

TEST REPORT

47 CFR FCC Part 15 Subpart C 15.231

Report Reference No. CTL2404152043-WF

Compiled by: (position+printed name+signature)

Tested by: (position+printed name+signature)

Approved by: (position+printed name+signature)

Happy Guo (File administrators)

Wuqiang Wu (Test Engineer)

> Ivan Xie (Manager)

Product Name Bike Anti-theft Alarm

Model/Type reference ZDFD200E

List Model(s)..... ZDFD200A, ZDFD200B, DFD200C, DFD200D, DFD200F,

DFD200H

Trade Mark.....: N/A

FCC ID...... 2AT7V-ZDFD200E

Applicant's name Daying Electronics Technology Co.,LTD

Address of applicant 5th Floor, Building D, Futai high-tech Industrial, No. 8 Qingfeng

South Road, Tangxia Town, Dongguan, China

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm Zone A, 1st Floor, Warehouse 2, Baisha Logistics Company,

No. 3011 Shahe West Road, Nanshan District, Shenzhen

Test specification.....:

Standard 47 CFR FCC Part 15 Subpart C 15.231

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of receipt of test item: Apr. 23, 2024

Date of Test Date...... Apr. 23, 2024-May.14, 2024

Date of Issue: May.15, 2024

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Equipment under Test : Bike Anti-theft Alarm

Sample No. : CTL2404152043

Model /Type : ZDFD200E

Listed Models : ZDFD200A, ZDFD200B, DFD200C, DFD200D, DFD200F,

DFD200H

Applicant : Daying Electronics Technology Co.,LTD

Address : 5th Floor, Building D, Futai high-tech Industrial, No. 8

Qingfeng South Road, Tangxia Town, Dongguan, China

Manufacturer : Daying Electronics Technology Co.,LTD

Address : 5th Floor, Building D, Futai high-tech Industrial, No. 8

Qingfeng South Road, Tangxia Town, Dongguan, China

Test result	Pass *
rest result	1 433

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

** Modified History **

Version	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2024-05-15	CTL2404152043-WF	Tracy Qi
	1 2 2 2 2			
	7 11			- A 10
		6		
	~ 0 H		-	0.0
			27	10
	1			7

Report No.: CTL2404152043-WF

Table of Contents

Page

1.	SUN	MMARY	
1	.1.	TEST STANDARDS	
1	.2.	TEST DESCRIPTION	
1	.3.	TEST FACILITY	6
1	.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.	GEN	NERAL INFORMATION	8
_	.1.	ENVIRONMENTAL CONDITIONS	
2	.2.	GENERAL DESCRIPTION OF EUT	8
2	.3.	EQUIPMENTS USED DURING THE TEST	8
2	.4.	RELATED SUBMITTAL(S) / GRANT (S)	(
2	.5.	Modifications	9
3.	TES	T CONDITIONS AND RESULTS	10
3	.1.	CONDUCTED EMISSION (AC MAIN)	10
3	.2.	RADIATED EMISSION	
3	.3.	20dB Bandwidth	18
3	.4.	DEACTIVATION TIME	20
3	.5.	Antenna Requirement	
4.	TES	T SETUP PHOTOS OF THE EUT	22
5.	EVT	FERNAL AND INTERNAL PHOTOS OF THE EUT	23
Э.	EAI	ERNAL AND INTERNAL PROTOS OF THE EUT	

V1.0 Page 5 of 28 Report No.: CTL2404152043-WF

1. SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.231: Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

1.2. Test Description

FCC and IC Requirements		
FCC Part 15.207	Conducted Emission	N/A
FCC Part 15.231(a)(1)	Automatically Deactivate	PASS
FCC Part 15.231(b) Electric Field Strength of Fundamental Emission		PASS
FCC Part 15.205 &15.209& 15.231(b)	Electric Field Strength of Spurious Emission	PASS
FCC Part 15.231(c)	-20dB bandwidth	PASS
FCC Part 15.203	Antenna requirement.	PASS

Remark: The measurement uncertainty is not included in the test result.

V1.0 Page 6 of 28 Report No.: CTL2404152043-WF

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Zone A, 1st Floor, Warehouse 2, Baisha Logistics Company, No. 3011 Shahe West Road, Nanshan District, Shenzhen

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratoryaccreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

CABidentifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered byInnovation, Science and Economic Development Canada to test to Canadian radio equipment requirementswith Registration No.: 9618B.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4"Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power Radiated	±2.20 dB	(1)
Radiated Emission9KHz~30MHz	±3.66dB	(1)
Radiated Emission30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)

DTS Bandwidth	±1.9%	(1)
Maximum Conducted Output Power	± 1.18 dB	(1)
Maximum Power Spectral Density Level	±0.98 dB	(1)
Band-edge	±1.21dB	(1)
University of Emissions In New restricted From Dands	9kHz-7GHz:±1.09dB	(4)
Unwanted Emissions In Non-restricted Freq Bands	7GHz-26.5GHz: ±3.27dB	(1)

- (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95%(2) confidence level using a coverage factor of k=1.96.

V1.0 Page 8 of 28 Report No.: CTL2404152043-WF

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Bike Anti-theft Alarm	
Model/Type reference:	ZDFD200E	
Power supply:	DC3V battery power supply	
Modulation:	ASK	
Operation frequency:	433.93MHz	
Channel number:	1	
Antenna type:	PCB Antenna	
Antenna gain:	0.00dBi	

Note: For more details, please refer to the user's manual of the EUT.

2.3. Equipments Used during the Test

Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due
EMI	Test Receiver	ROHDE & SCHWARZ	ESCI	1166.5950.03	2024/04/30	2025/04/29
	LISN	ROHDE & SCHWARZ	ESH2-Z5	860014/010	2024/04/30	2025/04/29
	Limitator	ROHDE & SCHWARZ	ESH3-Z2	100408	2024/04/30	2025/04/29
Softwa	Software:					
	Name of Software:			Version:		
ES-K1 V1.71						

Radiated Emissions and Band Edge					
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Active Loop Antenna	Da Ze	ZN30900A	/	2024/04/30	2025/04/29
Double cone logarithmic antenna	Schwarzbeck	VULB 9168	824	2023/02/13	2026/02/12
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2021/12/23	2024/12/22
Horn Antenna	Ocean	OBH1004	26999002	2021/12/22	2024/12/21

	Microwave	00		400			
Amplifier	MRT-AP01M 06	MRT		S-001	2024/04/30	2025/04/29	
Amplifier	Agilent	8449	В	3008A02306	2024/04/30	2025/04/29	
Amplifier	Brief&Smart	LNA-4018		2104197	2024/04/30	2025/04/29	
EMI Test Receiver	ROHDE & SCHWARZ	ESCI		1166.5950.03	2024/04/30	2025/04/29	
Spectrum Analyzer	RS	FSF	•	1164.4391.38	2024/04/30	2025/04/29	
Test software	10	7				0 11 1	
Name of So	oftware	Version				1 1 10	
EZ_EMC(Below 1GHz)					V1.1.4.2	1	
EZ_EMC(Abo	EZ_EMC(Above 1GHz)		V1.1.4.2				

Automatically Deactivate & -20dB bandwidth							
Test Equipment	Manufacturer	Mod	lel No.	Serial No.	Calibration Date	Calibration Due Date	
Spectrum Analyzer	Keysight	N9	020A	MY53420874	2024/04/30	2025/04/29	
Temperature/Humidity Meter	Ji Yu	MC501		1	2024/04/30	2025/04/29	
Test Software							
Name of Software				Version			
TST-PASS				V2.0			

2.4. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.231 of the FCC Part 15, Subpart C Rules.

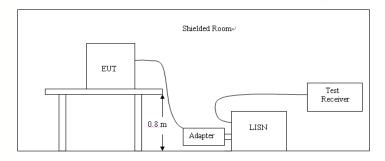
2.5. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 10 of 28 Report No.: CTL2404152043-WF

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emission (AC Main)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguenay range (MHz)	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a flood stand system; a wooden table with a height of 0.1 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4. Ifa EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Battery powered products do not require this test.

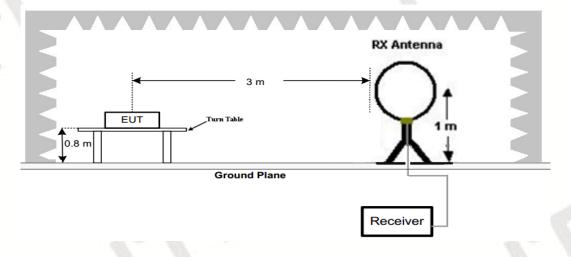
3.2. Radiated Emission

Limit

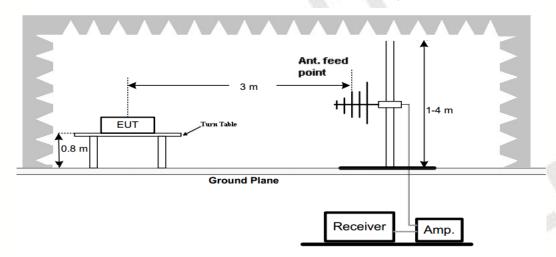
For intentional device, according to 15.209(a)the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table.

Frequency(MHz)	Distance(Meters)	Radiated(dBµV/m)	Radiated(µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

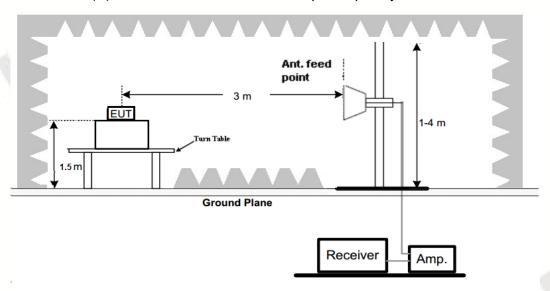
In addition to the provisions of 15.231(b) and RSS 210-A1.1.2, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:


Funda- mental fre- quency (MHz)	Field strength of funda- mental (microvolts/ meter)	Field strength of spurious emissions (microvolts/meter)		
40.66– 40.70.	2,250	225		
70-130	1,250	125		
130-174	¹ 1,250 to 3,750	¹ 125 to 375		
174-260	3,750	375		
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250		
Above 470	12,500	1,250		

¹ Linear interpolations.


[Where F is the frequency in MHz, the formulas for calculating the maximum permittedfundamental field strengths are as follows: for the band 260-470 MHz, μ V/m at 3 meters =41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- Below 1GHz measurement the EUT is placed on a turntablewhich is 0.8m above ground plane, and above 1GHz measurementEUT was placed on allow permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

V1.0 Page 13 of 28 Report No.: CTL2404152043-WF

TEST RESULTS

The emissions from 30MHz to 5GHz are measured with PEAK detector; and average levelcalculated with Duty cycle correction according 15.35(c), detailed test data please see below.Besides,we tested 3 directions and recorded the worst data

Frequency below 1GHz

925.7562

959.2146

5

6.91

6.24

26.14

26.43

33.05

32.67

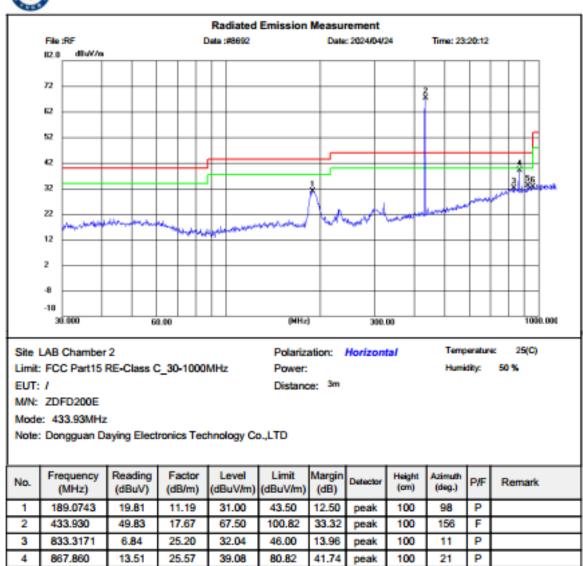
46.00

46.00

12.95

13.33

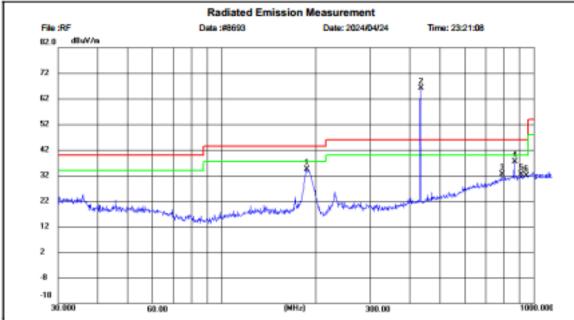
peak


100

244

350

D


Shenzhen CTL Testing Technology Co., Ltd Tel: +86-755-89486194

Humidity: 50 %

Shenzhen CTL Testing Technology Co., Ltd Tel: +86-755-89486194

Site LAB Chamber 2 Polarization: Vertical Temperature: 25(C)

Limit: FCC Part15 RE-Class C_30-1000MHz Power:
EUT: / Distance: 3m

M/N: ZDFD200E Mode: 433.93MHz

Note: Dongguan Daying Electronics Technology Co.,LTD

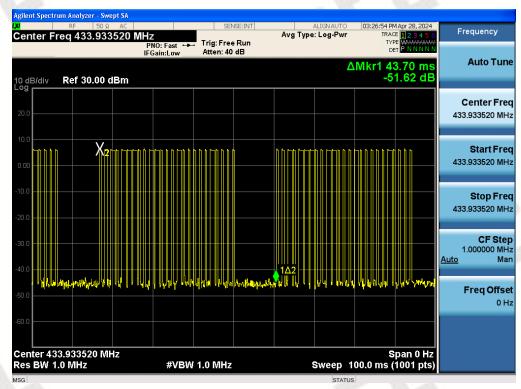
	L										
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	187.0958	22.84	11.56	34.40	43.50	9.10	peak	100	125	Р	
2	433.930	48.39	17.67	66.06	100.82	34.76	peak	100	19	F	
3	790.6188	7.53	24.76	32.29	46.00	13.71	peak	100	135	Р	
4	867.860	11.71	25.57	37.28	80.82	43.54	peak	100	173	Р	
5	909.6667	6.57	25.89	32.46	46.00	13.54	peak	100	347	Р	
6	942.1305	5.53	26.33	31.86	46.00	14.14	peak	100	241	Р	

Frequency above 1GHz

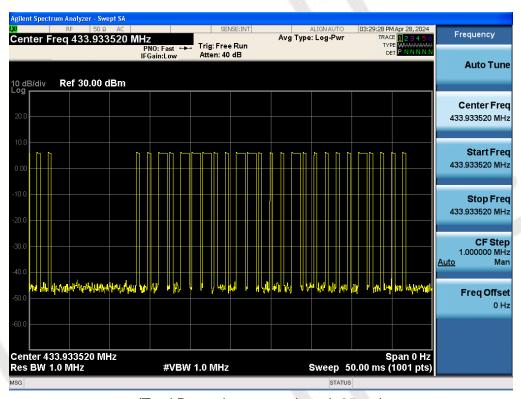
Emission Styles	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Direction (H/V)
Fundamental	433.93	67.50	100.82	33.32	PK	Н
Spurious	699.30	31.57	46.00	14.43	PK	Н
Harmonics	867.86	39.08	80.82	41.74	PK	H.
Harmonics	4359.63	58.57	74.00	15.43	PK	H
	40 /				-	
Fundamental	433.93	66.06	100.82	34.76	PK	V
Spurious	768.74	32.23	46.00	13.77	PK	V
Harmonics	867.86	37.28	80.82	43.54	PK	V
Harmonics	3050.63	58.38	74.00	15.62	PK	V

Note:Margin= Limit-Emission level

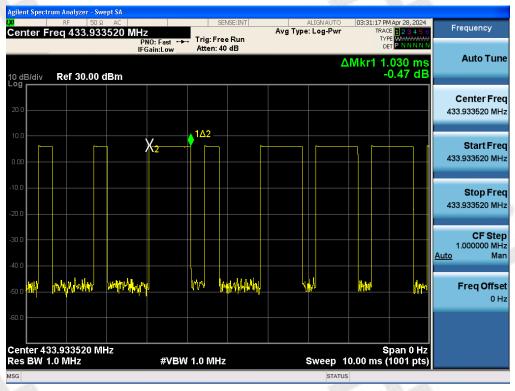
Emission Styles	Frequency (MHz)	PKEmission Level (dBuV/m)	AV Factor (dB/m)	AV Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Direction (H/V)
Fundamental	433.93	67.50	-9.89	57.61	80.82	23.21	Н
Harmonics	867.86	39.08	-9.89	29.19	60.82	31.63	Н
Harmonics	4359.63	58.57	-9.89	48.68	54.00	5.32	Н
Fundamental	433.93	66.06	-9.89	56.17	80.82	24.65	V
Harmonics	867.86	37.28	-9.89	27.39	60.82	33.43	V
Harmonics	3050.63	58.38	-9.89	48.49	54.00	5.51	V
	10					77	OF E

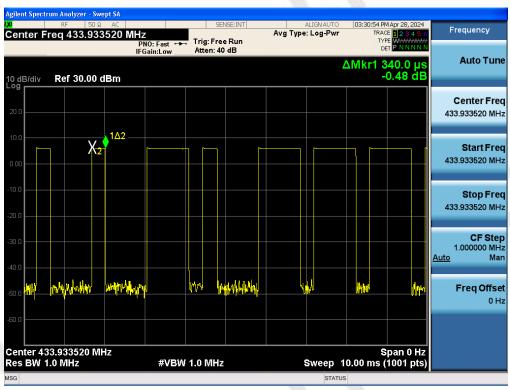

Note:

- 1. AVLevel (dBuV/m)= PK EmissionLevel (dBuV/m)+ AV Factor(dB)
- 2. Ina transmit cycle 43.70ms period found 1.03ms burst 8pcs, 0.34ms burst 17pcs, the Duty Cycle can calculate as below:


Duty Cycle= (1.03*8+0.34*17)/43.70=0.32

AV Factor=20*log(Duty Cycle)=20*log(0.32)=-9.89


(The plot of Duty Cycle See the follow page)


(Transmit cycle 43.70ms)

(Total Bursts in a transmit cycle25pcs)

(1.03ms burst 8pcs)

(0.34ms burst 17pcs)

V1.0 Page 18 of 28 Report No.: CTL2404152043-WF

3.3. 20dB Bandwidth

Limit

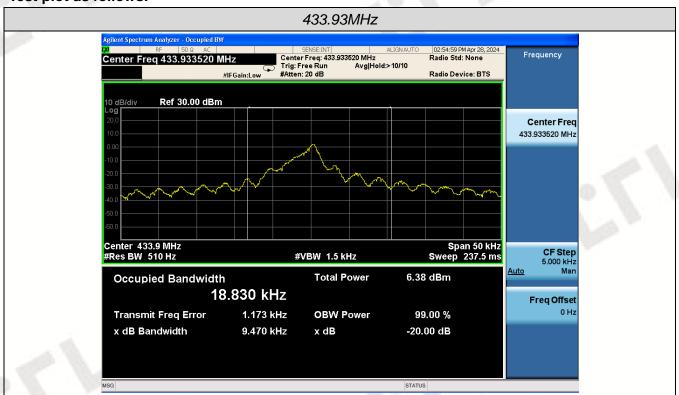
According to 47 CFR 15.231(c) The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20dB down from the modulated carrier.

Test Configuration

Test Procedure

The 20dB bandwidth and 99% bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Test Results

Modulation	Channel Frequency (MHz)	99% OBW (KHz)	20dB bandwidth (KHz)	Limit (KHz)	Result
ASK	433.93	18.830	9.470	0.25%*433930=1084.825	Pass

V1.0 Page 19 of 28 Report No.: CTL2404152043-WF

Test plot as follows:

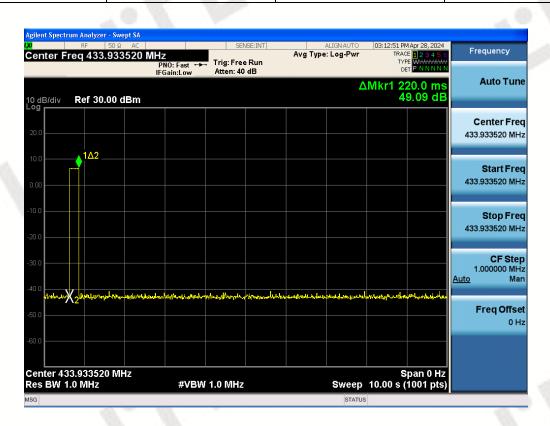
V1.0 Page 20 of 28 Report No.: CTL2404152043-WF

3.4. Deactivation Time

Limit

According to FCC §15.231(a)(1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Test Configuration


Test Procedure

- 1. The EUT was placed on a wooded table which is 0.8m height and close to receiver antenna of spectrum analyzer.
- 2. The spectrum analyzer resolution bandwidth was set to 1 MHz and video bandwidth was set to 1 MHz to encompass all significant spectral components during the test. The spectrum analyzer was operated in linear scale and zero span mode after tuning to the transmitter carrier frequency.

TEST RESULTS

Note: Multiple groups of channels are tested, only the poor frequencies are recorded, other frequencies meet the requirements.

Frequency (MHz)	One transmission time (S)	Limit(S)	Result
433.93	0.22	5	Pass

V1.0 Page 21 of 28 Report No.: CTL2404152043-WF

3.5. Antenna Requirement

Standard Applicable

According to FCC Part 15C 15.203

- a) An intentional radiator shall be de-signed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.
- b) The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

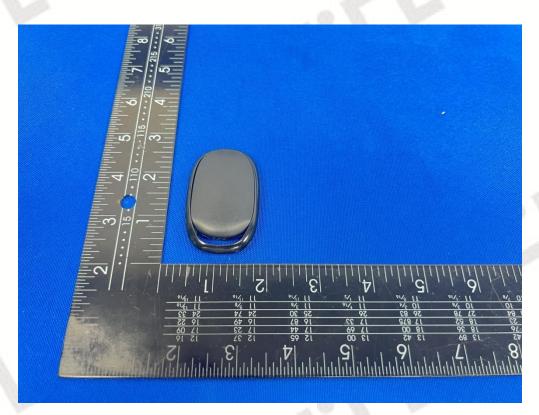
Antenna Connected Construction

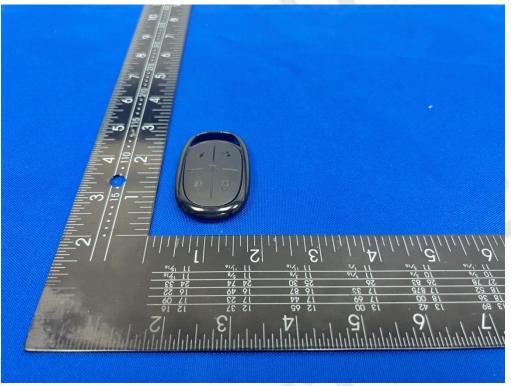
The antenna used in this product is an PCB Antenna, The directional gains of antenna used for transmitting is 0.00dBi.

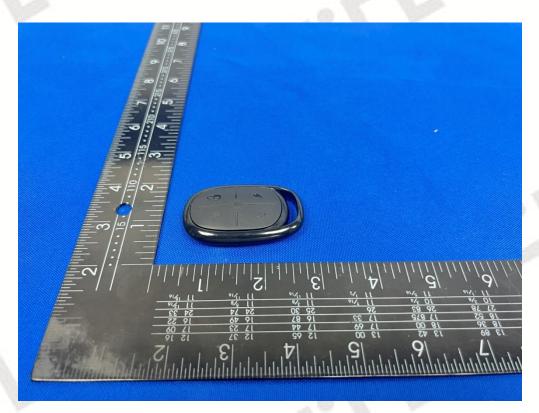
V1.0 Page 22 of 28 Report No.: CTL2404152043-WF

4. Test Setup Photos of the EUT

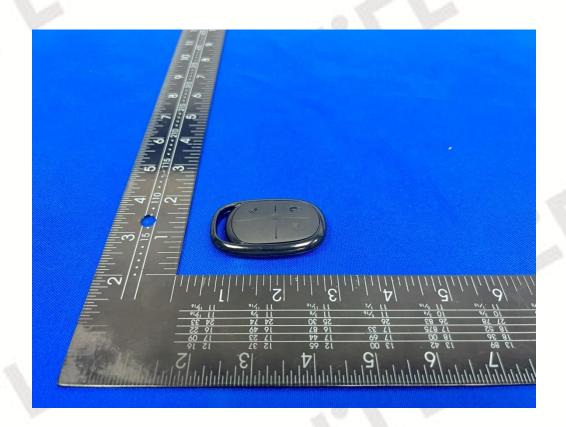


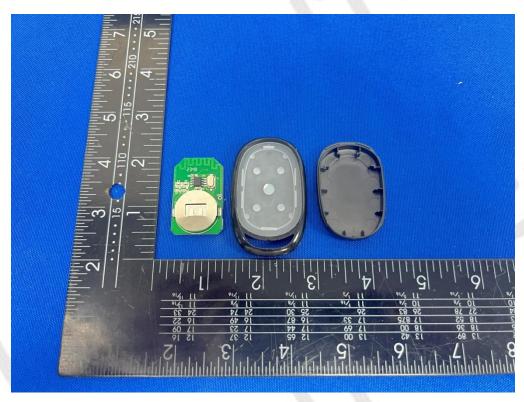

V1.0 Page 23 of 28 Report No.: CTL2404152043-WF

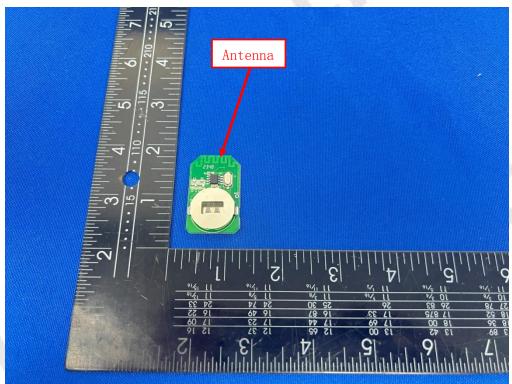

5. External and Internal Photos of the EUT

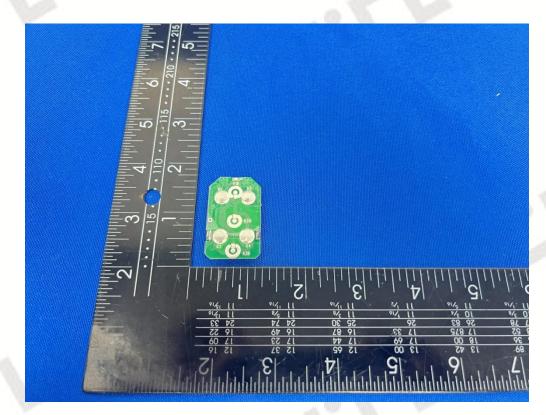

External Photos of EUT

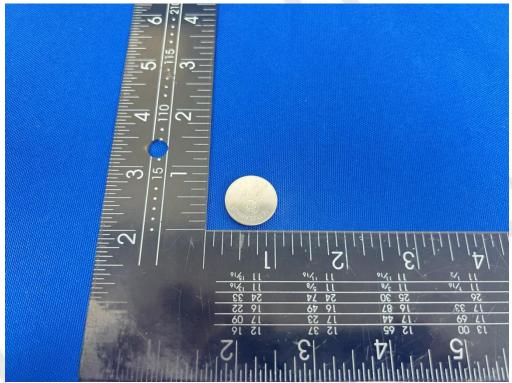







V1.0 Page 26 of 28 Report No.: CTL2404152043-WF




V1.0 Page 27 of 28 Report No.: CTL2404152043-WF

Internal Photos of EUT

