, PWB1116XX (where X
should be any Arabian or English later or blank)
All model's the function, software and electric circuit are the
same, only with a product color and model named different.
Test sample model: PWB1116.
2ATGY-PWB1116
Coil Antenna
0dBi
125KHz
1CH
MSK
3.8V 4000mAh
DC 5V from adapter

Operation Frequency each of channel						
Channel	Frequency					
01	125KHz					

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode

2.4DESCRIPTION OF TEST SETUP

Operation of EUT during testing:

Setup:Transmission mode

Table for auxiliary equipment:

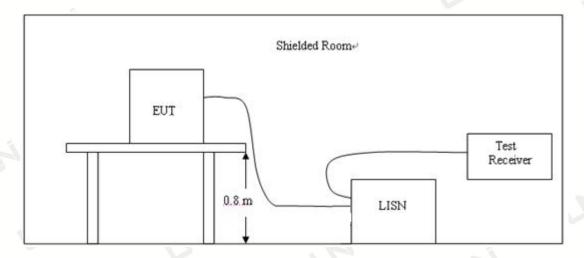
Equipment Description	Manufacturer	Model	Calibration Due Date
Adapter	XinShenHai	P12USB020200	N/A
Mobile phone	Huawei	V6	N/A

Page 7 of 18Report No.: UNIA19080609FR-01

2.5MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
	FI	CONDUCTED	EMISSIONS TEST			
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.9.9	
2	AMN	ETS	3810/2	00020199	2019.9.9	
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.9.9	
4	AAN	TESEQ	T8-Cat6	38888	2019.9.9	
		RADIATED I	EMISSION TEST			
1	Horn Antenna	Sunol	DRH-118	A101415	2019.9.29	
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.9.29	
3	PREAMP	HP	8449B	3008A00160	2019.9.9	
4	PREAMP	HP	8447D	2944A07999	2019.9.9	
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.9.9	
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.9.28	
7	Signal Generator	Agilent	E4421B	MY4335105	2019.9.28	
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.9.28	
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.9.9	
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.9.28	
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.9.9	
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.9.9	
13	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2020.3.14	
14	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2020.3.14	
15	RF power divider	Anritsu	K241B	992289	2019.9.28	
16	Wideband radio communication tester	Wideband radio Rohde&Schwarz CMW5		154987	2019.9.28	
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.9.8	
18	Biconical antenna	Schwarzbeck	VHA 9103	VHA 9103 91032361		
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.9.8	
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2020.1.12	
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.9.8	
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2020.03.14	
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.9.8	
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2020.05.10	
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2020.05.10	
26	Frequency Meter	VICTOR	VC2000	997406086	2020.05.10	
27	DC Power Source	HYELEC	HY5020E	055161818	2020.05.10	

3 CONDUCTED EMISSION TEST

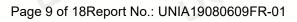

3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

[manuana)	Maximum RF Line Voltage(dBμV)						
Frequency	CLA	SS A	CLASS B				
(MHz)	Q.P.	Ave.	Q.P.	Ave.			
0.15~0.50	79	66	66~56*	56~46*			
0.50~5.00	73	60	56	46			
5.00~30.0	73	60	60	50			

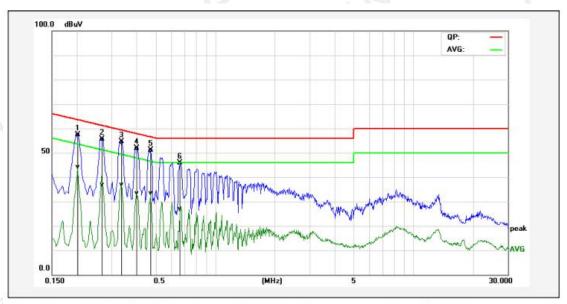
^{*} Decreasing linearly with the logarithm of the frequency
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup


3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user'smanual. A wooden table with a height of 0.8 meters is used and is placed onthe ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4,If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and wasgrounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUTusing a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has twomonitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer/Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result


PSSS

Remark: EUT was tested at AC 120V and 240V, only the worst result of AC 120V was reported.

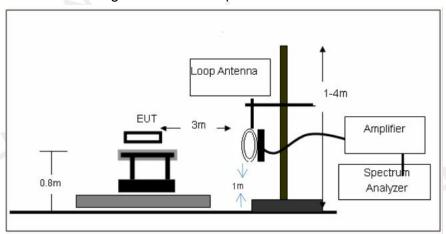
Temperature:	24°C	Relative Humidity:	45%
Test Date:	Aug. 10, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Line
Test Mode:	Transmitting mode		

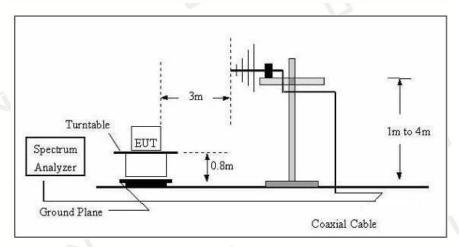

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak Iimit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.2020	47.56	34.48	9.73	57.29	44.21	63.52	53.53	-6.23	-9.32	Pass
2P	0.2700	45.84	27.14	9.78	55.62	36.92	61.12	51.12	-5.50	-14.20	Pass
3*	0.3379	44.68	26.94	9.82	54.50	36.76	59.25	49.25	-4.75	-12.49	Pass
4P	0.4020	41.95	23.65	9.82	51.77	33.47	57.81	47.81	-6.04	-14.34	Pass
5P	0.4740	41.31	23.49	9.80	51.11	33.29	56.44	46.44	-5.33	-13.15	Pass
6P	0.6620	36.00	17.03	9.81	45.81	26.84	56.00	46.00	-10.19	-19.16	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

Page 10 of 18Report No.: UNIA19080609FR-01

Temperature:	24°C	Relative Humidity:	45%
Test Date:	Aug. 10, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral
Test Mode:	Transmitting mode		, N


No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1980	46.25	29.84	9.73	55.98	39.57	63.69	53.69	-7.71	-14.12	Pass
2P	0.2660	44.91	25.54	9.78	54.69	35.32	61.24	51.24	-6.55	-15.92	Pass
3*	0.3300	43.64	20.43	9.81	53.45	30.24	59.45	49.45	-6.00	-19.21	Pass
4P	0.4060	40.70	23.95	9.82	50.52	33.77	57.73	47.73	-7.21	-13.96	Pass
5P	0.4700	40.10	24.49	9.80	49.90	34.29	56.51	46.51	-6.61	-12.22	Pass
6P	13.4100	34.01	18.96	0.25	34.26	19.21	60.00	50.00	-25.74	-30.79	Pass


Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

4 RADIATED EMISSION TEST

4.1 Block Diagram of Test Setup

Page 12 of 18Report No.: UNIA19080609FR-01

4.2 Rules and specifications

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections.

MHz MHz		MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(\2\)	
13.36-13.41			700 80	

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216-960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

Transmitter Spurious Emissions 9KHz-30MHz				
	9-150KHz	150-490KHz	490KHz-30MHz	
Resolution Bandwidth	200Hz	9KHz	9KHz	
Video Bandwidth	2KHz	100KHz	100KHz	
Detector	Peak	Peak	Peak	
Trace Mode	Max Hold	Max Hold	Max Hold	
Sweep Time	Auto	Auto	Auto	

4.3 Test Procedure

Measurement distance is 3m.

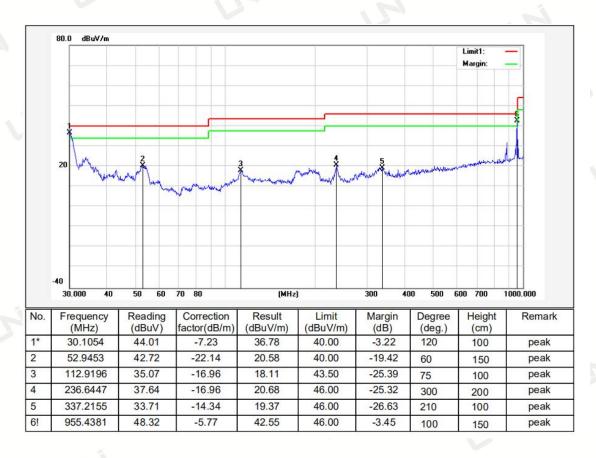
For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade, According to part 15.31(f)(2), per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

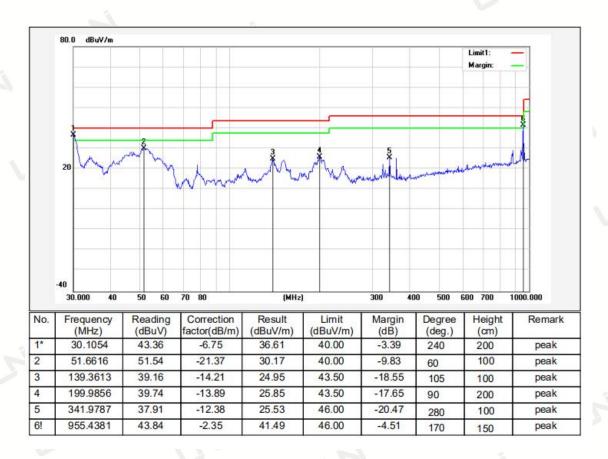
PASS


For 9KHz-30MHz Test Results:

Freq. (MHz)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
0.125	Peak	67.68	15.48	83.16	105.67	-22.51
0.610	Peak	28.14	16.08	44.24	71.90	-27.66
1.120	Peak	29.26	16.22	45.48	66.62	-21.14
1.876	Peak	28.15	15.15	43.30	69.50	-26.20
3.869	Peak	31.59	15.65	47.24	69.50	-22.26

For 30MHz-1GHz Test Results:

Temperature:	26°C	Relative Humidity:	44%
Test Date:	Aug. 10, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Polarization:	Horizontal
Test Mode:	Transmitting mode		



Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

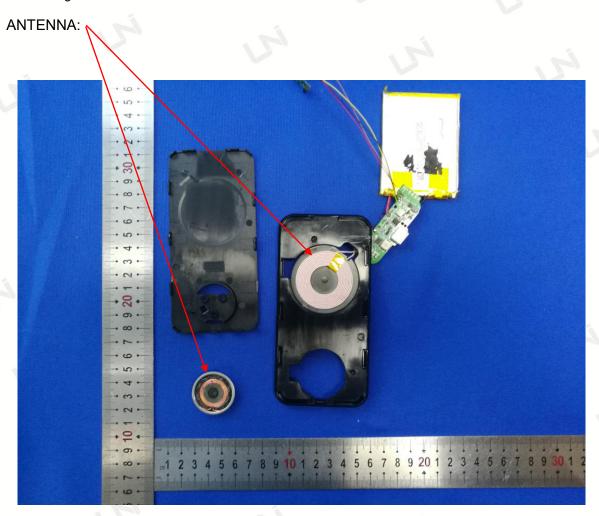
Page 15 of 18Report No.: UNIA19080609FR-01

Temperature:	26°C	Relative Humidity:	44%
Test Date:	Aug. 10, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Polarization:	Vertical
Test Mode:	Transmitting mode		, ri

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHzwas verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.


5 ANTENNA REQUIREMENT

Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed toensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

6PHOTOGRAPH OF TEST

6.1 Radiated Emission

End of Report