

Date :2022. 01. 17

# **SPECIFICATION**

| Product Name   | BLUETOOTH ANTENNA |
|----------------|-------------------|
| Customer       | 유비스랩              |
| Model Name     | SOCCERBEE         |
| Customer Code. |                   |
| Provider       | RadiAnt           |
| Part Code.     |                   |

|         | Submitted | Che     | Approved |          |
|---------|-----------|---------|----------|----------|
| Buyer   |           |         |          |          |
|         | Submitted | Checked | Checked  | Approved |
| RadiAnt | Amo       | 4       |          | Ly       |



# Table of Contents –

| 1. Produ  | uct History          | 3  |
|-----------|----------------------|----|
| 2. Electi | rical Feature        | -4 |
| 2.1       | Frequency Band       |    |
| 2.2       | Impedance            |    |
| 2.3       | Matching circuit     |    |
| 2.4       | VSWR                 |    |
| 2.5       | Directivity          |    |
| 2.6       | Maximum Power        |    |
| 3. Envir  | onment Test          | -6 |
|           |                      |    |
| 4. Electi | ric Performance Data | .8 |



# 1. Product History

|    |            |       | LIST  |          |     |
|----|------------|-------|-------|----------|-----|
| NO | Data       | Front | After | Change   | REV |
| 1  | 2022.01.17 |       |       | Approval | 0   |
| 2  |            |       |       |          |     |
| 3  |            |       |       |          |     |
| 4  |            |       |       |          |     |
| 5  |            |       |       |          |     |
| 6  |            |       |       |          |     |
| 7  |            |       |       |          |     |
| 8  |            |       |       |          |     |
| 9  |            |       |       |          |     |
| 10 |            |       |       |          |     |
| 11 |            |       |       |          |     |
| 12 |            |       |       |          |     |
| 13 |            |       |       |          |     |
| 14 |            |       |       |          |     |
| 15 |            |       |       |          |     |



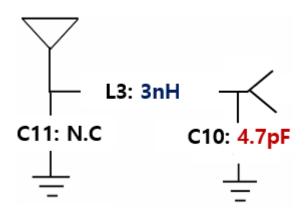
# 2. Electrical Feature

### 2.1. Frequency Band

| BAND      | BLUETOOTH       |  |  |  |  |
|-----------|-----------------|--|--|--|--|
| Frequency |                 |  |  |  |  |
| [MHz]     | 2400MHz~2485MHz |  |  |  |  |

#### 2.2 Impedance

# 2.2.1 Input Impedance


-  $R = 50\Omega$ 

#### 2.2.2 Measuring Method

By using Network Analyzer, connect the antenna installed SOCCERBEE to the reflection point of Analyzer and measure the impedance value within the designated frequency band.

# 2.3 Matching circuit

Matching Circuit is composed in free space of 2.1 frequency band while satisfying customer's requirements.



<Figure 2.3.BLUETOOTH Matching circuit >



#### **2.4 VSWR**

Impedance Matching optimization is performed under the below mentioned environment.

# 2.4.1 Free Space Environment

| BAND | BLUETOOTH |                                 |       |       |  |  |
|------|-----------|---------------------------------|-------|-------|--|--|
| FREQ | 2400MHz   | 2400MHz 2425MHz 2450MHz 2485MHz |       |       |  |  |
| VSWR | 1.5:1     | 1.5:1                           | 2.0:1 | 2.0:1 |  |  |

# 2.4.2 Measuring Method

Connect (soldering)  $50\Omega$  semi-rigid coaxial cable to the  $50\Omega$  spot in SOCCERBEE. To minimize the loss of transmission, semi-rigid coaxial cable is used. Including PCB, the SOCCERBEE shouldn't be different from the one, which will be used for mass production.

Specification should be the same for all frequency bands. Free Space means that SOCCERBEE is put on the surface of no conducting plastic.

#### 2.5 Directivity

#### Omni-directional (Pwr sum.)

| BAND     | BLUETOOTH |                         |          |          |  |  |
|----------|-----------|-------------------------|----------|----------|--|--|
| FREQ     | 2400MHz   | 2400MHz 2425MHz 2450MHz |          |          |  |  |
| AVG GAIN | -3.41dBi  | -3.59dBi                | -4.05dBi | -4.49dBi |  |  |

#### 2.6 Maximum Power

- P=2W Under



# 3. Environment Test

# 3.1 Operating Temperature Test

#### 3.1.1 Test Condition

```
Temperature = -30^{\circ}C, +80^{\circ}C
Duration time = 1 hour
```

# 3.1.2 Requirements

After the test, the antenna must not have an outer damage, and also it must pass requirement shown in 2.4.

# 3.1.3 Measuring Method

Antenna is kept at -30°C for 1 hour and +80°C for 1 hour and than passed test of 2.4

# 3.2 Temperature Cycling Test

#### 3.2.1 Test Condition

- Low cycling Temperature TLC = -40°C
- High cycling Temperature THC = +80°C
- 1Cycle = 4 hours
- Test number = 10Cycle

#### 3.2.2 Requirements

After the test, the antenna must not have an outer damage, and also it must pass requirement shown in 2.4.



# 3.2.3 Measuring Method

Antenna is kept at low temperature -40°C for 2 hours and increase the temperature up to +80°C within 2 hour and kept for another 2 hours at the same temperature will be 1 cycle. As shown in Figure 3.2.1 repeat 10 cycle and kept for 2 hour in normal temperature.

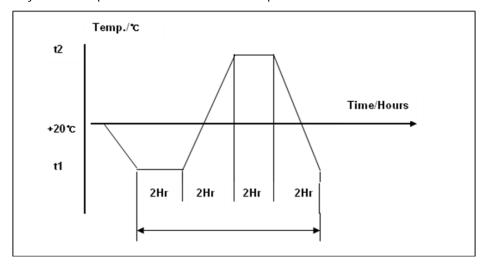



Figure 3.2.1 Temperature Cycling

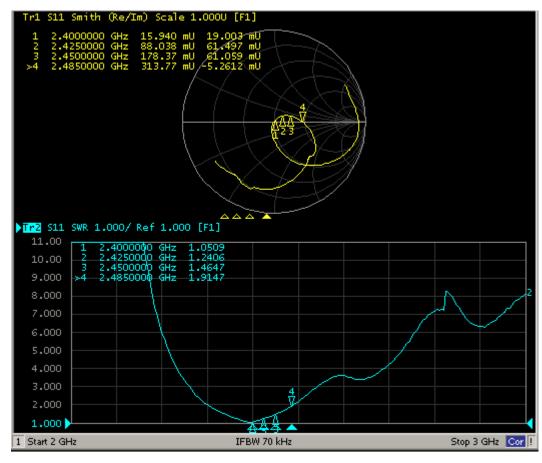
#### 3.3 Corrosion Resistance Test

#### 3.3.1 Test Condition

- NaCl = 90%
- Water Temperature = 60°C
- Duration Time = 96 hours

# 3.3.2 Requirements

After the test, the antenna must not have an outer damage, and also it must pass requirement shown in 2.4.

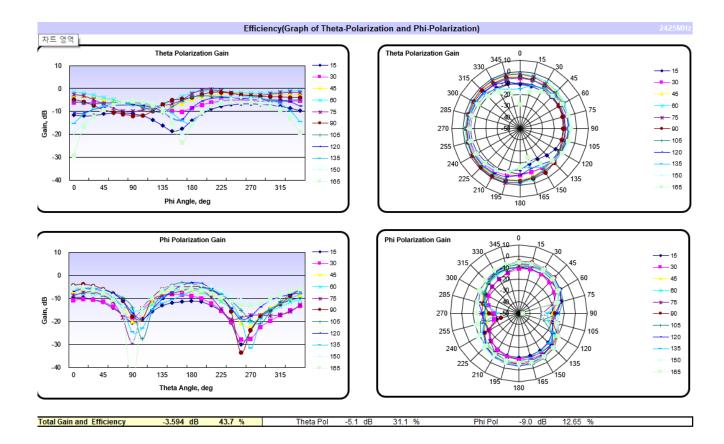

# 3.3.3 Measuring Method

Antenna is soaked in sodium chloride solution at temperature  $+60^{\circ}$ C and 90%(NaCl) for 96 hours and dry out.



# 4. Electric Performance Data

# 4.1.1. Smith Chart & VSWR (BLUETOOTH)






# 4.2. GAIN DATA

# 4.2.1. Gain Data & Radiation (BLUETOOTH)

|                 | 1     | 2     | 3     | 4     |
|-----------------|-------|-------|-------|-------|
| Frequency [MHz] | 2400  | 2425  | 2450  | 2485  |
| Efficiency [dB] | -3.41 | -3.59 | -4.05 | -4.49 |
| Efficiency [%]  | 45.6  | 43.7  | 39.3  | 35.5  |

