

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to isotropic

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	14.80	(dBm)
Maximum peak output power at antenna input terminal:	30.2	(mW)
Antenna gain(typical):	3	(dBi)
Maximum antenna gain:	1.995	(numeric)
Prediction distance:	20	(cm)
Source Based Time Average Duty Cycle:	100	(%)
Prediction frequency:	2412	(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1.000	(mW/cm^2)
Power density at prediction frequency:	0.01200	(mW/cm^2)
Power density at prediction frequency:	0.1200	(W/m^2)
Margin of Compliance:	19.21	(dB)