

Global United Technology Services Co., Ltd.

Report No.: GTS202008000168F01

TEST REPORT

Applicant: Electron-X

US, Texas, Houston, 6005 Milwee st ste 911 **Address of Applicant:**

Manufacturer/Factory: Guangzhou Huaxing Electronic Co., Ltd

Address of NO.75 JingHu Road, XinYa Street, HuaDu District, Guangzhou

Manufacturer/Factory: City, China.

Equipment Under Test (EUT)

Product Name: Stage Speaker

Model No.: **DOMINO**

Party box, Diablo, Spark, Rumble, Party maker

Trade Mark: **GIG MASTER**

FCC ID: 2AT4B-DOMINO

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: Aug. 15, 2020

Date of Test: Aug. 15, 2020 to Aug. 25, 2020

Date of report issued: Aug. 25, 2020

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Aug. 25, 2020	Original

Prepared By:	Joseph Du	Date:	Aug. 25, 2020
	Project Engineer		
Check By:	Paviowar	Date:	Aug. 25, 2020
	Reviewer		

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	7
	5.3 DESCRIPTION OF SUPPORT UNITS.	7
		7
		Conditions7
		7
	5.7 TEST LOCATION	7
6	6 TEST INSTRUMENTS LIST	8
7	7 TEST RESULTS AND MEASUREME	NT DATA10
	7.1 ANTENNA REQUIREMENT	10
		11
		R14
		19
		ON24
		29
		31
		PPING SEQUENCE
		38
		38
		41
		43 od
		DG
0		
8	5 1E31 SETUP PHOTO	56
9	9 EUT CONSTRUCTIONAL DETAILS	56

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz	3.8039dB	(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission 0.15MHz ~ 30MHz 3.44dB				
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.	

5 General Information

5.1 General Description of EUT

Product Name:	Stage Speaker
Model No.:	DOMINO
	Party box, Diablo, Spark, Rumble, Party maker
Test sample(s) ID:	GTS202008000168-1
Sample(s) Status:	Engineer sample
Serial No.:	N/A
Hardware Version:	H1.0
Software Version:	S1.0
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	PCB Antenna
Antenna gain:	0dBi
Power supply:	AC110V,60Hz 80W

Operation	Frequency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021			
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021			
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021			
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021			
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021			
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021			
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020			
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020			
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020			
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021			

Cond	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021			
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021			

RF C	RF Conducted Test:										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021					
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021					
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021					
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021					
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021					
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021					
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021					
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021					

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021			
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

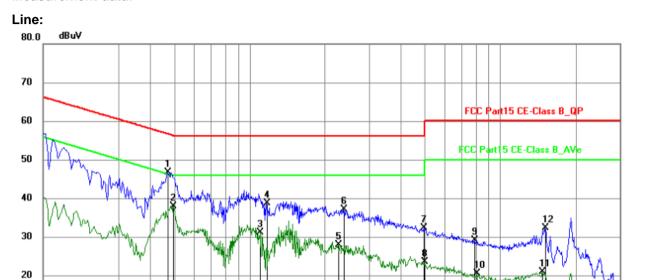
E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the is 0dBi, reference to the appendix II for details

7.2 Conducted Emissions

	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Frequency range (MHz)	Limit	(dBuV)		
		Quasi-peak	Avei		
	0.15-0.5	66 to 56*	56 to		
	0.5-5 5-30	56 60	5		
	* Decreases with the logarithm		J	O	
Test setup:	Reference Plane				
Test procedure:	Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a				
	 50ohm/50uH coupling imperations. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). Both sides of A.C. line are dinterference. In order to find positions of equipment and according to ANSI C63.10:2 	also connected to the n/50uH coupling imported the block diagram of the cked for maximum the maximum emistrates all of the interface conditions.	e main power edance with softhe test seron conducted sion, the related by the main conducted sion, the related by the must be significant.	er through a 50ohm tup and ative e changed	
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C Hum		Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz	I	l	1	
Test results:	Pass				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.



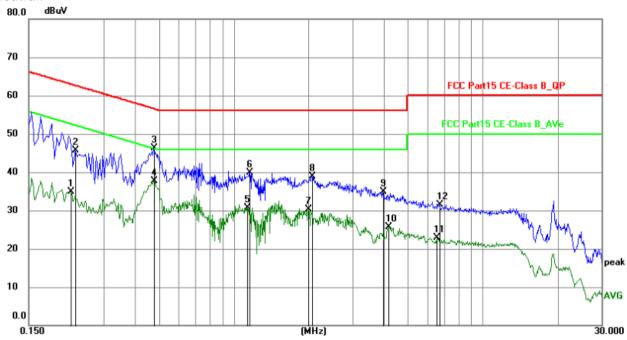
Measurement data:

10

0.0

0.150

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.4695	35.98	10.68	46.66	56.52	-9.86	QP	Р	
2	0.4965	27.43	10.56	37.99	46.06	-8.07	AVG	Р	
3	1.1040	20.69	10.41	31.10	46.00	-14.90	AVG	Р	
4	1.1670	28.36	10.40	38.76	56.00	-17.24	QP	Р	
5	2.2605	17.79	10.12	27.91	46.00	-18.09	AVG	Р	
6	2.3820	26.93	10.09	37.02	56.00	-18.98	QP	Р	
7	4.9694	23.64	8.67	32.31	56.00	-23.69	QP	Р	
8	4.9785	14.75	8.66	23.41	46.00	-22.59	AVG	Р	
9	7.9170	20.65	8.54	29.19	60.00	-30.81	QP	Р	
10	8.0970	11.90	8.54	20.44	50.00	-29.56	AVG	Р	
11	14.7030	11.83	9.12	20.95	50.00	-29.05	AVG	Р	
12	15.1170	23.20	9.18	32.38	60.00	-27.62	QP	Р	


(MHz)

AVG

30.000

Neutral:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2220	23.15	11.82	34.97	52.74	-17.77	AVG	Р	
2	0.2310	33.90	11.78	45.68	62.41	-16.73	QP	Р	
3	0.4785	35.69	10.64	46.33	56.37	-10.04	QP	Р	
4	0.4785	27.10	10.64	37.74	46.37	-8.63	AVG	Р	
5	1.1310	20.32	10.41	30.73	46.00	-15.27	AVG	Р	
6	1.1580	29.51	10.40	39.91	56.00	-16.09	QP	Р	
7	1.9950	20.04	10.19	30.23	46.00	-15.77	AVG	Р	
8	2.0625	28.78	10.17	38.95	56.00	-17.05	QP	Р	
9	3.9750	25.50	9.31	34.81	56.00	-21.19	QP	Р	
10	4.1730	16.52	9.19	25.71	46.00	-20.29	AVG	Р	
11	6.5534	14.28	8.59	22.87	50.00	-27.13	AVG	Р	
12	6.7200	22.94	8.58	31.52	60.00	-28.48	QP	Р	

Notes:

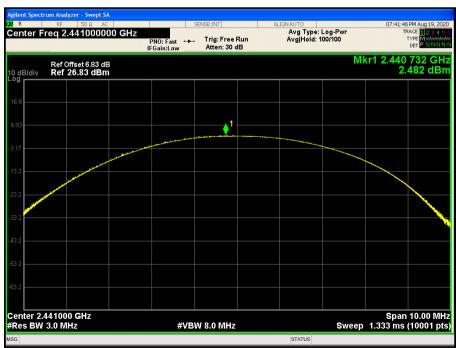
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013	
Limit:	30dBm(for GFSK),20.97dBm(for EDR)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

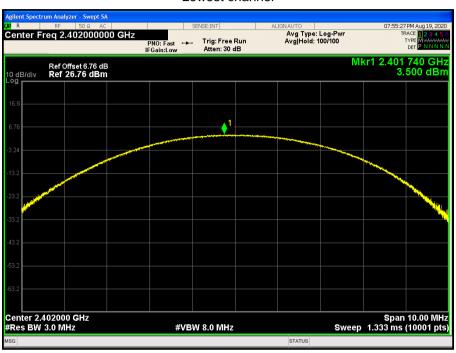
Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	2.135		
GFSK	Middle	2.482	30.00	Pass
	Highest	0.274		
	Lowest	3.500		
π/4-DQPSK	Middle	3.856	20.97	Pass
	Highest	1.526		

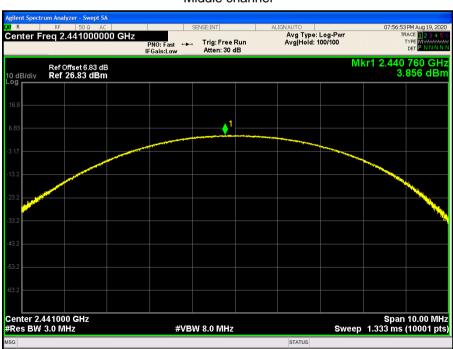

Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel


Highest channel



Test mode: π/4-DQPSK mode

Lowest channel



Middle channel

Highest channel

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.932	
GFSK	Middle	0.940	Pass
	Highest	0.944	
	Lowest	1.278	
π/4-DQPSK	Middle	1.280	Pass
	Highest	1.290	

Test plot as follows:

Test mode:	GFSK mode
------------	-----------

Lowest channel

Middle channel

Highest channel

Test mode: $\pi/4$ -DQPSK mode

Lowest channel

Middle channel

Highest channel

7.5 Carrier Frequencies Separation

	our control of parameters		
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	GFSK: 20dB bandwidth π/4-DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

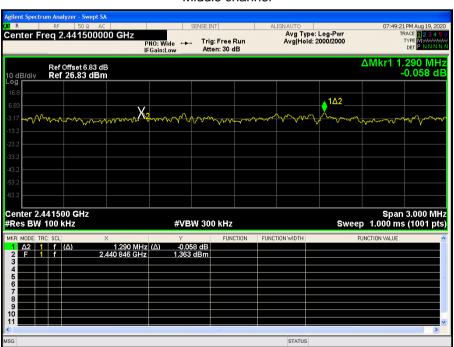
Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1122	621	Pass
GFSK	Middle	693	627	Pass
	Highest	870	629	Pass
	Lowest	1017	852	Pass
π/4-DQPSK	Middle	1290	853	Pass
	Highest	921	860	Pass

Test plot as follows:

	Modulation mode:	GFSK
--	------------------	------

Lowest channel

Middle channel



Test mode: $\pi/4$ -DQPSK

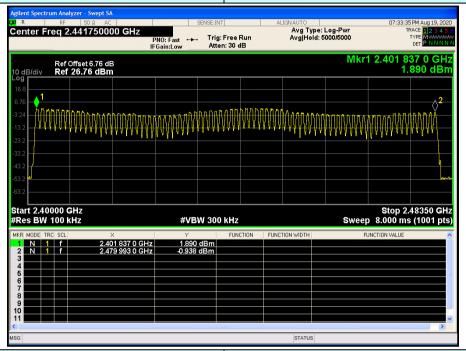
Lowest channel

Middle channel

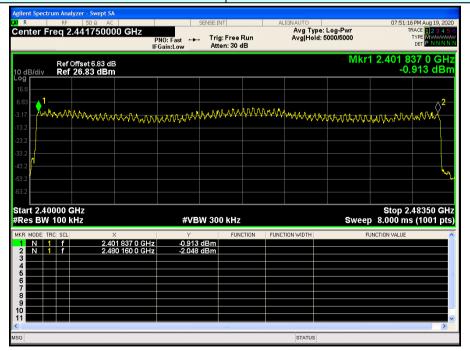
Highest channel

7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass



Test plot as follows:

Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	127.98	400	Pass
2441MHz	DH3	260.61	400	Pass
2441MHz	DH5	274.59	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.405(ms)*(1600/(2*79))*31.6=127.98msDH3 time slot=1.649(ms)*(1600/(4*79))*31.6=260.61msDH5 time slot=2.897(ms)*(1600/(6*79))*31.6=274.59ms

π/4-DQPSK mode:

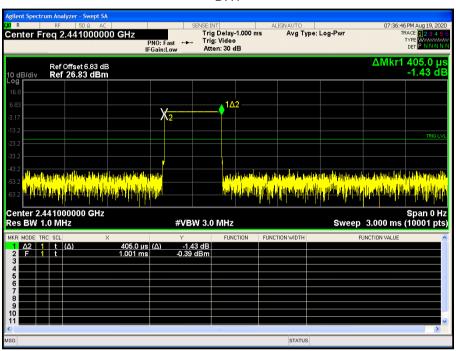
Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	121.66	400	Pass
2441MHz	2DH3	260.04	400	Pass
2441MHz	2DH5	274.59	400	Pass

Remarks:

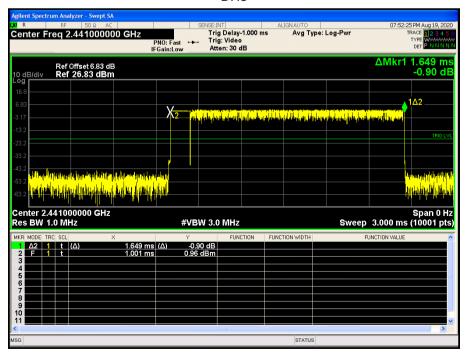
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.385(ms)*(1600/(2*79))*31.6=121.66msDH3 time slot=1.646(ms)*(1600/(4*79))*31.6=260.04msDH5 time slot=2.897(ms)*(1600/(6*79))*31.6=274.59ms

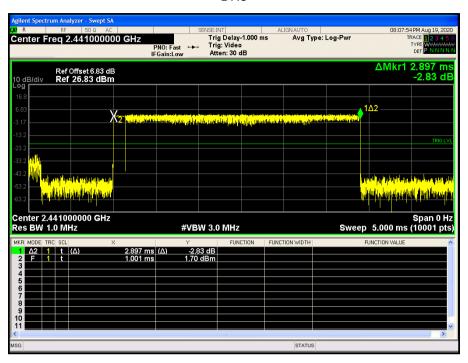


Test plot as follows:


GFSK mode:

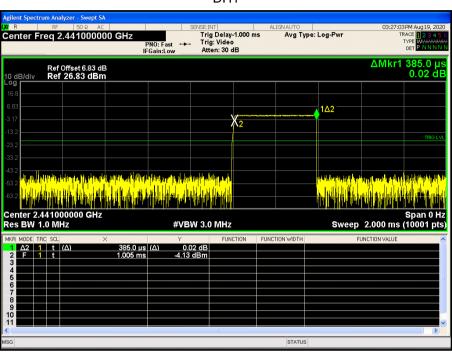
Test channel: 2441MHz

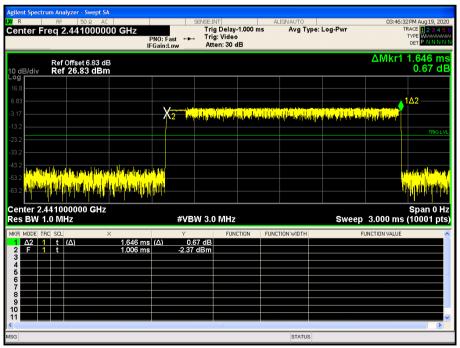
DH1



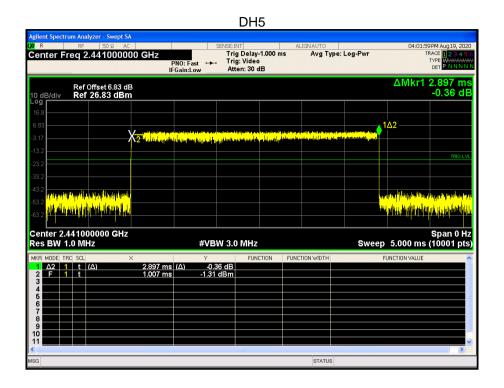
DH3

DH5




π/4-DQPSK mode:

Test channel: 2441MHz


DH1

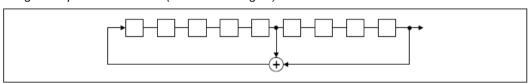
DH3

7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1)/g/h requirement:

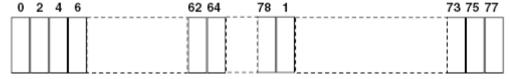
a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

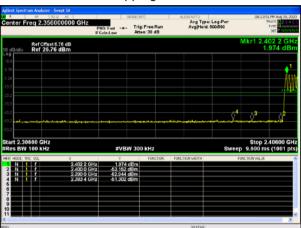
it permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted.

7.9 Band Edge

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

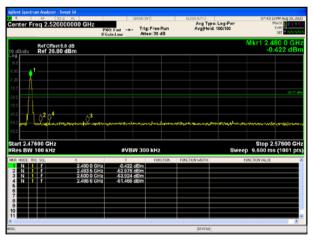
Test plot as follows:

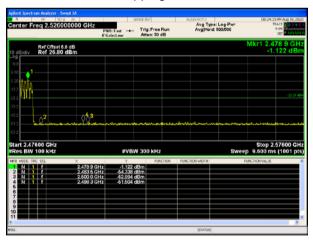

GFSK Mode:

Test channel: Lowest channel

No-hopping mode

| Applied Section Author - Seet 5A | Model Mil | Applied Section Applied Secti

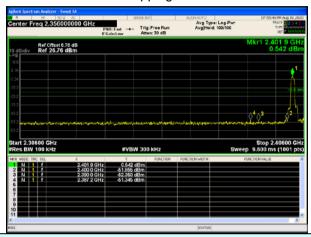

Hopping mode

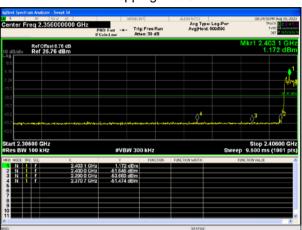

Test channel:

Highest channel

No-hopping mode

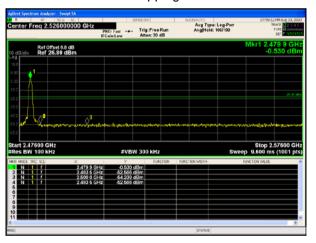
Hopping mode

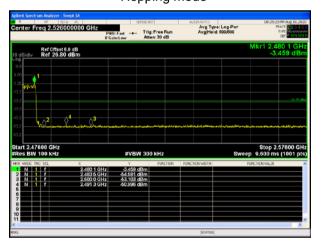



π/4-DQPSK Mode:

Test channel:	Lowest channel

No-hopping mode


Hopping mode


Test channel:

Highest channel

No-hopping mode

Hopping mode

7.9.2 Radiated Emission Method

Toot Poquiroment:	FCC Part15 C S	Postion 15 200	and 15 205					
Test Requirement:			and 15.205					
Test Method:	ANSI C63.10:20							
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst	band's (2310MHz to			
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGIIZ	Peak	1MHz	10Hz	Average Value			
Limit:	Freque	ency	Limit (dBuV					
	Above 1	GHz	54.0 74.0		Average Value			
	710070	Peak Value						
Test setup:	Test Antenna. Compared to the content of the con							
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to deshorizontal an measuremer 4. For each sus and then the and the rotal maximum results. The test-recess Bandwidth w 6. If the emissic limit specified EUT would be margin would average metical and the rotal maximum results.	B meter cambe e position of the s set 3 meters ch was mounte height is varie termine the mad d vertical polar it. spected emissicantenna was to table was turne ading. silver system we ith Maximum Hon level of the led, then testing e reported. Othe deby of the rested of the desired of the led, then testing the reported of the led of the led, then testing the reported of the led of the led, then testing the reported of the led	ar. The table was highest race away from the don the top and from one maximum value rizations of the condition of the conditi	was rotated diation. The interference of a variable of the field the antenna was arrang that from 1 ragrees to 36 at Detect From the mode was apped and the missions the sing peak, the interference of the control of t	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the unction and Specified 10dB lower than the peak values of the nat did not have 10dB quasi-peak or			
Test Instruments:	Refer to section							
Test mode:	Refer to section	5.2 for details	i					
Test results:	Pass							

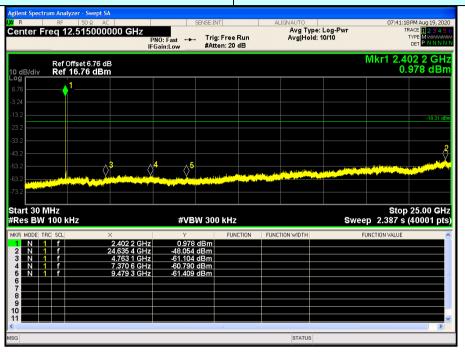
Measurement Data

Test channe	el:			Lo	Lowest channel			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Preamp Factor (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	53.51	39.55	7.77	25.66	47.39	74.00	-26.61	Horizontal
2400.00	51.60	38.33	7.3	24.55	45.12	74.00	-28.88	Horizontal
2390.00	53.85	39.55	7.77	25.66	47.73	74.00	-26.27	Vertical
2400.00	52.49	38.33	7.3	23.55	45.01	74.00	-28.99	Vertical
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	43.37	39.55	7.77	25.66	37.25	54.00	-16.75	Horizontal
2400.00	43.98	38.33	7.3	24.55	37.50	54.00	-16.50	Horizontal
2390.00	43.70	39.55	7.77	25.66	37.58	54.00	-16.42	Vertical
2400.00	43.75	38.33	7.3	23.22	35.94	54.00	-18.06	Vertical
Test channe Peak value:	el:			Hi	ghest chann	el		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	51.53	38.75	7.38	25.45	45.61	74.00	-28.39	Horizontal
2485.50	54.74	38.65	7.15	24.78	48.02	74.00	-25.98	Horizontal
2483.50	52.32	38.75	7.38	25.45	46.40	74.00	-27.60	Vertical
2485.50	53.91	38.65	7.15	24.78	47.19	74.00	-26.81	Vertical
Average val	ue:							,
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	43.77	38.75	7.38	25.45	37.85	54.00	-16.15	Horizontal
2485.50	43.98	38.65	7.15	24.78	37.26	54.00	-16.74	Horizontal
2483.50	43.99	38.75	7.38	25.45	38.07	54.00	-15.93	Vertical
2485.50	43.85	38.65	7.15	24.78	37.13	54.00	-16.87	Vertical

Remarks:

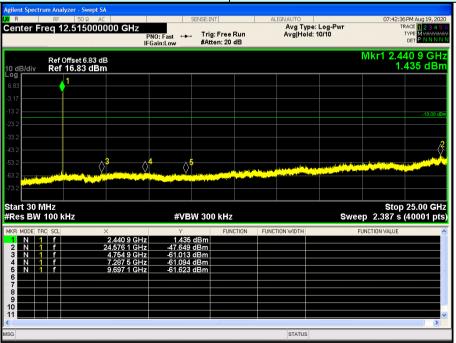
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. During the test, pre-scan the GFSK, π /4-DQPSK modulation, and found the GFSK modulation which it is worse case.

7.10 Spurious Emission


7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

GFSK mode:


Test channel: Lowest channel

30MHz~25GHz

Test channel:

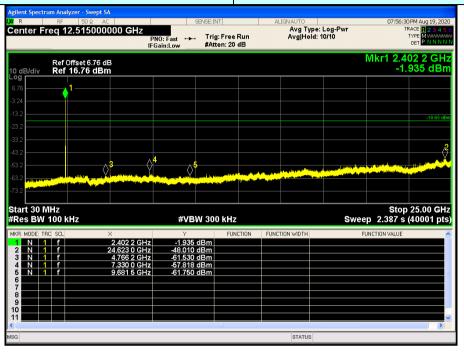
Middle channel



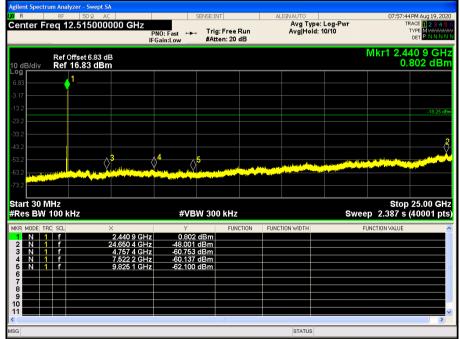
30MHz~25GHz

Test channel:

Highest channel



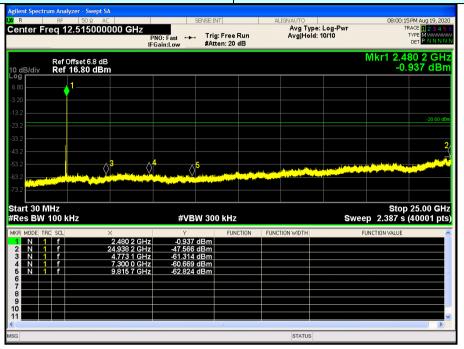
30MHz~25GHz


π/4-DQPSK mode:

Test channel: Lowest channel

30MHz~25GHz

Test channel: Middle channel



30MHz~25GHz

Test channel:

Highest channel

30MHz~25GHz

7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	ice: 3	3m						
Receiver setup:	Frequency		Detector	RB\	Ν	VBW	'	Value	
	9KHz-150KHz	Qι	Quasi-peak		Ηz	600H	z	Quasi-peak	
	150KHz-30MHz	Qι	Quasi-peak		Ιz	30KH	z	Quasi-peak	
	30MHz-1GHz	Qι	ıasi-peak	120K	Ήz	300KH	lz	Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	Z	Peak	
	Above 1G112		Peak	1MF	Ηz	10Hz	_	Average	
Limit:	Frequency		Limit (u\	//m)	٧	'alue	٨	leasurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)	QP		30m		
	1.705MHz-30MHz		30		QP			30m	
	30MHz-88MHz		100		QP				
	88MHz-216MHz	<u>'</u>	150			QP			
	216MHz-960MH	Z	200		QP			3m	
	960MHz-1GHz		500		QP			3111	
	Above 1GHz		500		Average				
	710000 10112		5000		Peak				
Test setup:	For radiated emiss	ions	from 9kH	z to 30	ЭМН	Z			
	For radiated emissions from 9kHz to 30MHz Test Antenna Tum Table Receiver-								

For radiated emissions from 30MHz to1GHz Test Antenna < 1m ... 4m EUT. Turn Table Turn Table-< 80cm > Receiver-Preamplifier-For radiated emissions above 1GHz < 3m > Test Antenna-< 1m ... 4m > EUT Turn Table+ -150cm Receiver+ Preamplifier-Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

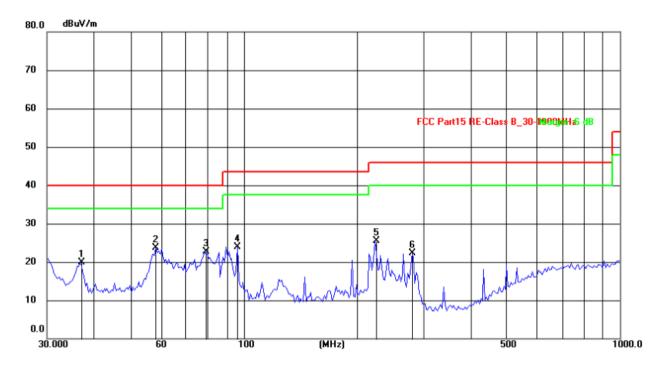
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

Remarks:

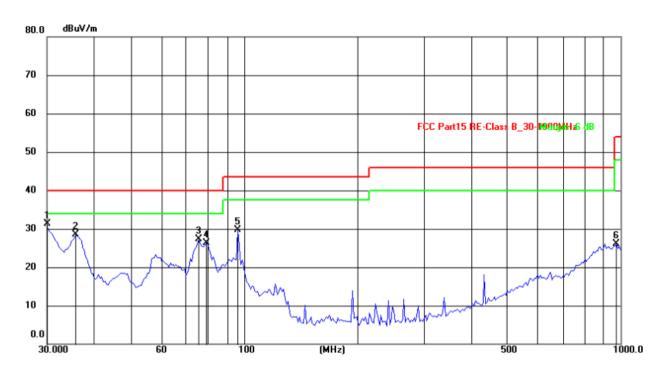
- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Pre-scan all test modes, found worst case at GFSK 2480MHz, and so only show the test result of GFSK 2480MHz


Horizontal:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	36.7018	34.54	-14.73	19.81	40.00	-20.19	QP				
2	58.4074	37.88	-14.21	23.67	40.00	-16.33	QP				
3	78.6888	41.78	-19.12	22.66	40.00	-17.34	QP				
4	96.2672	43.90	-19.96	23.94	43.50	-19.56	QP				
5	223.3415	44.30	-18.77	25.53	46.00	-20.47	QP				
6	280.5152	38.51	-16.22	22.29	46.00	-23.71	QP				

Vertical:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	30.0000	49.73	-18.44	31.29	40.00	-8.71	QP				
2	35.7490	45.91	-17.49	28.42	40.00	-11.58	QP				
3	75.9773	48.06	-20.84	27.22	40.00	-12.78	QP				
4	79.3816	48.00	-21.72	26.28	40.00	-13.72	QP				
5	96.2672	50.97	-21.32	29.65	43.50	-13.85	QP				
6	974.0436	28.48	-2.35	26.13	54.00	-27.87	QP				

■ Above 1GHz

Test channel: Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Preamp Factor (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	52.22	39.55	7.77	25.66	46.10	74.00	-27.90	Vertical
7206.00	53.16	38.33	7.30	24.55	46.68	74.00	-27.32	Vertical
15450.00	53.25	35.23	6.60	26.59	51.21	74.00	-22.79	Vertical
4804.00	51.03	39.55	7.77	25.66	44.91	74.00	-29.09	Horizontal
7206.00	52.44	38.33	7.30	23.55	44.96	74.00	-29.04	Horizontal
15450.00	53.13	35.45	6.60	27.88	52.16	74.00	-21.84	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Preamp Factor (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	43.21	39.55	7.77	25.66	37.09	54.00	-16.91	Vertical
7206.00	42.16	38.33	7.30	24.55	35.68	54.00	-18.32	Vertical
15450.00	42.36	35.23	6.60	26.59	40.32	54.00	-13.68	Vertical
4804.00	43.10	39.55	7.77	25.66	36.98	54.00	-17.02	Horizontal
7206.00	42.33	38.33	7.30	23.55	34.85	54.00	-19.15	Horizontal
15450.00	43.06	35.45	6.60	27.88	42.09	54.00	-11.91	Horizontal

Test channel: Middle channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Preamp Factor (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	50.23	39.55	7.77	25.66	44.11	74.00	-29.89	Vertical
7323.00	51.36	38.33	7.30	24.55	44.88	74.00	-29.12	Vertical
15450.00	53.26	35.23	6.60	26.59	51.22	74.00	-22.78	Vertical
4882.00	53.11	39.55	7.77	25.66	46.99	74.00	-27.01	Horizontal
7323.00	52.65	38.33	7.30	23.55	45.17	74.00	-28.83	Horizontal
15450.00	51.36	35.45	6.60	27.88	50.39	74.00	-23.61	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Preamp Factor (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	43.21	39.55	7.77	25.66	37.09	54.00	-16.91	Vertical
7323.00	42.36	38.33	7.30	24.55	35.88	54.00	-18.12	Vertical
15450.00	43.65	35.23	6.60	26.59	41.61	54.00	-12.39	Vertical
4882.00	43.16	39.55	7.77	25.66	37.04	54.00	-16.96	Horizontal
7323.00	42.05	38.33	7.30	23.55	34.57	54.00	-19.43	Horizontal
15450.00	41.33	35.45	6.60	27.88	40.36	54.00	-13.64	Horizontal

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Preamp Factor (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	51.32	39.55	7.77	25.66	45.20	74.00	-28.80	Vertical
7440.00	51.36	38.33	7.30	24.55	44.88	74.00	-29.12	Vertical
15450.00	53.25	35.23	6.60	26.59	51.21	74.00	-22.79	Vertical
4960.00	53.11	39.55	7.77	25.66	46.99	74.00	-27.01	Horizontal
7440.00	52.42	38.33	7.30	23.55	44.94	74.00	-29.06	Horizontal
15450.00	51.36	35.45	6.60	27.88	50.39	74.00	-23.61	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Preamp Factor (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	42.38	39.55	7.77	25.66	36.26	54.00	-17.74	Vertical
7440.00	43.27	38.33	7.30	24.55	36.79	54.00	-17.21	Vertical
15450.00	43.66	35.23	6.60	26.59	41.62	54.00	-12.38	Vertical
4960.00	44.23	39.55	7.77	25.66	38.11	54.00	-15.89	Horizontal
7440.00	43.29	38.33	7.30	23.55	35.81	54.00	-18.19	Horizontal
15450.00	42.34	35.45	6.60	27.88	41.37	54.00	-12.63	Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----