

## FCC SAR Test Report

**Product** : 2.4G Baby Monitor  
**Trade mark** : Simyke  
**Model/Type reference** : 2AT2MBMU0S-RX  
**Serial Number** : N/A  
**Report Number** : EED32L001985  
**FCC ID** : 2AT2MBMU0S-RX  
**Date of Issue:** : Aug. 20, 2019  
**Test Standards** : Refer to Section 1.5  
**Test result** : PASS

Prepared for:

**Abellstar Technology Limited**

**F1 Building of Dongguan Tianan-Cyber Park Huangjin Road, No.1,  
Nancheng , Dongguan, Guangdong Province, China 523080**

Prepared by:

**Centre Testing International Group Co., Ltd.****Hongwei Industrial Zone, Bao'an 70 District,****Shenzhen, Guangdong, China****TEL: +86-755-3368 3668****FAX: +86-755-3368 3385**

Tested by:

Jay Zheng

Compiled by:

Alex Wu

Jay Zheng

Alex Wu

Reviewed by:

Ware XinKevin Yang

Ware Xin

Kevin Yang

Date:

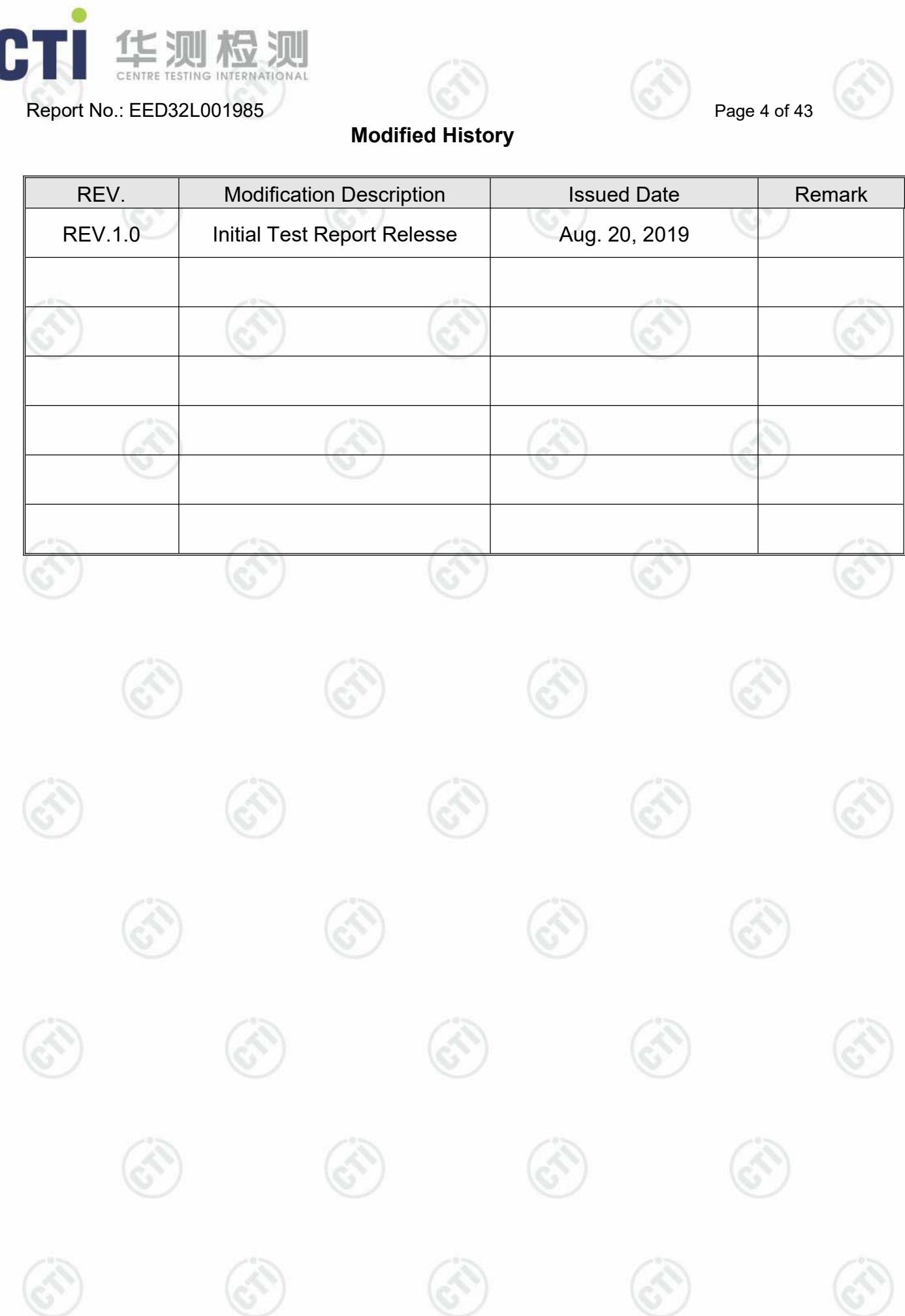
Aug. 20, 2019

Check No.:2447682979



## Table of contents

|          |                                                          |           |
|----------|----------------------------------------------------------|-----------|
| <b>1</b> | <b>General information.....</b>                          | <b>5</b>  |
| 1.1      | Notes.....                                               | 5         |
| 1.2      | Application details.....                                 | 5         |
| 1.3      | Statement of Compliance.....                             | 6         |
| 1.4      | EUT Information.....                                     | 7         |
| 1.5      | Test standard/s.....                                     | 8         |
| 1.6      | RF exposure limits.....                                  | 9         |
| 1.7      | SAR Definition.....                                      | 10        |
| 1.8      | Testing laboratory.....                                  | 10        |
| 1.9      | Test Environment.....                                    | 10        |
| 1.10     | Applicant and Manufacturer.....                          | 11        |
| <b>2</b> | <b>SAR Measurement System Description and Setup.....</b> | <b>12</b> |
| 2.1      | The Measurement System Description.....                  | 12        |
| 2.2      | Probe description.....                                   | 13        |
| 2.3      | Data Acquisition Electronics description.....            | 14        |
| 2.4      | SAM Twin Phantom description.....                        | 15        |
| 2.5      | ELI4 Phantom description.....                            | 16        |
| 2.6      | Device Holder description.....                           | 17        |
| <b>3</b> | <b>SAR Test Equipment List.....</b>                      | <b>18</b> |
| <b>4</b> | <b>SAR Measurement Procedures.....</b>                   | <b>19</b> |
| 4.1      | Spatial Peak SAR Evaluation.....                         | 19        |
| 4.2      | Data Storage and Evaluation.....                         | 20        |
| 4.3      | Data Storage and Evaluation.....                         | 24        |
| <b>5</b> | <b>SAR Verification Procedure.....</b>                   | <b>26</b> |
| 5.1      | Tissue Verification.....                                 | 26        |
| 5.2      | System check procedure.....                              | 26        |
| 5.3      | System check results.....                                | 28        |
| <b>6</b> | <b>SAR Measurement uncertainty evaluation.....</b>       | <b>29</b> |
| 6.1      | SAR measurement variability.....                         | 29        |
| 6.2      | SAR measurement uncertainty.....                         | 29        |
| <b>7</b> | <b>SAR Test Configuration.....</b>                       | <b>30</b> |
| <b>8</b> | <b>SAR Test Results.....</b>                             | <b>31</b> |
| 8.1      | Conducted Power Measurements.....                        | 31        |
| 8.2      | MAXIMUM TUNE-UP POWER.....                               | 31        |
| 8.3      | SAR test results.....                                    | 31        |


Report No.: EED32L001985

Page 3 of 43

|                    |                                                                  |           |
|--------------------|------------------------------------------------------------------|-----------|
| 8.2.1              | Results overview of 2.4GHz.....                                  | 32        |
| <b>8.4</b>         | <b>Multiple Transmitter Information.....</b>                     | <b>33</b> |
| <b>8.5</b>         | <b>Simultaneous Transmission Possibility and Conclusion.....</b> | <b>33</b> |
| <b>Appendix A:</b> | <b>SAR System performance Check Plots.....</b>                   | <b>34</b> |
| <b>Appendix B:</b> | <b>SAR Measurement results Plots.....</b>                        | <b>35</b> |
| <b>Appendix C:</b> | <b>Calibration reports.....</b>                                  | <b>41</b> |
| <b>Appendix D:</b> | <b>Photo documentation.....</b>                                  | <b>42</b> |

### Modified History

| REV.    | Modification Description    | Issued Date   | Remark |
|---------|-----------------------------|---------------|--------|
| REV.1.0 | Initial Test Report Relesse | Aug. 20, 2019 |        |
|         |                             |               |        |
|         |                             |               |        |
|         |                             |               |        |
|         |                             |               |        |
|         |                             |               |        |



## 1 General information

### 1.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report.

Centre Testing International Group Co., Ltd. does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report is not to be reproduced or published in full without the prior written permission.

### 1.2 Application details

Date of receipt of test item: 2019-07-24

Start of test: 2019-08-01

End of test: 2019-08-01

### 1.3 Statement of Compliance

| Band           | MAX Reported SAR (W/kg) |
|----------------|-------------------------|
| 2.4GHz product | 1.098                   |
|                |                         |

**Note:**

In order to ensure compliance with FCC's RF exposure guidelines, this device should be installed and operated with a minimum distance of at least 10mm between the device and your body. This includes when using the device in hotspot mode. Only use the supplied external antenna, Use of other accessories may not ensure compliance with FCC/IC RF exposure guidelines.

The device is in compliance with Specific Absorption Rate ( SAR ) for general population/uncontrolled exposure limits according to the FCC rule §2.1093, the ANSI/IEEE C95.1:1992, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013

## 1.4 EUT Information

| Device Information:                  |                                               |                                                                              |
|--------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|
| <b>Product Type:</b>                 | 2.4G Baby Monitor                             |                                                                              |
| <b>Model:</b>                        | 2AT2MBMU0S-RX                                 |                                                                              |
| <b>FCC ID:</b>                       | 2AT2MBMU0S-RX                                 |                                                                              |
| <b>SN:</b>                           | N/A                                           |                                                                              |
| <b>Device Type:</b>                  | Portable device                               |                                                                              |
| <b>Exposure Category:</b>            | uncontrolled environment / general population |                                                                              |
| <b>Hardware Version:</b>             | N/A                                           |                                                                              |
| <b>Firmware Version:</b>             | N/A                                           |                                                                              |
| <b>Antenna Type :</b>                | Chip Antenna                                  |                                                                              |
| <b>Antenna Gain:</b>                 | 0dBi                                          |                                                                              |
| Device Operating Configurations:     |                                               |                                                                              |
| <b>Supporting Mode(s) :</b>          | 2.4GHz                                        |                                                                              |
| <b>Modulation:</b>                   | GFSK                                          |                                                                              |
| <b>Operating Frequency Range(s):</b> | Band                                          | TX(MHz)                                                                      |
|                                      | 2.4GHz                                        | 2410.875MHz - 2471.625MHz                                                    |
| <b>Test Channels (low-mid-high):</b> | 2410.875MHz / 2441.25MHz / 2475.625           |                                                                              |
| <b>Power Source:</b>                 | AC adapter                                    | Model: DCS10-0501000F<br>Input: 100-240V~50/60Hz 0.3A<br>Output: 5.0V 1000mA |
|                                      | Battery                                       | Lithium Battery: 3.7V, 1200mAh                                               |

Remark: The tested sample(s) and the sample information are provided by the client.

## 1.5 Test standard/s

|                                 |                                                                                                                                                                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANSI Std C95.1-1992             | Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.                                                                   |
| IEEE Std 1528-2013              | Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques |
| FCC 47 CFR Part 2<br>(§ 2.1093) | Radiofrequency radiation exposure evaluation: portable devices.                                                                                                             |
| KDB 941225 D07                  | UMPC Mini Tablet v01r02                                                                                                                                                     |
| KDB 447498 D01                  | General RF Exposure Guidance v06                                                                                                                                            |
| KDB 865664 D01                  | SAR Measurement 100 MHz to 6 GHz v01r04                                                                                                                                     |
| KDB 865664 D02                  | RF Exposure Reporting v01r02                                                                                                                                                |

## 1.6 RF exposure limits

| Human Exposure                                         | Uncontrolled Environment<br>General Population | Controlled Environment<br>Occupational |
|--------------------------------------------------------|------------------------------------------------|----------------------------------------|
| <b>Spatial Peak SAR*</b><br>(Brain/Body/Arms/Legs)     | <b>1.60 mW/g</b>                               | 8.00 mW/g                              |
| <b>Spatial Average SAR**</b><br>(Whole Body)           | 0.08 mW/g                                      | 0.40 mW/g                              |
| <b>Spatial Peak SAR***</b><br>(Hands/Feet/Ankle/Wrist) | 4.00 mW/g                                      | 20.00 mW/g                             |

The limit applied in this test report is shown in bold letters

**Notes:**

\* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

\*\* The Spatial Average value of the SAR averaged over the whole body.

\*\*\* The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

**Uncontrolled Environments** are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

**Controlled Environments** are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

## 1.7 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density ( $\rho$ ).

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where:

$\sigma$  = conductivity of the tissue (S/m)

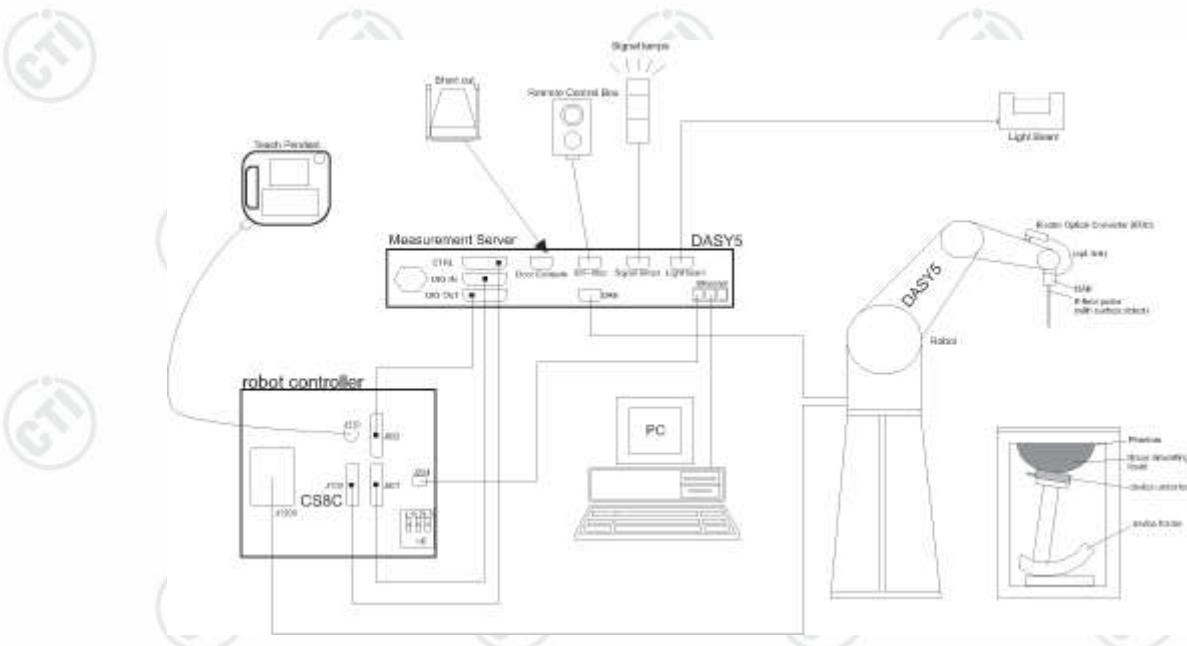
$\rho$  = mass density of the tissue (kg/m<sup>3</sup>)

E = rms electric field strength (V/m)

## 1.8 Testing laboratory

|               |                                                                                           |
|---------------|-------------------------------------------------------------------------------------------|
| Test Site     | Centre Testing International Group Co., Ltd.                                              |
| Test Location | Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, Guangdong, China |
| Telephone     | +86 (0) 755 3368 3668                                                                     |
| Fax           | +86 (0) 755 3368 3385                                                                     |

## 1.9 Test Environment


|                                   | Required   | Actual      |
|-----------------------------------|------------|-------------|
| <b>Ambient temperature:</b>       | 18 – 25 °C | 21.5 ± 2 °C |
| <b>Tissue Simulating liquid:</b>  | 18 – 25 °C | 21.5 ± 2 °C |
| <b>Relative humidity content:</b> | 30 – 70 %  | 30 – 70 %   |

## 1.10 Applicant and Manufacturer

|                               |                                                                                                                     |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------|
| <b>Applicant/Client Name:</b> | Abellstar Technology Limited                                                                                        |
| <b>Applicant Address:</b>     | F1 Building of Donguan Tianan-Cyber Park Huangjin Road, No.1, Nancheng , Dongguan, Guangdong Province, China 523080 |
| <b>Manufacturer Name:</b>     | DONGGUAN SOUTHSTAR ELECTRONICS LTD                                                                                  |
| <b>Manufacturer Address:</b>  | 3 Chengtian Road, Mintian, Shatian Town, Dongguan, Guangdong Province, China                                        |
| <b>Factory:</b>               | DONGGUAN SOUTHSTAR ELECTRONICS LTD                                                                                  |
| <b>Address of Factory:</b>    | 3 Chengtian Road, Mintian, Shatian Town, Dongguan, Guangdong Province, China                                        |

## 2 SAR Measurement System Description and Setup

### 2.1 The Measurement System Description



The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli TX/RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

## 2.2 Probe description

**Dosimetric Probes:** These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor( $\pm 2$  dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

|                      |                                                                                                                                                                           |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction         | Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) |
| Calibration          | ISO/IEC 17025 calibration service available.                                                                                                                              |
| Frequency            | 10 MHz to 6 GHz; Linearity: $\pm 0.2$ dB                                                                                                                                  |
| Probe Overall Length | 337mm                                                                                                                                                                     |
| Probe Body Diameter  | 10mm                                                                                                                                                                      |
| Tip Length           | 9mm                                                                                                                                                                       |
| Tip Diameter         | 2.5mm                                                                                                                                                                     |
| Dynamic range        | 5 $\mu$ W/g to 100 mW/g; Linearity: $\pm 0.2$ dB                                                                                                                          |



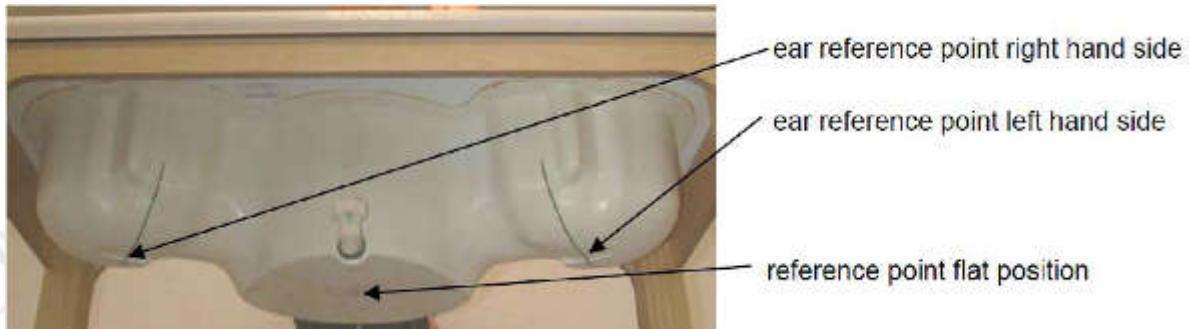
## 2.3 Data Acquisition Electronics description

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

**Batteries:** The DAE works with either two standard 9V batteries or two 9V (actually 8.4V or 9.6 V) rechargeable batteries. Because the electronics automatically power-down unused components during braking or between measurements, the battery lifetime depends on system usage. Typical lifetimes are >20 hours for batteries and >10 hours for accus. Remove the batteries if you do not plan to use the DAE for a long period of time.




## 2.4 SAM Twin Phantom description

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6 mm). The phantom has three measurement areas:

◆ Left hand

◆ Right hand

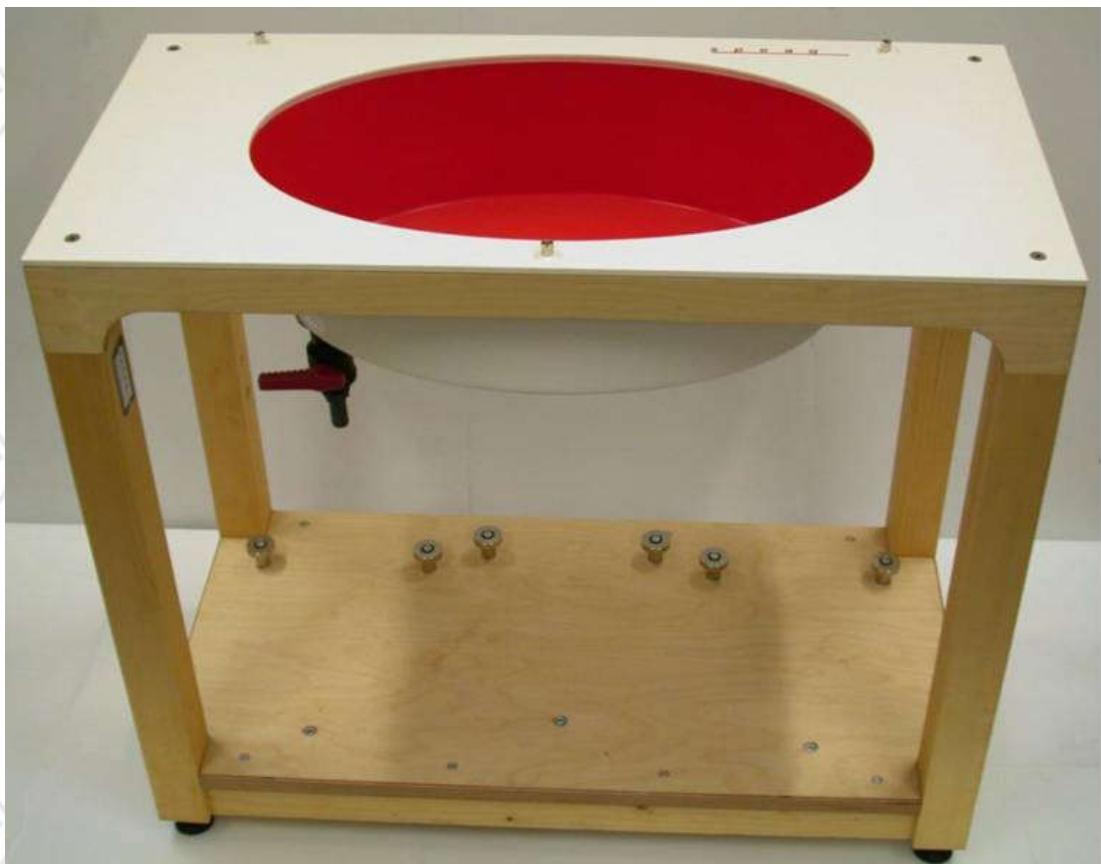
◆ Flat phantom



The phantom table for the DASY systems have the size of 100 x 50 x 85 cm (L xWx H). these tables are reinforced for mounting of the robot onto the table. For easy dislocation these tables have fork lift cut outs at the bottom.

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.


Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.



## 2.5 ELI4 Phantom description

The ELI4 phantom is intended for compliance testing of handheld and body mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

ELI4 has been optimized regarding its performance and can be integrated into a SPEAG standard phantom table. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points



## 2.6 Device Holder description

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of  $\pm 0.5\text{mm}$  would produce a SAR uncertainty of  $\pm 20\%$ . Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity  $\epsilon = 3$  and loss tangent  $\delta = 0.02$ . The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.



### 3 SAR Test Equipment List

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

|                                     | Manufacturer | Device Type                             | Type(Model)   | Serial number | Date of last calibration | Valid period |
|-------------------------------------|--------------|-----------------------------------------|---------------|---------------|--------------------------|--------------|
| <input checked="" type="checkbox"/> | SPEAG        | E-Field Probe                           | EX3DV4        | 7328          | 2019-03-01               | One year     |
| <input checked="" type="checkbox"/> | SPEAG        | Data acquisition electronics            | DAE4          | 1458          | 2019-02-26               | One year     |
| <input type="checkbox"/>            | SPEAG        | 835 MHz Dipole                          | D835V2        | 4d193         | 2018-02-19               | Three years  |
| <input type="checkbox"/>            | SPEAG        | 1750 MHz Dipole                         | D1750V2       | 1134          | 2018-02-22               | Three years  |
| <input type="checkbox"/>            | SPEAG        | 1900 MHz Dipole                         | D1900V2       | 5d198         | 2018-02-22               | Three years  |
| <input type="checkbox"/>            | SPEAG        | 2000 MHz Dipole                         | D2000V2       | 1078          | 2018-02-22               | Three years  |
| <input checked="" type="checkbox"/> | SPEAG        | 2450 MHz Dipole                         | D2450V2       | 959           | 2018-02-16               | Three years  |
| <input type="checkbox"/>            | SPEAG        | 2600 MHz Dipole                         | D2600V2       | 1101          | 2018-02-16               | Three years  |
| <input type="checkbox"/>            | SPEAG        | 5 GHz Dipole                            | D5GHzV2       | 1208          | 2018-02-21               | Three years  |
| <input checked="" type="checkbox"/> | SPEAG        | Software                                | DASY 5        | NA            | NCR                      | NCR          |
| <input type="checkbox"/>            | SPEAG        | Twin Phantom                            | SAM V5.0      | 1875          | NCR                      | NCR          |
| <input checked="" type="checkbox"/> | SPEAG        | Flat Phantom                            | ELI V6.0      | 2024          | NCR                      | NCR          |
| <input checked="" type="checkbox"/> | SPEAG        | DAKS probe                              | DAKS-3.5      | 1052          | 2018-02-20               | Three years  |
| <input checked="" type="checkbox"/> | SPEAG        | Planar R140 Vector Reflectometer        | DAKS-VNA R140 | 0200514       | 2018-02-20               | Three years  |
| <input type="checkbox"/>            | R & S        | Universal Radio Communication Tester    | CMU200        | 101553        | 2019-03-01               | One year     |
| <input type="checkbox"/>            | R & S        | Universal Radio Communication Tester    | CMW500        | 102898        | 2019-01-18               | One year     |
| <input checked="" type="checkbox"/> | Agilent      | Signal Generator                        | N5181A        | MY50142334    | 2019-03-01               | One year     |
| <input checked="" type="checkbox"/> | BONN         | Power Amplifier and directional coupler | SU319W        | BL-SZ1550140  | 2019-01-18               | One year     |
| <input checked="" type="checkbox"/> | KEITHLEY     | RF Power Meter                          | 3500          | 1128079       | 2019-07-12               | One year     |
| <input checked="" type="checkbox"/> | KEITHLEY     | RF Power Meter                          | 3500          | 1128081       | 2019-07-12               | One year     |

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
  - a) There is no physical damage on the dipole;
  - b) System check with specific dipole is within 10% of calibrated value;
  - c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.
  - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within  $5\Omega$  from the previous measurement.

## 4 SAR Measurement Procedures

### 4.1 Spatial Peak SAR Evaluation

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. The base for the evaluation is a "cube" measurement in a volume of 30mm<sup>3</sup> (7x7x7 points). The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD X). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location. The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD X). The system always gives the maximum values for the 1 g and 10 g cubes.

The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. extraction of the measured data (grid and values) from the Zoom Scan
2. calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
3. generation of a high-resolution mesh within the measured volume
4. interpolation of all measured values from the measurement grid to the high-resolution grid
5. extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
6. calculation of the averaged SAR within masses of 1 g and 10 g

## 4.2 Data Storage and Evaluation

### Data Storage

The DASY5 software stores the measured voltage acquired by the Data Acquisition Electronics (DAE) as raw data together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and communication system parameters) in measurement files with the extension .da5x. The postprocessing software evaluates the data every time the data is visualized or exported. This allows the verification and modification of the setup after completion of the measurement. For example, if a measurement has been performed with an incorrect crest factor, the parameter can be corrected afterwards and the data can be reevaluated.

To avoid unintentional parameter changes or data manipulations, the parameters in measured files are locked. In the administrator access mode of the software, the parameters can be unlocked. After changing the parameters, the measured scans can be reevaluated in the postprocessing engine. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., E-field, H-field, SAR). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

### Data Evaluation

The fields and SAR are calculated from the measured voltage (probe voltage acquired by the DAE) and the following parameters:

|                                                                         |                                     |                                                      |
|-------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------|
| Probe parameters:                                                       | - Sensitivity                       |                                                      |
| norm <sub>i</sub> , a <sub>i0</sub> , a <sub>i1</sub> , a <sub>i2</sub> | - Conversion Factor                 | convF <sub>i</sub>                                   |
|                                                                         | - Diode Compression Point           | dcp <sub>i</sub>                                     |
|                                                                         | - Probe Modulation Response Factors | a <sub>i</sub> , b <sub>i</sub> , c <sub>i</sub> , d |
| Device parameters:                                                      | - Frequency                         | f                                                    |
|                                                                         | - Crest factor                      | cf                                                   |
| Media parameters:                                                       | - Conductivity                      | $\sigma$                                             |
|                                                                         | - Relative Permittivity             | $\rho$                                               |

This parameters are stored in the DASY5 V52 measurement file.

These parameters must be correctly set in the DASY5 V52 software setup. They are available as configuration file and can be imported into the measurement file. The values displayed in the multimeter window are assessed using the parameters of the actual system setup. In the scan visualization and export modes, the parameters stored in the measurement file are used.

The measured voltage is not proportional to the exciting. It must be first linearized.

Approximated Probe Response Linearization using Crest Factor.

This linearization method is enabled when a custom defined communication system is measured. The compensation applied is a function of the measured voltage, the detector diode compression point and the crest factor of the measured signal.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with  $V_i$  = linearized voltage of channel i (uV)  $(i = x, y, z)$

$U_i$  = measured voltage of channel i (uV)  $(i = x, y, z)$

$cf$  = crest factor of exciting field (DASY parameter)

$dcp_i$  = diode compression point of channel i (uV) (Probe parameter,  $i = x, y, z$ )

### Field and SAR Calculation

The primary field data for each channel are calculated using the linearized voltage:

$$E - \text{fieldprobes : } E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes : } H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with  $V_i$  = linearized voltage of channel i ( $i = x, y, z$ )

$Norm_i$  = sensor sensitivity of channel i ( $i = x, y, z$ )

uV/(V/m)<sup>2</sup> for E-field Probes

$ConvF$  = sensitivity enhancement in solution

$a_{ij}$  = sensor sensitivity factors for H-field probes

$f$  = carrier frequency [GHz]

$E_i$  = electric field strength of channel i in V/m

$H_i$  = magnetic field strength of channel i in A/m

The RMS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

$E_{tot}$  = total field strength in V/m

$\sigma$  = conductivity in [mho/m] or [Siemens/m]

$\rho$  = equivalent tissue density in g/cm<sup>3</sup>

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

### Spatial Peak SAR for 1 g and 10 g

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. The base for the evaluation is a "cube" measurement at the points of the fine cube grid consisting of 5 x 5 x 7 points (with 8mm horizontal resolution) or 7 x 7 x 7 points (with 5mm horizontal resolution) or 8 x 8 x 7 points (with 4mm horizontal resolution). The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD X). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. extraction of the measured data (grid and values) from the Zoom Scan.
2. calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
3. generation of a high-resolution mesh within the measured volume.
4. interpolation of all measured values from the measurement grid to the high-resolution grid
5. extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface.
6. calculation of the averaged SAR within masses of 1 g and 10 g.

### 4.3 Data Storage and Evaluation

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

#### Step 1: Power reference measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. By default, the Minimum distance of probe sensors to surface is 4 mm. This distance can be modified by the user, but cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties. The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

#### Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hotspot. The sophisticated interpolation routines implemented in DASY5 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

### Step 3: Zoom Scan

The Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The default Zoom Scan is defined in the following table. DASY5 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Area scan and Zoom scan resolutions per FCC KDB Publication 865664 D01:

| Frequency | Maximun<br>Area Scan<br>resolution<br>( $\Delta x_{Area}, \Delta y_{Area}$ ) | Maximun Zoom<br>Scan spatial<br>resolution<br>( $\Delta x_{Zoom}, \Delta y_{Zoom}$ ) | Maximun Zoom Scan spatial resolution |                        |                               | Minimum<br>zoom scan<br>volume<br>(x,y,z) |
|-----------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|------------------------|-------------------------------|-------------------------------------------|
|           |                                                                              |                                                                                      | Uniform Grid                         |                        | Graded Grad                   |                                           |
|           |                                                                              |                                                                                      | $\Delta z_{Zoom}(n)$                 | $\Delta z_{Zoom}(1)^*$ | $\Delta z_{Zoom}(n>1)^*$      |                                           |
| ≤ 2GHz    | ≤ 15mm                                                                       | ≤ 8mm                                                                                | ≤ 5mm                                | ≤ 4mm                  | ≤ 1.5* $\Delta z_{Zoom}(n-1)$ | ≥ 30mm                                    |
| 2-3GHz    | ≤ 12mm                                                                       | ≤ 5mm                                                                                | ≤ 5mm                                | ≤ 4mm                  | ≤ 1.5* $\Delta z_{Zoom}(n-1)$ | ≥ 30mm                                    |
| 3-4GHz    | ≤ 12mm                                                                       | ≤ 5mm                                                                                | ≤ 4mm                                | ≤ 3mm                  | ≤ 1.5* $\Delta z_{Zoom}(n-1)$ | ≥ 28mm                                    |
| 4-5GHz    | ≤ 10mm                                                                       | ≤ 4mm                                                                                | ≤ 3mm                                | ≤ 2.5mm                | ≤ 1.5* $\Delta z_{Zoom}(n-1)$ | ≥ 25mm                                    |
| 5-6GHz    | ≤ 10mm                                                                       | ≤ 4mm                                                                                | ≤ 2mm                                | ≤ 2mm                  | ≤ 1.5* $\Delta z_{Zoom}(n-1)$ | ≥ 22mm                                    |

### Step 4: Power Drift Monitoring

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. If the value changed by more than 5%, the evaluation should be retested.

## 5 SAR Verification Procedure

### 5.1 Tissue Verification

The following materials are used for producing the tissue-equivalent materials.

(Liquids used for tests are marked with ):

| Ingredients<br>(% of weight) |                              | Frequency (MHz)              |                               |                               |                               |                                          |                               |      |
|------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------------------|-------------------------------|------|
| frequency band               | <input type="checkbox"/> 835 | <input type="checkbox"/> 900 | <input type="checkbox"/> 1800 | <input type="checkbox"/> 2000 | <input type="checkbox"/> 2300 | <input checked="" type="checkbox"/> 2450 | <input type="checkbox"/> 2600 |      |
| Tissue Type                  | Head                         | Head                         | Head                          | Head                          | Head                          | Head                                     | Head                          | Head |
| Water                        | 41.45                        | 40.92                        | 52.64                         | 54.9                          | 62.82                         | 62.7                                     | 55.242                        |      |
| Salt (NaCl)                  | 1.45                         | 1.48                         | 0.36                          | 0.18                          | 0.51                          | 0.5                                      | 0.306                         |      |
| Sugar                        | 56.0                         | 56.5                         | 0.0                           | 0.0                           | 0.0                           | 0.0                                      | 0.0                           |      |
| HEC                          | 1.0                          | 1.0                          | 0.0                           | 0.0                           | 0.0                           | 0.0                                      | 0.0                           |      |
| Bactericide                  | 0.1                          | 0.1                          | 0.0                           | 0.0                           | 0.0                           | 0.0                                      | 0.0                           |      |
| Triton X-100                 | 0.0                          | 0.0                          | 0.0                           | 0.0                           | 0.0                           | 36.8                                     | 0.0                           |      |
| DGBE                         | 0.0                          | 0.0                          | 47.0                          | 44.92                         | 36.67                         | 0.0                                      | 44.452                        |      |

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

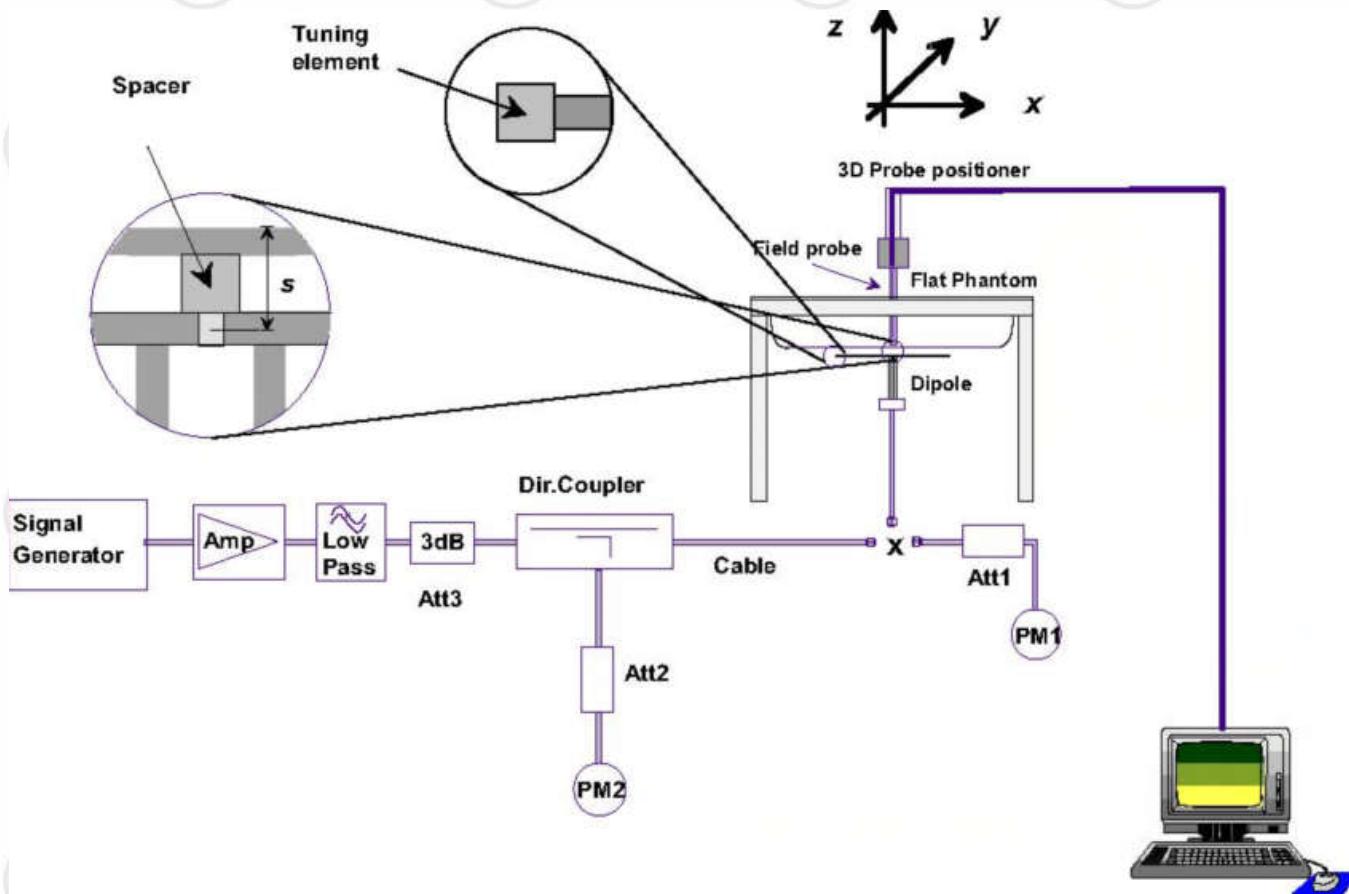
Water: De-ionized, 16MΩ+ resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Tissue simulating liquids: parameters:


| Liquid Measured |           |                        |                     |                 |       |              |           |
|-----------------|-----------|------------------------|---------------------|-----------------|-------|--------------|-----------|
| Tissue Type     | Frequency | Target Tissue          |                     | Measured Tissue |       | Liquid Temp. | Test Date |
|                 |           | $\Sigma r(+/-5\%)$     | $S/m(+/-5\%)$       | $\Sigma r$      | $S/m$ |              |           |
| 2450 Body       | 2450      | 39.20<br>(37.24~41.16) | 1.80<br>(1.71~1.89) | 39.56           | 1.832 | 20.07°C      | 2019-8-1  |

### 5.2 System check procedure

The System check is performed by using a System check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the System check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during

the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.



### 5.3 System check results

The system Check is performed for verifying the accuracy of the complete measurement system and performance of the software. The following table shows System check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

| System Check |                        |                        |              |           |              |           |
|--------------|------------------------|------------------------|--------------|-----------|--------------|-----------|
| Tissue Type  | Target SAR 1W (+/-10%) |                        | Measured SAR |           | Liquid Temp. | Test Date |
|              | 1g(mW/g)               | 10g(mW/g)              | 1g(mW/g)     | 10g(mW/g) |              |           |
| D2450V2 Head | 51.50<br>(46.35~56.65) | 24.10<br>(21.69~26.51) | 56.00        | 26.04     | 20.07°C      | 2019-8-1  |

## 6 SAR Measurement uncertainty evaluation

### 6.1 SAR measurement variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is  $< 0.80$  W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is  $\geq 0.80$  W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is  $> 1.20$  or when the original or repeated measurement is  $\geq 1.45$  W/kg ( $\sim 10\%$  from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is  $\geq 1.5$  W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is  $> 1.20$ .

### 6.2 SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04, when the highest measured 1-g SAR within a frequency band is  $< 1.5$  W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

## 7 SAR Test Configuration

For SAR testing, a communication link is set up with the testing software for Wireless 2.4GHz mode test. During the test, at each test frequency channel, the EUT is operated at the RF continuous emission mode. The test procedures in 447498 D01 General RF Exposure Guidance v06 are applied.

### Initial Test Position Procedure

For exposure condition with multiple test position, such as handsets operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated(peak) SAR is used as the initial test position. When reported SAR for the initial test position is  $\leq 0.4\text{W/kg}$ , no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is  $\leq 0.8\text{W/kg}$  or all test position are measured. For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is  $> 0.8 \text{ W/kg}$ , SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is  $\leq 1.2 \text{ W/kg}$  or all required channels are tested.

## 8 SAR Test Results

### 8.1 Conducted Power Measurements

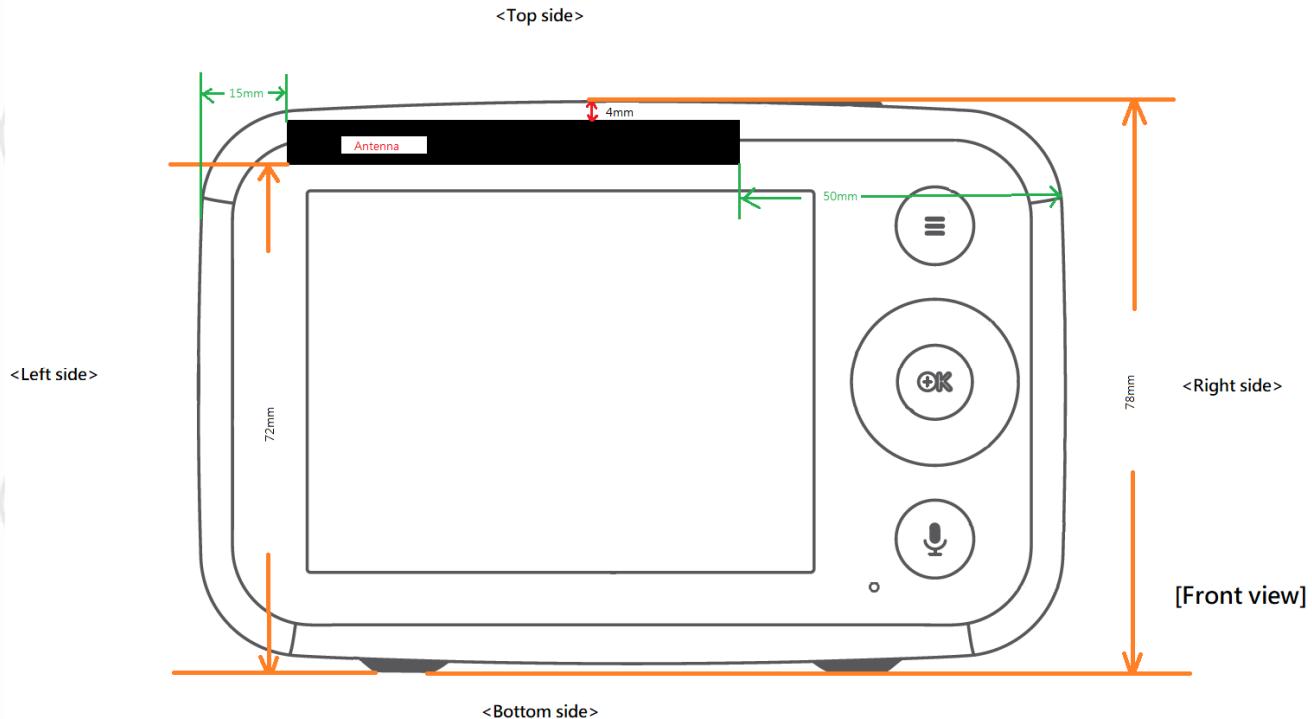
|         | Peak Conducted Power (dBm) |       |       |
|---------|----------------------------|-------|-------|
| Channel | 1CH                        | 2CH   | 3CH   |
| 2.4G    | 11.16                      | 11.59 | 11.51 |

### 8.2 MAXIMUM TUNE-UP POWER

| Tolerance (dB):<br>± | 1              | RF Output Power (dBm) |                    |
|----------------------|----------------|-----------------------|--------------------|
| Band (GHz)           | Mode           | Target                | Max. tune-up power |
| 2.4                  | Self-agreement | 11.00                 | 12.00              |

### 8.3 SAR test results

#### Notes:


- 1) Per KDB447498 D01v06, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:  $\leq 0.8 \text{ W/kg}$  or  $2.0 \text{ W/kg}$ , for 1-g or 10-g respectively, when the transmission band is  $\leq 100 \text{ MHz}$ . When the maximum output power variation across the required test channels is  $> \frac{1}{2} \text{ dB}$ , instead of the middle channel, the highest output power channel must be used.
- 2) Per KDB447498 D01v06, All measurement SAR result is scaled-up to account for tune-up tolerance is compliant.
- 3) Per KDB865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is  $\geq 0.8 \text{ W/Kg}$ ; if the deviation among the repeated measurement is  $\leq 20\%$ , and the measured SAR  $< 1.45 \text{ W/Kg}$ , only one repeated measurement is required.
- 4) Per KDB865664 D02v01r02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is  $> 1.5 \text{ W/kg}$ , or  $> 7.0 \text{ W/kg}$  for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing (Refer to appendix B for details).
- 5) Per KDB941225 D06v02r01, the DUT Dimension is bigger than  $9 \text{ cm} \times 5 \text{ cm}$ , so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

### 8.2.1 Results overview of 2.4GHz

| Test position of Body with 0mm | Channel/ Frequency | Test Mode | SAR Value (W/Kg) |       | Power Drift(dB) | Conducted Power(dBm) | Tune up Power(dBm) | Scaled SAR10-g(W/kg) | Limit (W/Kg) | Liquid Temp. | Test Date |
|--------------------------------|--------------------|-----------|------------------|-------|-----------------|----------------------|--------------------|----------------------|--------------|--------------|-----------|
|                                |                    |           | 1-g              | 10-g  |                 |                      |                    |                      |              |              |           |
| Front Side                     | M/2441.25          | 2.4G      | 0.091            | 0.044 | 0.05            | 11.59                | 12.00              | 0.100                | 4.0          | 20.07°C      | 2019-8-1  |
| Back Side                      | M/2441.25          | 2.4G      | 0.931            | 0.406 | 0.17            | 11.59                | 12.00              | 1.023                | 4.0          | 20.07°C      | 2019-8-1  |
| Left Side                      | M/2441.25          | 2.4G      | 0.018            | 0.012 | -0.15           | 11.59                | 12.00              | 0.020                | 4.0          | 20.07°C      | 2019-8-1  |
| Top Side                       | M/2441.25          | 2.4G      | 0.953            | 0.410 | -0.07           | 11.59                | 12.00              | 1.047                | 4.0          | 20.07°C      | 2019-8-1  |
| Top Side                       | L/2410.875         | 2.4G      | 0.905            | 0.393 | 0.00            | 11.16                | 12.00              | 1.098                | 4.0          | 20.07°C      | 2019-8-1  |
| Top Side                       | H/2471.625         | 2.4G      | 0.916            | 0.389 | 0.01            | 11.51                | 12.00              | 1.025                | 4.0          | 20.07°C      | 2019-8-1  |

## 8.4 Multiple Transmitter Information

The location of the antennas inside RWOLSPV1 are shown as below picture:



## 8.5 Simultaneous Transmission Possibility and Conclusion

The device has one antenna and support GFSK technology only, there is not simultaneous transmission possibility and the reported SAR results is not exceed the SAR limit, so the tested result is comply with the FCC limit.

## Appendix A: SAR System performance Check Plots

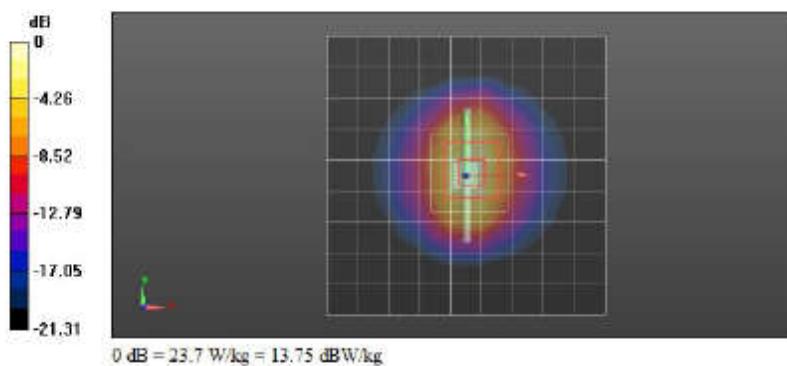
Date/Time: 8/1/2019 9:49:14

Test Laboratory: CTI SAR Lab

### Systemcheck 2450-Head

DUT: D2450V2 - SN959; Type: D2450V2; Serial: SN959

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1  
 Medium parameters used:  $f = 2450$  MHz;  $\sigma = 1.813$  S/m;  $\epsilon_r = 39.966$ ;  $\rho = 1000$  kg/m<sup>3</sup>


Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN7328; ConvF(7.47, 7.47, 7.47); Calibrated: 3/1/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection),  $z = 1.0$ , 31.0
- Electronics: DAB4 Sn1458; Calibrated: 2/26/2019
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

**Configuration/d=10mm,Pin=250mW/Area Scan (10x10x1):** Measurement grid: dx=12mm, dy=12mm  
 Maximum value of SAR (measured) = 18.8 W/kg

**Configuration/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm  
 Reference Value = 91.22 V/m; Power Drift = -0.08 dB  
 Peak SAR (extrapolated) = 29.6 W/kg  
 SAR(1 g) = 14 W/kg; SAR(10 g) = 6.51 W/kg  
 Maximum value of SAR (measured) = 23.7 W/kg

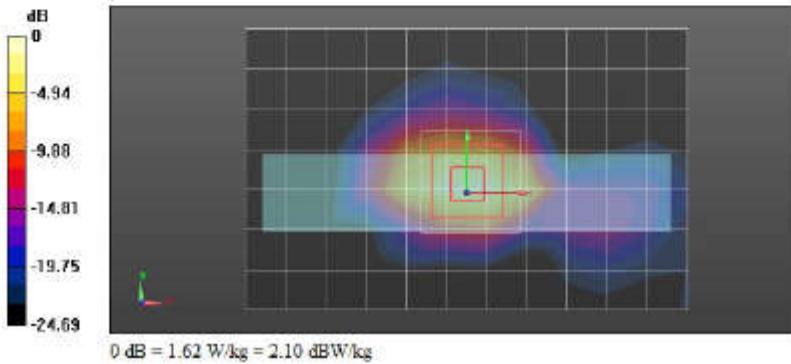


**Appendix B: SAR Measurement results Plots**

Date/Time: 8/1/2019 14:47:16

Test Laboratory: CTI SAR Lab

**2.4G Baby Monitor 2.4G HCH Top Side 0mm**


DUT: 2.4G Baby Monitor; Type: 2AT2MBMU08 RX; Serial: N/A

Communication System: UID 0, 2.4G (0); Communication System Band: 2.4G; Frequency: 2471.63 MHz; Duty Cycle: 1:1  
Medium parameters used:  $f = 2472 \text{ MHz}$ ;  $\sigma = 1.842 \text{ S/m}$ ;  $\epsilon_r = 39.937$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN7328; ConvF(7.47, 7.47, 7.47); Calibrated: 3/1/2019.
- Sensor-Surface: 1.4mm (Mechanical Surface Detection),  $z = 1.0, 31.0$
- Electronics: DAE4 Sn1458; Calibrated: 2/26/2019
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222), SEMCAD X 14.6.10(7331)

**Configuration/Body/Area Scan (12x8x1):** Measurement grid:  $dx=12\text{mm}$ ,  $dy=12\text{mm}$   
Maximum value of SAR (measured) = 1.52 W/kg**Configuration/Body/Zoom Scan (7x7x7)/Cube 0:** Measurement grid:  $dx=5\text{mm}$ ,  $dy=5\text{mm}$ ,  $dz=5\text{mm}$   
Reference Value = 29.28 Vm; Power Drift = 0.01 dB  
Peak SAR (extrapolated) = 2.06 W/kg  
SAR(1 g) = 0.916 W/kg; SAR(10 g) = 0.389 W/kg  
Maximum value of SAR (measured) = 1.62 W/kg

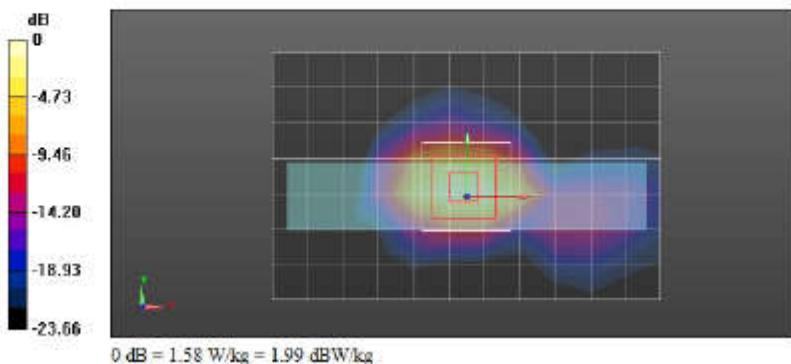
Date/Time: 8/1/2019 14:24:52

Test Laboratory: CTI SAR Lab

**2.4G Baby Monitor 2.4G LCH Top Side 0mm**

DUT: 2.4G Baby Monitor; Type: 2AT2MBMU0S RX; Serial: N/A

Communication System: UID 0, 2.4G (0); Communication System Band: 2.4G; Frequency: 2410.88 MHz; Duty Cycle: 1:1  
Medium parameters used:  $f = 2411$  MHz;  $\sigma = 1.781$  S/m;  $\epsilon_r = 40.216$ ;  $\rho = 1000$  kg/m<sup>3</sup>


Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN7328; ConvF(7.47, 7.47, 7.47); Calibrated: 3/1/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection),  $z = 1.0, 31.0$
- Electronics: DAB4 Sn1458; Calibrated: 2/26/2019
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

**Configuration/Body/Area Scan (12x8x1):** Measurement grid: dx=12mm, dy=12mm  
Maximum value of SAR (measured) = 1.41 W/kg

**Configuration/Body/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm  
Reference Value = 29.75 V/m; Power Drift = 0.00 dB  
Peak SAR (extrapolated) = 1.98 W/kg  
SAR(1 g) = 0.905 W/kg; SAR(10 g) = 0.393 W/kg  
Maximum value of SAR (measured) = 1.58 W/kg



Test Laboratory: CTI SAR Lab

**2.4G Baby Monitor 2.4G MCH Back Side 0mm**

DUT: 2.4G Baby Monitor; Type: 2AT2MBMU05 RX; Serial: N/A

Communication System: UID 0, 2.4G (0); Communication System Band: 2.4G; Frequency: 2441.25 MHz; Duty Cycle: 1:1  
 Medium parameters used (interpolated):  $f = 2441.25$  MHz;  $\sigma = 1.803$  S/m;  $\epsilon_r = 40.023$ ;  $\rho = 1000$  kg/m<sup>3</sup>

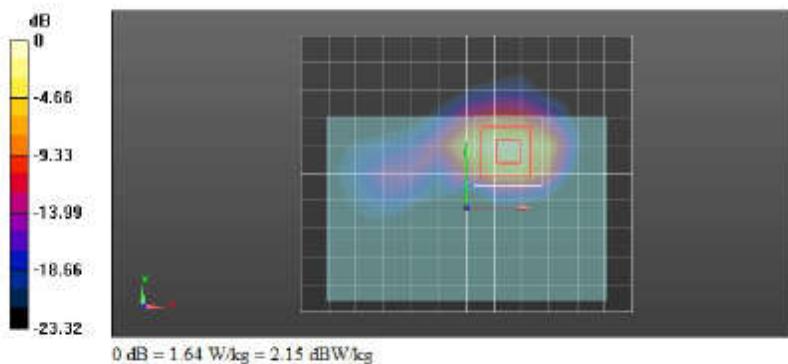
Phantom section: Flat Section

## DASY Configuration:

- Probe: EX3DV4 - SN7328; ConvF(7.47, 7.47, 7.47); Calibrated: 3/1/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1458; Calibrated: 2/26/2019
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

**Configuration/Body/Area Scan (13x11x1):** Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.  
 Maximum value of SAR (measured) = 1.40 W/kg


**Configuration/Body/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.163 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 2.04 W/kg

SAR(1 g) = 0.931 W/kg; SAR(10 g) = 0.406 W/kg

Info: Interpolated medium parameters used for SAR evaluation.  
 Maximum value of SAR (measured) = 1.64 W/kg



Date/Time: 8/1/2019 11:24:16

Test Laboratory: CTI SAR Lab

**2.4G Baby Monitor 2.4G MCH Front Side 0mm**

DUT: 2.4G Baby Monitor; Type: 2AT2MBMU0S RX; Serial: N/A

Communication System: UID 0, 2.4G (0); Communication System Band: 2.4G; Frequency: 2441.25 MHz; Duty Cycle: 1:1  
Medium parameters used (interpolated):  $f = 2441.25$  MHz;  $\sigma = 1.803$  S/m;  $\epsilon_r = 40.023$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY Configuration:

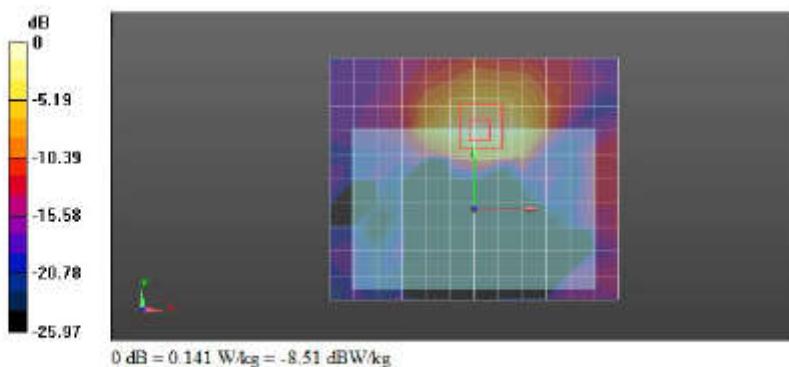
- Probe: EX3DV4 - SN7328; ConvF(7.47, 7.47, 7.47); Calibrated: 3/1/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAB4 Sn1458; Calibrated: 2/26/2019
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

**Configuration/Body/Area Scan (13x11x1):** Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.151 W/kg

**Configuration/Body/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 1.729 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.185 W/kg

SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.044 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.141 W/kg



Date/Time: 8/1/2019 13:17:51

Test Laboratory: CTI SAR Lab

**2.4G Baby Monitor 2.4G MCH Left Side 0mm**

**DUT: 2.4G Baby Monitor; Type: 2AT2MBMU08 RX; Serial: N/A**

Communication System: UID 0, 2.4G (0); Communication System Band: 2.4G; Frequency: 2441.25 MHz; Duty Cycle: 1:1  
Medium parameters used (interpolated):  $f = 2441.25$  MHz;  $\sigma = 1.803$  S/m;  $\epsilon_r = 40.023$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY Configuration:


- Probe: EX3DV4 - SN7328; ConvF(7.47, 7.47, 7.47); Calibrated: 3/1/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1458; Calibrated: 2/26/2019
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

**Configuration/Body/Area Scan (10x11x1):** Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.  
Maximum value of SAR (measured) = 0.0259 W/kg

**Configuration/Body/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm  
Reference Value = 1.601 V/m; Power Drift = -0.15 dB  
Peak SAR (extrapolated) = 0.0330 W/kg  
SAR(1 g) = 0.018 W/kg; SAR(10 g) = 0.012 W/kg

Info: Interpolated medium parameters used for SAR evaluation.  
Maximum value of SAR (measured) = 0.0274 W/kg



Date/Time: 8/1/2019 13:58:44

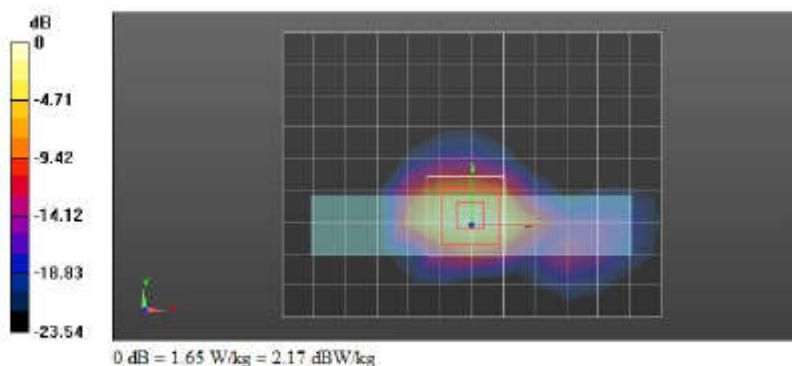
Test Laboratory: CTI SAR Lab

**2.4G Baby Monitor 2.4G MCH Top Side 0mm****DUT: 2.4G Baby Monitor; Type: 2AT2MBMU0S RX; Serial: N/A**

Communication System: UID 0, 2.4G (0); Communication System Band: 2.4G; Frequency: 2441.25 MHz; Duty Cycle: 1:1  
Medium parameters used (interpolated):  $f = 2441.25$  MHz;  $\sigma = 1.803$  S/m;  $\epsilon_r = 40.023$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY Configuration:


- Probe: EX3DV4 - SN7328; ConvF(7.47, 7.47, 7.47); Calibrated: 3/1/2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection),  $z = 1.0, 31.0$
- Electronics: DAB4 Sn1458; Calibrated: 2/26/2019
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: 2024
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

**Configuration/Body/Area Scan (13x10x1): Measurement grid: dx=12mm, dy=12mm**

Info: Interpolated medium parameters used for SAR evaluation.  
Maximum value of SAR (measured) = 1.64 W/kg

**Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm**  
Reference Value = 30.72 V/m; Power Drift = -0.07 dB  
Peak SAR (extrapolated) = 2.12 W/kg  
SAR(1 g) = 0.953 W/kg; SAR(10 g) = 0.410 W/kg

Info: Interpolated medium parameters used for SAR evaluation.  
Maximum value of SAR (measured) = 1.65 W/kg



## Appendix C: Calibration reports

(Please See Appendix C)



## Appendix D: Photo documentation



—END OF REPORT—

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

