Report No: CCISE90511805

FCC REPORT

Applicant: Jiangxi Lesia Technology Co., Limited

Address of Applicant: Yangjiahu District(South Of Xiangxing Avenue), Industrial Park,

Gao'An City, Jlangxi Province, China

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: KT5021, K2

Trade mark: LESIA

FCC ID: 2ATFDLESIAK2

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 23 May., 2019

Date of Test: 23 May., to 30 May., 2019

Date of report issued: 31 May., 2019

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	31 May., 2019	Original

Tested by: | Cana Date: 31 May., 2019

Test Engineer

Reviewed by: Date: 31 May., 2019

Project Engineer

3 Contents

		ŀ	Page
1	C	OVER PAGE	1
2	V	ERSION	2
3	C	ONTENTS	3
4	TI	EST SUMMARY	4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8	LABORATORY FACILITY	6
	5.9	LABORATORY LOCATION	6
	5.10	TEST INSTRUMENTS LIST	7
6	TI	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TI	EST SETUP PHOTO	17
8	FI	LIT CONSTRUCTIONAL DETAILS	12

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

N/A: The EUT not applicable of the test item.

5 General Information

5.1 Client Information

Applicant:	Jiangxi Lesia Technology Co., Limited	
Address:	Yangjiahu District(South Of Xiangxing Avenue), Industrial Park, Gao'An City, Jlangxi Province, China	
Manufacturer:	Jiangxi Lesia Technology Co., Limited	
Address:	Yangjiahu District(South Of Xiangxing Avenue), Industrial Park, Gao'An City, Jlangxi Province, China	

5.2 General Description of E.U.T.

Product Name:	Mobile phone
Model No.:	KT5021, K2
Power supply:	Rechargeable Li-ion Battery DC3.7V, 2000mAh
AC adapter :	Model: SMART SERIES Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1.0A
Remarks:	item No.: KT5021, K2 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.9 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

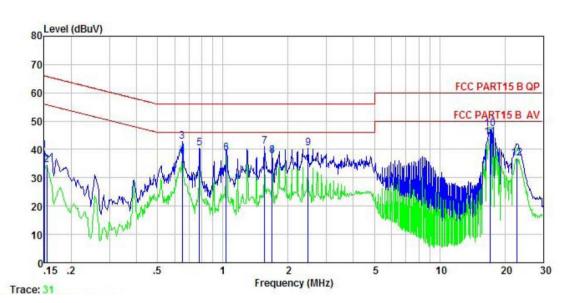
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

5.10 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b			
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

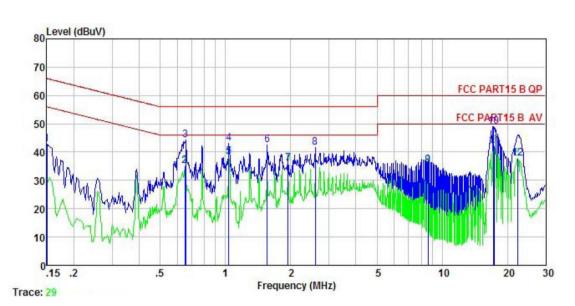

6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.10	07			
Test Method:	ANSI C63.4:2014				
Test Frequency Range:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:		Limit	(dBµV)		
Limit	Frequency range (MHz)	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	0.5-30	60	50		
	* Decreases with the logarith	nm of the frequency.			
Test setup:	Reference Plan	ne			
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test environment:	Temp.: 22.5 °C Humid.: 55% Press.: 101kPa				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

Product name:	Mobile Phone	Product model:	KT5021
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
200	MHz	dBu∀	₫B	<u>dB</u>	dBu∜	dBu∜	<u>dB</u>	
1	0.150	28.72	0.18	10.78	39.68	66.00	-26.32	QP
2	0.154	23.61	0.18	10.78	34.57	55.78	-21.21	Average
3	0.651	31.91	0.13	10.77	42.81	56.00	-13.19	QP
2 3 4 5 6 7 8 9	0.651	26.95	0.13	10.77	37.85	46.00	-8.15	Average
5	0.779	29.40	0.13	10.80	40.33	56.00	-15.67	QP
6	1.037	27.56	0.13	10.87	38.56	46.00	-7.44	Average
7	1.560	29.82	0.14	10.93	40.89	56.00	-15.11	QP
8	1.689	26.70	0.14	10.94	37.78	46.00	-8.22	Average
9	2.474	29.31	0.15	10.94	40.40		-15.60	
10	17.109	36.09	0.30	10.91	47.30	60.00	-12.70	QP
11	17.109	33.12	0.30	10.91	44.33	50.00	-5.67	Average
12	22.775	25.75	0.31	10.90	36.96			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	KT5021
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark

commit	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.150	30.90	0.99	10.78	42.67	66.00	-23.33	QP
2	0.651	23.66	0.63	10.77	35.06	46.00	-10.94	Average
3	0.654	32.42	0.97	10.77	44.16	56.00	-11.84	QP
4	1.037	31.31	0.97	10.87	43.15	56.00	-12.85	QP
1 2 3 4 5 6 7 8 9	1.037	26.72	0.67	10.87	38.26	46.00	-7.74	Average
6	1.560	30.71	0.98	10.93	42.62		-13.38	
7	1.949	24.41	0.67	10.96	36.04	46.00	-9.96	Average
8	2.594	29.83	0.99	10.93	41.75		-14.25	
9	8.592	23.86	0.69	10.88	35.43	50.00	-14.57	Average
10	17.291	37.31	0.80	10.91	49.02		-10.98	
11	17.383	30.52	0.69	10.92	42.13			Average
12	22.298	26.14	0.69	10.90	37.73			Average

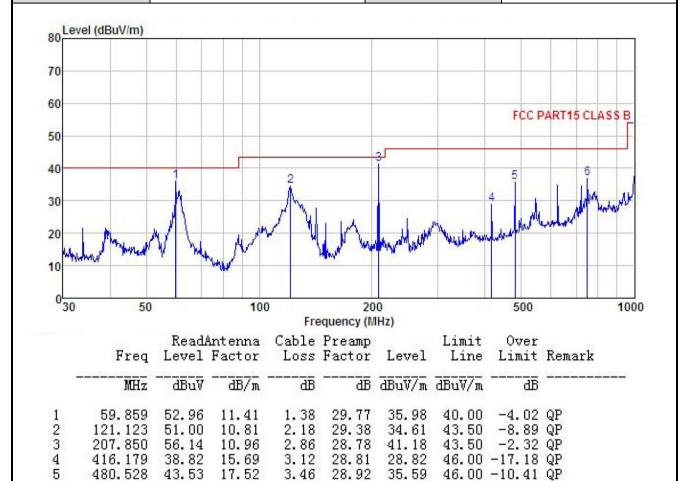
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Section 15.109							
Test Method:	ANSI C63.4:2014	1						
Test Frequency Range:	30MHz to 6000M	Hz						
Test site:	Measurement Dis	stance: 3m (Sem	ni-Anechoic	Chamber)		
Receiver setup:	Frequency	Detector	r	RBW	VBW	Remark		
	30MHz-1GHz							
	Above 1GHz Peak 1MHz 3MHz Peak Value							
		RMS		1MHz	3MHz	Average Value		
Limit:	Frequenc		Lim	it (dBuV/m	@3m)	Remark		
	30MHz-88N			40.0		Quasi-peak Value		
	88MHz-216I 216MHz-960			43.5 46.0		Quasi-peak Value		
	960MHz-10			54.0		Quasi-peak Value Quasi-peak Value		
				54.0		Average Value		
	Above 1G	Hz		74.0		Peak Value		
Test setup:	Below 1GHz Tum Table Ground Plane Above 1GHz	4m	<u></u>		Antenna Tower Search Antenna Test eiver			
	AE EUT Horn Anlenna Tower Ground Reference Plane Test Receiver Architer Controller							

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the maximum. 						
	measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test environment:	Temp.: 24 °C Humid.: 57% Press.: 1 01kPa						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						
Remark:	 All of the observed value above 6GHz ware the niose floor , which were no recorded DDR Highest frequency is 1.3GHz. 						



Measurement Data:

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	KT5021
Test By:	YT	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Remark:

6

750.108

40.40

20.60

4.36

28.48

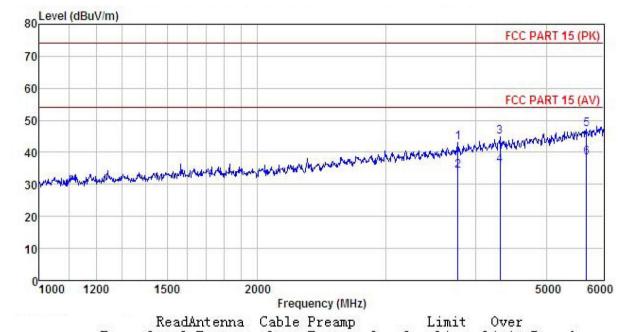
36.88

46.00 -9.12 QP

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

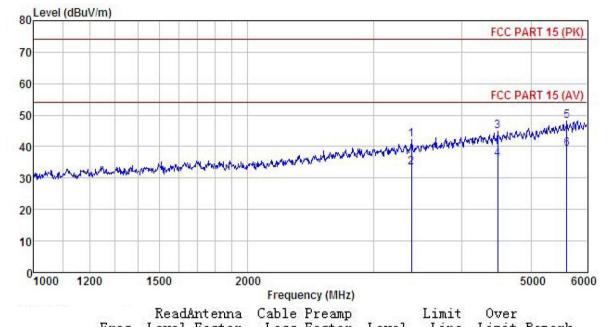
	uct Name: Mobile Phone			Product Model:			KT	KT5021		
	YT				Test mode: Polarization:			PC mode Horizontal		
су:	30 MHz ~	1 GHz								
Voltage: AC 120/60Hz Environment:				Ter	mp: 24 ℃	Huni: 57%				
(dRuV/m)										
(dDdv/III)										
							FC	PART15	CLASSB	
					3 4					
	4						ì			
-			N ₂	2		5	1		ore band Hol	
	T)		ħ	1/1	M.	My		di mada walan		
			1) 10		K	1 Want	JAN AN	May Maria		
	AN VANA	1	WW	MANAGE BY	want the	of March	appropriate for	Madelmanna		
market before you have the state of the stat		Walley Market	WW	hyperital hy	unional test	of "March	Layland American Marie	Nethnand		
			W		undraph tech	A Youde				
50		100		2	OO MHz)	A Youth	500		1000	
	194	100	√√ " ') Fr	2 requency (MHz)	J. Wyddy	500	0		
50	194	100 ntenna	O Fr	2 requency (MHz)	Limit Line	500 Over	0		
50	ReadA Level	100 ntenna	O Fr	equency (Preamp	MHz)	Line	500 Over Limit) Remark		
50 Freq MHz	ReadA Level 1	100 ntenna Factor dB/m	Cable Loss	equency (Preamp Factor	MHz) Level dBuV/m	Line dBuV/m	500 Over Limit	Remark		
50 Freq MHz 60.069 175.652	ReadA: Level 1: dBuV 48.64 45.74	100 ntenna Factor dB/m 11.40 9.84	Cable Loss	equency (Preamp Factor dB 29.77 29.01	MHz) Level dBuV/m 31.65 29.27	Line dBuV/m 40.00 43.50	500 Over Limit ———————————————————————————————————	Remark QP QP		
50 Freq MHz 60.069 175.652 207.850	ReadA: Level : dBuV 48.64 45.74 54.45	100 ntenna Factor dB/m 11.40 9.84 10.96	Cable Loss 1.38 2.70 2.86	29.77 29.01 28.78	MHz) Level dBuV/m 31.65 29.27 39.49	Line dBuV/m 40.00 43.50 43.50	500 Over Limit -8.35 -14.23 -4.01	Remark QP QP QP		
50 Freq MHz 60.069 175.652	ReadA: Level 1: dBuV 48.64 45.74	100 ntenna Factor dB/m 11.40 9.84	Cable Loss	29.77 29.01 28.78 28.59	MHz) Level dBuV/m 31.65 29.27 39.49	Line dBuV/m 40.00 43.50 43.50 46.00	500 Over Limit ———————————————————————————————————	Remark QP QP QP QP QP		
	_	AC 120/60	AC 120/60Hz	AC 120/60Hz	AC 120/60Hz	AC 120/60Hz Environr	AC 120/60Hz Environment:	AC 120/60Hz Environment: Ter (dBuV/m) FC	AC 120/60Hz Environment: Temp: 24°C	


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product Name:	Mobile Phone	Product Model:	KT5021
Test By:	YT	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	—dBu∜	dB/m	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	3779.099	47.07	29.58	6.06	41.76	43.15	74.00	-30.85	Peak
2	3779.099	38.27	29.58	6.06	41.76	34.35	54.00	-19.65	Average
3	4314.907	47.42	30.36	6.58	41.90	44.76	74.00	-29.24	Peak
4	4314.907	38.57	30.36	6.58	41.90	35.91	54.00	-18.09	Average
5	5685.998	46.34	32.64		41.89			-26.66	
6	5685.998	37.45	32.64	7.55	41.89	38.45	54.00	-15.55	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	KT5021
Test By:	YT	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
	MHz	—dBuV		<u>ap</u>	<u>ab</u>	$\overline{dB} \overline{uV}/\overline{m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	3393,901				41.35				
2	3393.901 4488.392				41.35				Average Peak
4	4488.392	38.55	30.40	6.79	42.04	36.06	54.00	-17.94	Average
5 6	5615.128 5615.128				41.81				Peak Average
60000	0010.120	50.50	32.02	1.00	71.01	35.20	04.00	14.00	morage

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.