



### Engineering Test Report No. 2300417-01

|                      |                                                                                                                                                                                                                                                                                                     |                                                                            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Report Date          | February 23, 2023                                                                                                                                                                                                                                                                                   |                                                                            |
| Manufacturer Name    | Cala Health, Inc                                                                                                                                                                                                                                                                                    |                                                                            |
| Manufacturer Address | 1800 Gateway Drive, Suite 300<br>San Mateo, CA 94404                                                                                                                                                                                                                                                |                                                                            |
| Model No.            | BW100                                                                                                                                                                                                                                                                                               |                                                                            |
| Date Received        | February 8, 2023                                                                                                                                                                                                                                                                                    |                                                                            |
| Test Dates           | February 15, 2023 to February 23, 2023                                                                                                                                                                                                                                                              |                                                                            |
| Specifications       | FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225<br>FCC "Code of Federal Regulations" Title 47, Part 15, Subpart 15C, Section 15.207<br>Innovation, Science, and Economic Development Canada, RSS-210<br>Innovation, Science, and Economic Development Canada, RSS-GEN |                                                                            |
| Test Facility        | Elite Electronic Engineering, Inc.<br>1516 Centre Circle,<br>Downers Grove, IL 60515                                                                                                                                                                                                                | FCC Reg. Number: 269750<br>IC Reg. Number: 2987A<br>CAB Identifier: US0107 |
| Signature            |                                                                                                                                                                                                                                                                                                     |                                                                            |
| Tested by            | Javier Cardenas                                                                                                                                                                                                                                                                                     |                                                                            |
| Signature            |                                                                                                                                                                                                                                                                                                     |                                                                            |
| Approved by          | Raymond J. Klouda,<br>Registered Professional Engineer of Illinois – 44894                                                                                                                                                                                                                          |                                                                            |
| PO Number            | PO002866                                                                                                                                                                                                                                                                                            |                                                                            |

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210 and RSS-Gen test specification(s). The data presented in this test report pertains to the EUT on the test date(s) specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

## Table of Contents

|      |                                                                       |    |
|------|-----------------------------------------------------------------------|----|
| 1.   | Report Revision History .....                                         | 3  |
| 2.   | Introduction .....                                                    | 4  |
| 2.1. | Scope of Tests .....                                                  | 4  |
| 2.2. | Purpose .....                                                         | 4  |
| 2.3. | Identification of the EUT.....                                        | 4  |
| 3.   | Power Input .....                                                     | 4  |
| 4.   | Grounding .....                                                       | 4  |
| 5.   | Support Equipment .....                                               | 4  |
| 6.   | Interconnect Leads.....                                               | 4  |
| 7.   | Modifications Made to the EUT .....                                   | 4  |
| 8.   | Modes of Operation.....                                               | 4  |
| 9.   | Test Specifications .....                                             | 5  |
| 10.  | Test Plan .....                                                       | 5  |
| 11.  | Deviation, Additions to, or Exclusions from Test Specifications ..... | 5  |
| 12.  | Laboratory Conditions .....                                           | 5  |
| 13.  | Summary .....                                                         | 5  |
| 14.  | Sample Calculations .....                                             | 6  |
| 15.  | Statement of Conformity .....                                         | 6  |
| 16.  | Certification .....                                                   | 6  |
| 17.  | Photographs of EUT .....                                              | 7  |
| 18.  | Equipment List .....                                                  | 8  |
| 19.  | Block Diagram of Test Setup .....                                     | 9  |
| 20.  | Powerline Conducted Emissions Test (AC Mains) .....                   | 10 |
| 22.  | Occupied Bandwidth Measurements .....                                 | 17 |
| 23.  | Radiated Emissions .....                                              | 19 |
| 24.  | Frequency Stability.....                                              | 30 |
| 25.  | Scope of Accreditation .....                                          | 33 |

**This report shall not be reproduced, except in full,  
without the written approval of Elite Electronic Engineering Inc.**

## 1. Report Revision History

| Revision | Date        | Description                                               |
|----------|-------------|-----------------------------------------------------------|
| –        | 28 FEB 2023 | Initial Release of Engineering Test Report No. 2300417-01 |
|          |             |                                                           |

## 2. Introduction

### 2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Cala Health, Inc Tremor Therapy Device Charger (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by Cala Health, Inc located in San Mateo, CA.

### 2.2. Purpose

The test series was performed to determine if the EUT meets the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Sections 15.225.

The test series was also performed to determine if the EUT meets the RF emission requirements of the Industry Canada Radio Standards Specification RSS-Gen and Industry Canada Radio Standards Specification RSS-210 for Transmitters.

Testing was performed in accordance with ANSI C63.10-2013.

### 2.3. Identification of the EUT

The EUT was identified as follows:

| EUT Identification  |                                         |
|---------------------|-----------------------------------------|
| Product Description | Cala Trio tremor therapy device charger |
| Model/Part No.      | BW100                                   |
| S/N                 | BA00067                                 |
| Band of Operation   | 13.110-14.010MHz                        |
| Modulation Type     | ASK                                     |

The EUT listed above was used throughout the test series.

## 3. Power Input

The EUT obtained 9VDC from a CUI Inc Switching ACDC Adapter, Model No. SWI5-9-N. The adapter received 120V 60Hz.

## 4. Grounding

The EUT was not connected to ground.

## 5. Support Equipment

No support equipment was submitted for testing.

## 6. Interconnect Leads

No interconnect leads were used during the tests.

## 7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

## 8. Modes of Operation

| Mode | Description             |
|------|-------------------------|
| Tx   | Continuous Transmission |

## 9. Test Specifications

The tests were performed to selected portions of, and in accordance with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210 test specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart C
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- RSS-210 Issue 10, December 2019, "License-Exempt Radio Apparatus: Category I Equipment"
- RSS-Gen Issue 5, March 2019, Amendment 1, Innovation, Science, and Economic Development Canada, "Spectrum Management and Telecommunications, Radio Standards Specification, General Requirements for Compliance of Radio Apparatus"

## 10. Test Plan

No test plan was provided. Instructions were provided by personnel from Cala Health, Inc and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225, Innovation, Science, and Economic Development Canada, RSS-210, and ANSI C63.4-2014 specifications.

## 11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

## 12. Laboratory Conditions

| Ambient Parameters   | Value    |
|----------------------|----------|
| Temperature          | 20°C     |
| Relative Humidity    | 24%      |
| Atmospheric Pressure | 1004.7mb |

## 13. Summary

The following EMC tests were performed and the results are shown below:

| Test Description                              | Requirements            | Test Methods      | S/N     | Results  |
|-----------------------------------------------|-------------------------|-------------------|---------|----------|
| Powerline Conducted Emissions Test (AC Mains) | FCC 15C<br>RSS-GEN      | ANSI C63.10: 2013 | BA00067 | Conforms |
| Occupied Bandwidth Measurements               | FCC 15C<br>ISED RSS-GEN | ANSI C63.10: 2013 | BA00067 | Conforms |
| Radiated Emissions                            | FCC 15C<br>ISED RSS-210 | ANSI C63.10: 2013 | BA00067 | Conforms |
| Frequency Stability                           | FCC 15C<br>ISED RSS-210 | N/A               | BA00067 | Conforms |

## 14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

$$\text{Formula 1: } VL (\text{dBuV}) = MTR (\text{dBuV}) + CF (\text{dB}).$$

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

$$\text{Formula 1: } FS (\text{dBuV/m}) = MTR (\text{dBuV}) + AF (\text{dB/m}) + CF (\text{dB}) + (-PA (\text{dB})) + DC (\text{dB})$$

To convert the Field Strength dBuV/m term to uV/m, the dBuV/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in uV/m terms.

$$\text{Formula 2: } FS (\text{uV/m}) = \text{AntiLog} [(FS (\text{dBuV/m})) / 20]$$

## 15. Statement of Conformity

The Cala Health, Inc Tremor Therapy Device Charger, Model No. BW100, Serial No. BA00067, did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210.

## 16. Certification

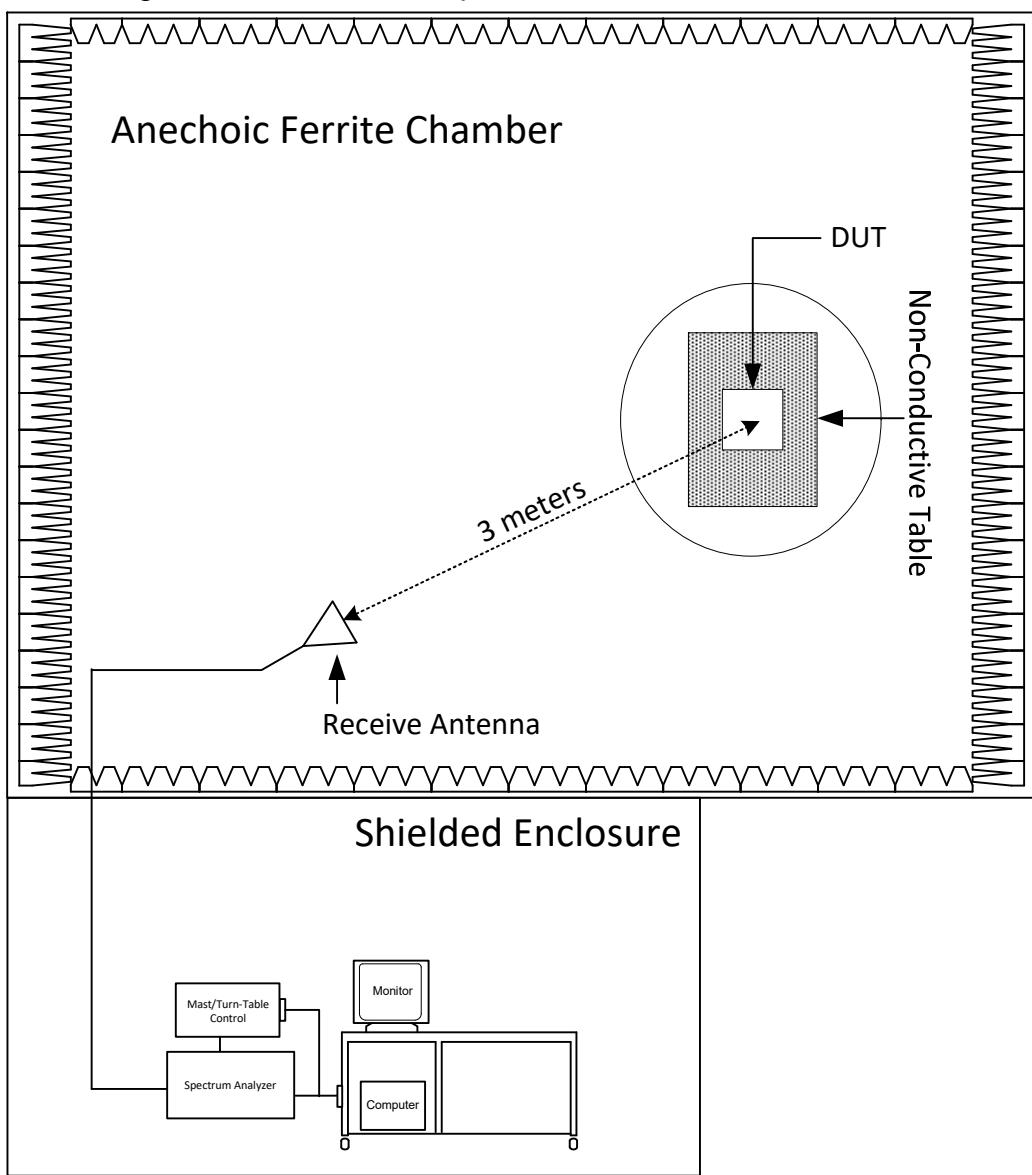
Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

## 17. Photographs of EUT



## 18. Equipment List

| Eq ID | Equipment Description           | Manufacturer     | Model No.                | Serial No. | Frequency Range | Cal Date   | Due Date   |
|-------|---------------------------------|------------------|--------------------------|------------|-----------------|------------|------------|
| APW14 | PREAMPLIFIER                    | PLANAR           | PE2-35-120-5R0-10-12-SFF | PL22671    | 1-20GHz         | 9/21/2022  | 9/21/2023  |
| CDX7  | COMPUTER                        | ELITE            | WORKSTATION              |            |                 | N/A        |            |
| CDZ3  | LAB WORKSTATION                 | ELITE            | LWS-10                   |            | WINDOWS 10      | CNR        |            |
| GRB0  | 1MHZ, LISN SIGNAL CHECKER       | ELITE            | LISNCHKR1M               | 1          | 1MHZ            | 12/6/2022  | 12/6/2024  |
| NLW2  | MAGNETIC FIELD PROBE            | ELECTRO-METRICS  | MFC-25                   | ---        | 20MHZ-230MHZ    | NOTE 1     |            |
| NTA3  | BILOG ANTENNA                   | TESEQ            | 6112D                    | 32853      | 25-1000MHz      | 11/17/2022 | 11/17/2024 |
| NWQ1  | DOUBLE RIDGED WAVEGUIDE ANTENNA | ETS-LINDGREN     | 3117                     | 66655      | 1GHZ-18GHZ      | 5/26/2022  | 5/26/2024  |
| PLF2  | CISPR16 50UH LISN               | ELITE            | CISPR16/70A              | 002        | .15-30MHz       | 4/5/2022   | 4/5/2023   |
| PLF4  | CISPR16 50UH LISN               | ELITE            | CISPR16/70A              | 003        | .15-30MHz       | 4/5/2022   | 4/5/2023   |
| R29F  | 3M ANECHOIC CHAMBER NSA         | EMC TEST SYSTEMS | 3M ANECHOIC              |            | 30MHZ-18GHZ     | 3/25/2022  | 3/25/2023  |
| RBF2  | WIDEBAND RADIO COMM. TESTER     | ROHDE & SCHWARZ  | CMW500                   | 121396     | ---             | 3/7/2022   | 3/7/2024   |
| RBG2  | EMI ANALYZER                    | ROHDE & SCHWARZ  | ESW44                    | 101591     | 2HZ-44GHZ       | 3/31/2022  | 3/31/2023  |
| RBH5  | EMI ANALYZER                    | ROHDE & SCHWARZ  | ESW26                    | 103068     | 2HZ-26GHZ       | 12/8/2022  | 12/8/2023  |
| SES0  | 24VDC POWER SUPPLY              | P-TRANS          | FS-32024-1M              | 001        | 18-27VDC        | NOTE 1     |            |
| T1N1  | 10DB 20W ATTENUATOR             | NARDA            | 766-10                   | ---        | DC-4GHz         | 1/6/2022   | 1/6/2024   |
| VBR8  | CISPR EN FCC CE VOLTAGE.exe     |                  |                          |            |                 | N/A        |            |
| WKA1  | SOFTWARE, UNIVERSAL RCV EMI     | ELITE            | UNIV_RCV_EMI             | 1          | ---             | I/O        |            |
| XLJ3  | 5W, 50 OHM TERMINATION          | JFW INDUSTRIES   | 50T-052                  | ---        | DC-2GHz         | 1/14/2022  | 1/14/2024  |
| XPQ4  | HIGH PASS FILTER                | K&L MICROWAVE    | 11SH10-4800/X20000-O/O   | 1          | 4.8-20GHz       | 9/7/2021   | 9/7/2023   |
| XPQ7  | HIGH PASS FILTER                | K&L MICROWAVE    | 4IH30-1804/T10000-0      | 5          | 1.8-10GHz       | 2/2/2023   | 2/2/2025   |


N/A: Not Applicable

I/O: Initial Only

CNR: Calibration Not Required

NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

## 19. Block Diagram of Test Setup



## Radiated Measurements Test Setup

## 20. Powerline Conducted Emissions Test (AC Mains)

| Test Information |                               |
|------------------|-------------------------------|
| Manufacturer     | Cala Health, Inc              |
| Product          | Tremor Therapy Device Charger |
| Model            | BW100                         |
| Serial No        | BA00067                       |
| Mode             | Tx                            |

| Test Setup Details |                                        |
|--------------------|----------------------------------------|
| Setup Format       | Tabletop                               |
| Height of Support  | NA                                     |
| Type of Test Site  | Semi-Anechoic or Reverberation Chamber |
| Test site used     | R23P                                   |
| Note               | None                                   |

| Measurement Uncertainty                               |                                  |
|-------------------------------------------------------|----------------------------------|
| Measurement Type                                      | Expanded Measurement Uncertainty |
| Conducted disturbance (mains port) (150 kHz – 30 MHz) | 2.7                              |

| Requirements                                                                                                                                                    |           |                               |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|---------|
| All radio frequency voltages on the power lines for any frequency or frequencies of an intentional radiator shall not exceed the limits in the following table: |           |                               |         |
| Frequency of Emission (MHz)                                                                                                                                     |           | Conducted Limits (dB $\mu$ V) |         |
|                                                                                                                                                                 |           | Quasi-peak                    | Average |
| 0.15-05                                                                                                                                                         | 66 to 56* |                               | 56-46*  |
| 0.5-5                                                                                                                                                           | 56        |                               | 46      |
| 5-30                                                                                                                                                            | 60        |                               | 50      |

### Procedures

The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50 ohms.

- 1) The EUT was operated in the Tx mode.
- 2) Measurements were first made on the High line.
- 3) The frequency range from 150 kHz to 30 MHz was broken up into smaller frequency sub-bands.
- 4) Conducted emissions measurements were taken on the first frequency sub-band using a peak detector.
- 5) The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 10dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 10dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.)
- 6) Steps (4) and (5) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits.
- 7) Steps (3) through (6) were repeated on the Neutral line.



Test Setup for Powerline Conducted Emissions Test

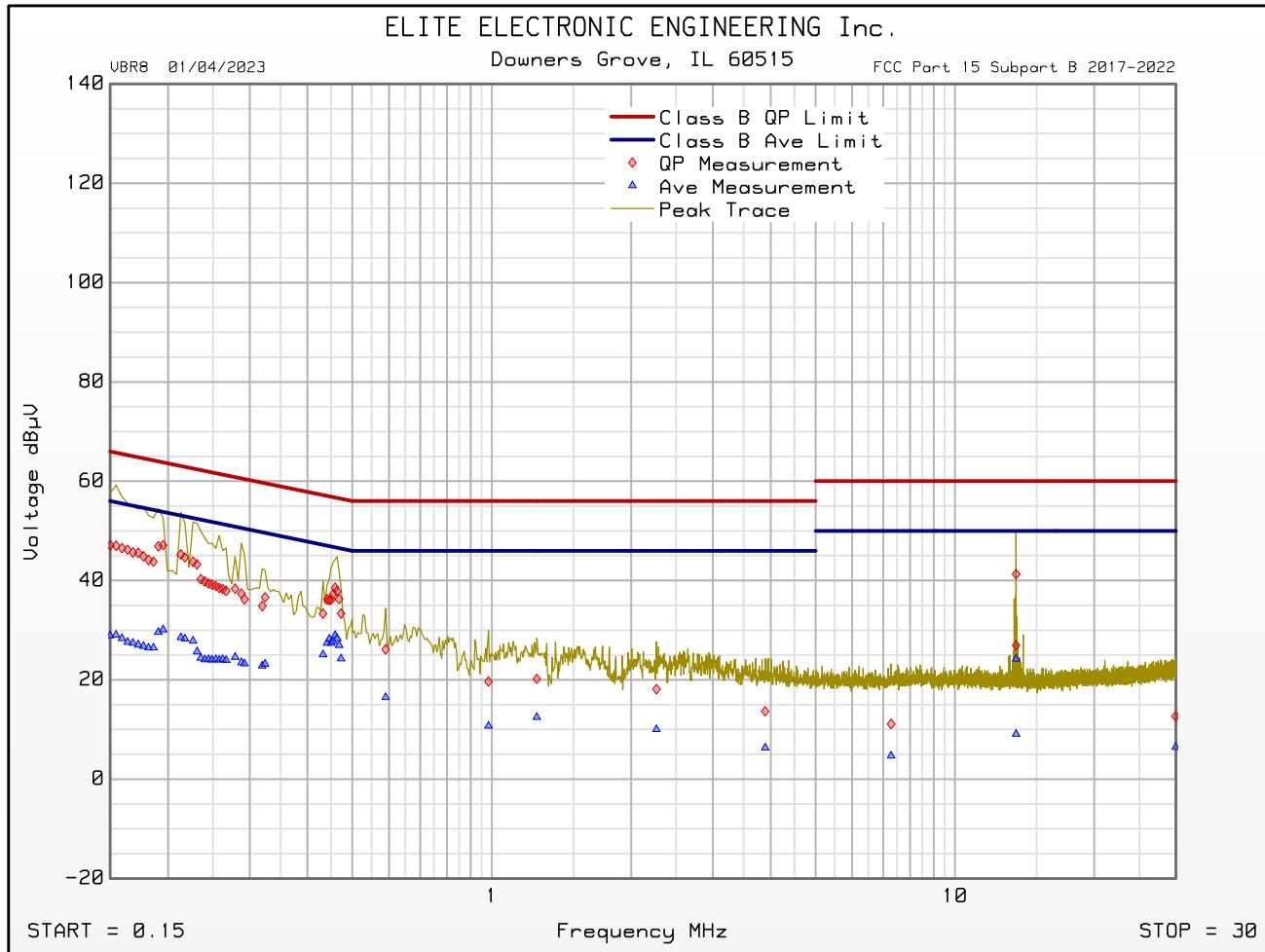


Test Setup for Powerline Conducted Emissions Test

## FCC Part 15 Subpart B Conducted Emissions Test

### Significant Emissions Data

VBR8 01/04/2023


Manufacturer : Cala Health, Inc  
 Model : BW100  
 DUT Revision : NA  
 Serial Number : BA00067  
 DUT Mode : Tx  
 Line Tested : Line  
 Scan Step Time [ms] : 30  
 Meas. Threshold [dB] : -10  
 Notes : None  
 Test Engineer : J. Cardenas  
 Limit : Class B  
 Test Date : Feb 23, 2023 07:09:07 AM  
 Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB margin below limit.

| Freq MHz | Quasi-peak Level dB $\mu$ V | Quasi-peak Limit dB $\mu$ V | Excessive Quasi-peak Emissions | Average Level dB $\mu$ V | Average Limit dB $\mu$ V | Excessive Average Emissions |
|----------|-----------------------------|-----------------------------|--------------------------------|--------------------------|--------------------------|-----------------------------|
| 0.195    | 47.1                        | 63.8                        |                                | 30.1                     | 53.8                     |                             |
| 0.459    | 38.6                        | 56.7                        |                                | 29.0                     | 46.7                     |                             |
| 0.590    | 26.1                        | 56.0                        |                                | 16.5                     | 46.0                     |                             |
| 1.250    | 20.2                        | 56.0                        |                                | 12.4                     | 46.0                     |                             |
| 2.268    | 18.1                        | 56.0                        |                                | 10.0                     | 46.0                     |                             |
| 3.892    | 13.7                        | 56.0                        |                                | 6.3                      | 46.0                     |                             |
| 7.282    | 11.1                        | 60.0                        |                                | 4.7                      | 50.0                     |                             |
| 13.554   | 41.3                        | 60.0                        |                                | 24.2                     | 50.0                     |                             |
| 29.930   | 12.7                        | 60.0                        |                                | 6.5                      | 50.0                     |                             |

## FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data

VBR8 01/04/2023

Manufacturer : Cala Health, Inc  
Model : BW100  
DUT Revision : NA  
Serial Number : BA00067  
DUT Mode : Tx  
Line Tested : Line  
Scan Step Time [ms] : 30  
Meas. Threshold [dB] : -10  
Notes : None  
Test Engineer : J. Cardenas  
Limit : Class B  
Test Date : Feb 23, 2023 07:09:07 AM

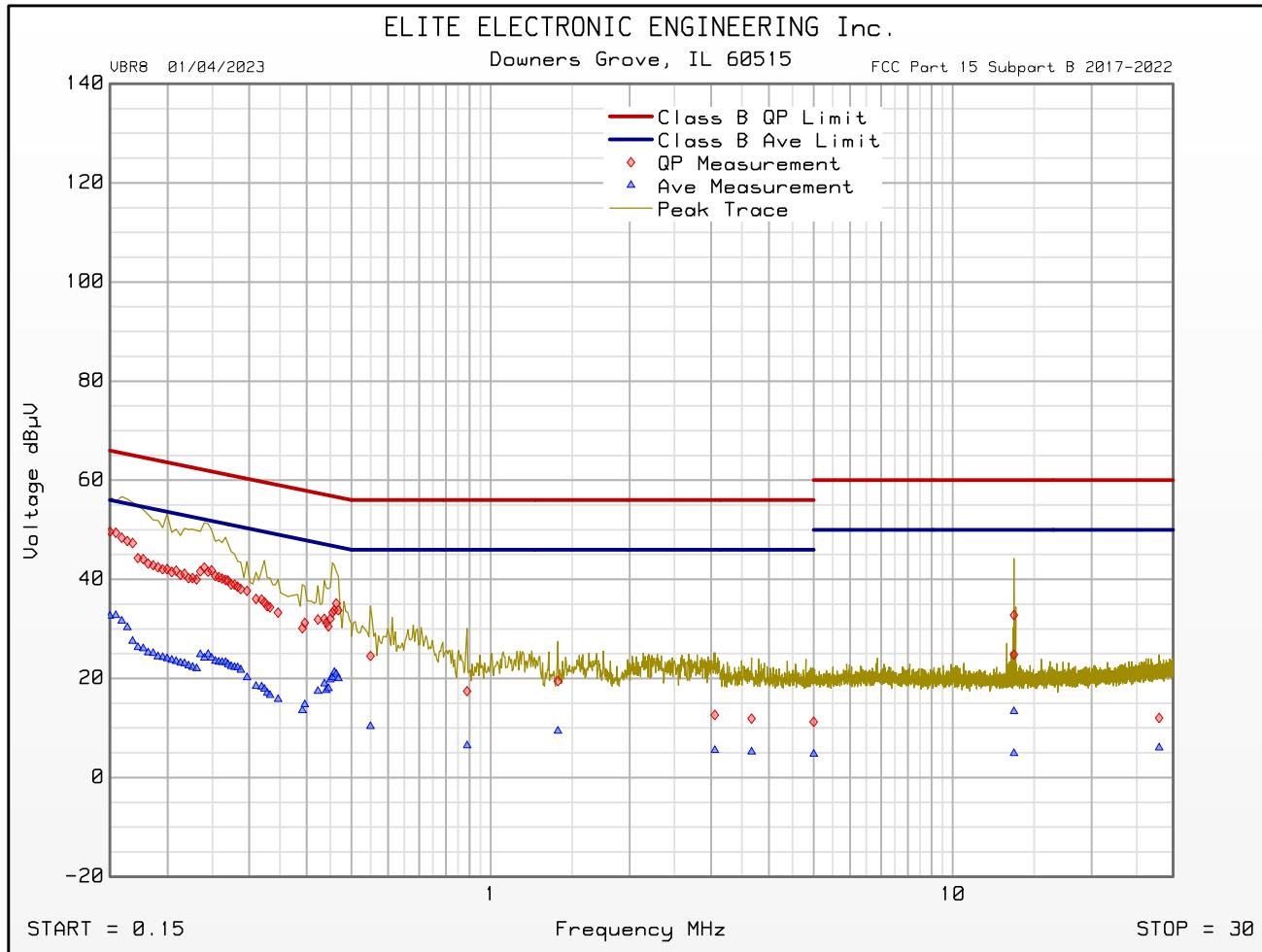


Emissions Meet QP Limit  
Emissions Meet Ave Limit

## FCC Part 15 Subpart B Conducted Emissions Test

### Significant Emissions Data

VBR8 01/04/2023


Manufacturer : Cala Health, Inc  
 Model : BW100  
 DUT Revision : NA  
 Serial Number : BA00067  
 DUT Mode : Tx  
 Line Tested : Neutral  
 Scan Step Time [ms] : 30  
 Meas. Threshold [dB] : -10  
 Notes : None  
 Test Engineer : J. Cardenas  
 Limit : Class B  
 Test Date : Feb 23, 2023 07:17:49 AM  
 Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB margin below limit.

| Freq<br>MHz | Quasi-peak<br>Level<br>dB $\mu$ V | Quasi-peak<br>Limit<br>dB $\mu$ V | Excessive<br>Quasi-peak<br>Emissions | Average<br>Level<br>dB $\mu$ V | Average<br>Limit<br>dB $\mu$ V | Excessive<br>Average<br>Emissions |
|-------------|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------------|--------------------------------|-----------------------------------|
| 0.155       | 49.4                              | 65.8                              |                                      | 32.7                           | 55.8                           |                                   |
| 0.270       | 39.7                              | 61.1                              |                                      | 22.8                           | 51.1                           |                                   |
| 0.550       | 24.5                              | 56.0                              |                                      | 10.3                           | 46.0                           |                                   |
| 0.889       | 17.4                              | 56.0                              |                                      | 6.5                            | 46.0                           |                                   |
| 1.399       | 19.5                              | 56.0                              |                                      | 9.4                            | 46.0                           |                                   |
| 3.056       | 12.6                              | 56.0                              |                                      | 5.5                            | 46.0                           |                                   |
| 3.671       | 11.9                              | 56.0                              |                                      | 5.2                            | 46.0                           |                                   |
| 5.000       | 11.2                              | 56.0                              |                                      | 4.7                            | 46.0                           |                                   |
| 13.568      | 32.8                              | 60.0                              |                                      | 13.4                           | 50.0                           |                                   |
| 27.982      | 12.0                              | 60.0                              |                                      | 6.0                            | 50.0                           |                                   |

## FCC Part 15 Subpart B Conducted Emissions Test Cumulative Data

VBR8 01/04/2023

Manufacturer : Cala Health, Inc  
 Model : BW100  
 DUT Revision : NA  
 Serial Number : BA00067  
 DUT Mode : Tx  
 Line Tested : Neutral  
 Scan Step Time [ms] : 30  
 Meas. Threshold [dB] : -10  
 Notes : None  
 Test Engineer : J. Cardenas  
 Limit : Class B  
 Test Date : Feb 23, 2023 07:17:49 AM



Emissions Meet QP Limit  
 Emissions Meet Ave Limit

## 22. Occupied Bandwidth Measurements


| Test Information |                               |
|------------------|-------------------------------|
| Manufacturer     | Cala Health, Inc              |
| Product          | Tremor Therapy Device Charger |
| Model            | BW100                         |
| Serial No        | BA00067                       |
| Mode             | Tx                            |
| Test Date        | February 21, 2023             |

| Test Setup Details |                       |
|--------------------|-----------------------|
| Setup Format       | Tabletop              |
| Height of Support  | NA                    |
| Type of Test Site  | Semi-Anechoic Chamber |
| Test site used     | Bench A3              |
| Notes              | None                  |

| Measurement Uncertainty                                                                                               |                                  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Measurement Type                                                                                                      | Expanded Measurement Uncertainty |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz) | 4.3                              |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)     | 3.1                              |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)    | 3.2                              |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz) | 3.3                              |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz) | 3.4                              |

| Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The unit was set to transmit continuously. With an antenna positioned nearby, occupied bandwidth emissions were displayed on the spectrum analyzer. The resolution bandwidth was set to 1% to 5% of the actual occupied bandwidth and span was set to 5MHz. The 99% Power Bandwidth function of the spectrum analyzer was enabled. A screen capture was taken of the frequency spectrum near the carrier using a screen dump function on the spectrum analyzer. |

| Test Details      |                                               |
|-------------------|-----------------------------------------------|
| Manufacturer      | Cala Health, Inc                              |
| Model             | BW100                                         |
| S/N               | BA00067                                       |
| Mode              | Tx                                            |
| Carrier Frequency | 13.56MHz                                      |
| Parameters        | Occupied Bandwidth (99% Bandwidth) = 1.980MHz |
| Notes             | None                                          |



## 23. Radiated Emissions

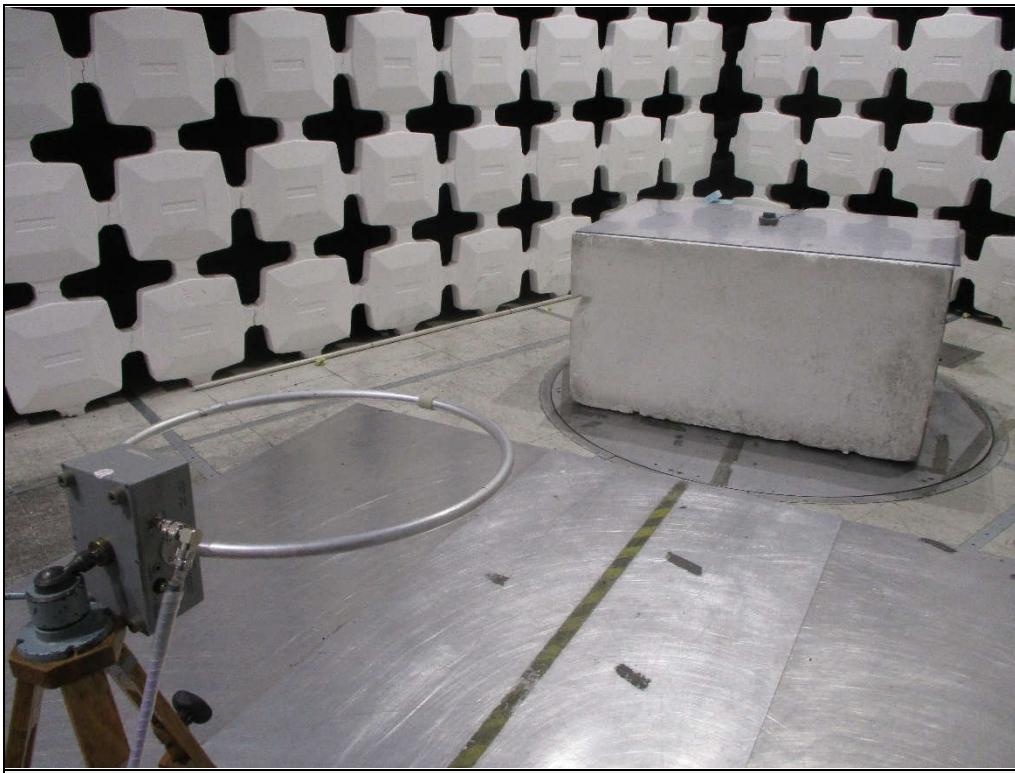
| Test Information |                               |
|------------------|-------------------------------|
| Manufacturer     | Cala Health, Inc              |
| Product          | Tremor Therapy Device Charger |
| Model            | BW100                         |
| Serial No        | BA00067                       |
| Mode             | Tx                            |

| Test Setup Details    |                                                                 |
|-----------------------|-----------------------------------------------------------------|
| Setup Format          | Tabletop                                                        |
| Height of Support     | NA                                                              |
| Measurement Method    | Radiated                                                        |
| Type of Test Site     | Semi-Anechoic Chamber                                           |
| Test site used        | R29F                                                            |
| Type of Antennas Used | Below 30MHz: Loop Antenna<br>Above 30MHz: Bilog (or equivalent) |
| Notes                 | None                                                            |

| Measurement Uncertainty                                                                                               |                                  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Measurement Type                                                                                                      | Expanded Measurement Uncertainty |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz) | 4.3                              |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)     | 3.1                              |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)    | 3.2                              |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz) | 3.3                              |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz) | 3.4                              |

| FCC 15C Requirements                                                                                                         |                             |                          |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|
| The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters. |                             |                          |
| The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the following limits    |                             |                          |
| Frequency (MHz)                                                                                                              | Field Strength ( $\mu$ V/m) | Measurement distance (m) |
| 0.009-0.490                                                                                                                  | 2400/F(kHz)                 | 300                      |
| 0.490-1.705                                                                                                                  | 24000/F(kHz)                | 30                       |
| 1.705-30.0                                                                                                                   | 30                          | 30                       |
| 30-88                                                                                                                        | 100                         | 3                        |
| 88-216                                                                                                                       | 150                         | 3                        |
| 216-960                                                                                                                      | 200                         | 3                        |
| Above 960                                                                                                                    | 500                         | 3                        |

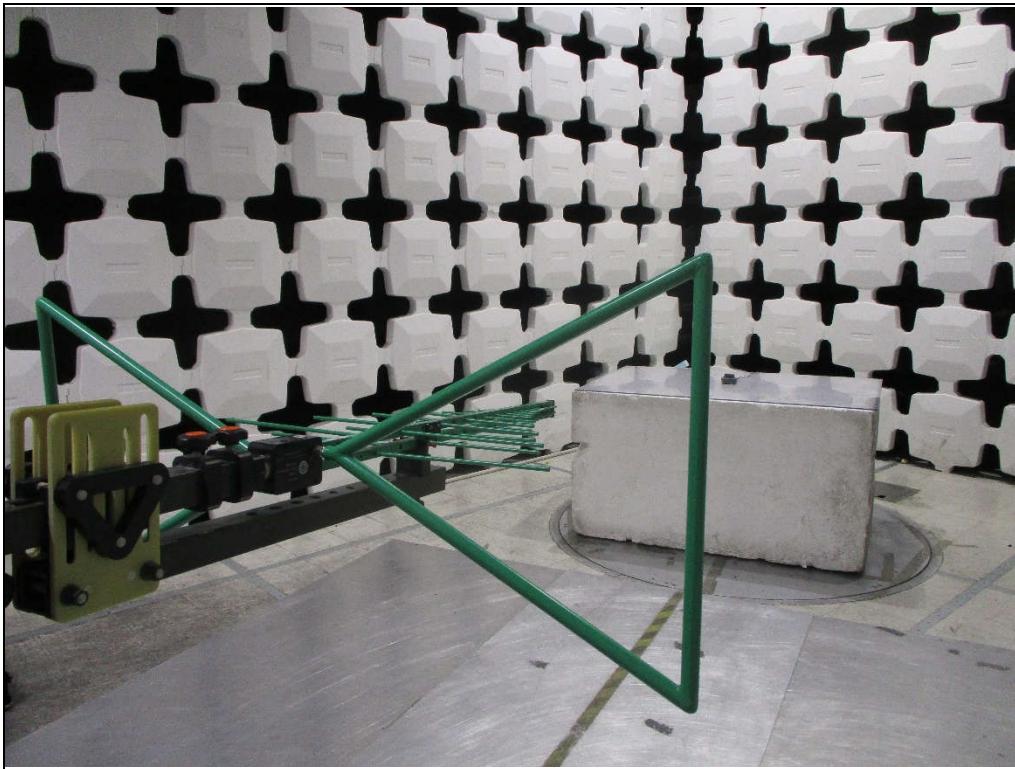
| ISED Requirements                                                                                                            |                                      |                          |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------|
| The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters. |                                      |                          |
| The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the following limits    |                                      |                          |
| Below 30MHz                                                                                                                  |                                      |                          |
| Frequency (MHz)                                                                                                              | Magnetic Field Strength ( $\mu$ A/m) | Measurement distance (m) |
| 0.009-0.490                                                                                                                  | 6.37/F(kHz)                          | 300                      |
| 0.490-1.705                                                                                                                  | 63.7/F(kHz)                          | 30                       |
| 1.705-30.0                                                                                                                   | 0.08                                 | 30                       |
| Above 30MHz                                                                                                                  |                                      |                          |
| Frequency (MHz)                                                                                                              | Field Strength ( $\mu$ V/m)          | Measurement distance (m) |
| 30-88                                                                                                                        | 100                                  | 3                        |
| 88-216                                                                                                                       | 150                                  | 3                        |
| 216-960                                                                                                                      | 200                                  | 3                        |
| Above 960                                                                                                                    | 500                                  | 3                        |


### Procedures

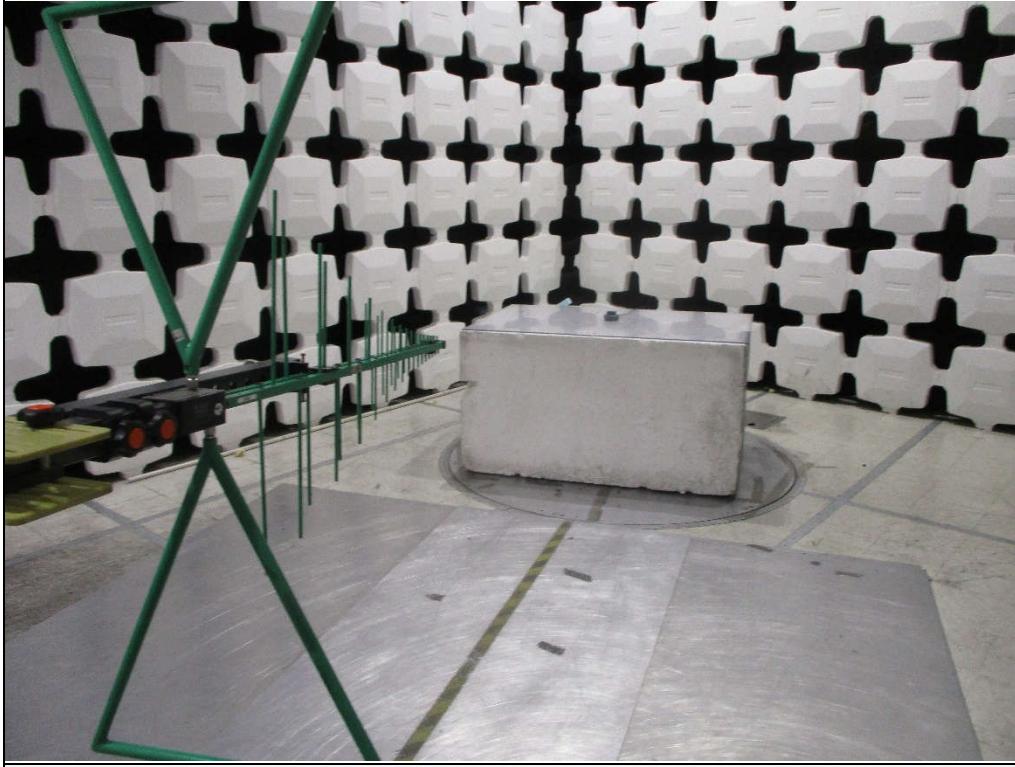
Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3-meter distance from the EUT. The entire frequency range from 9kHz to 1000MHz was investigated using a peak detector function.

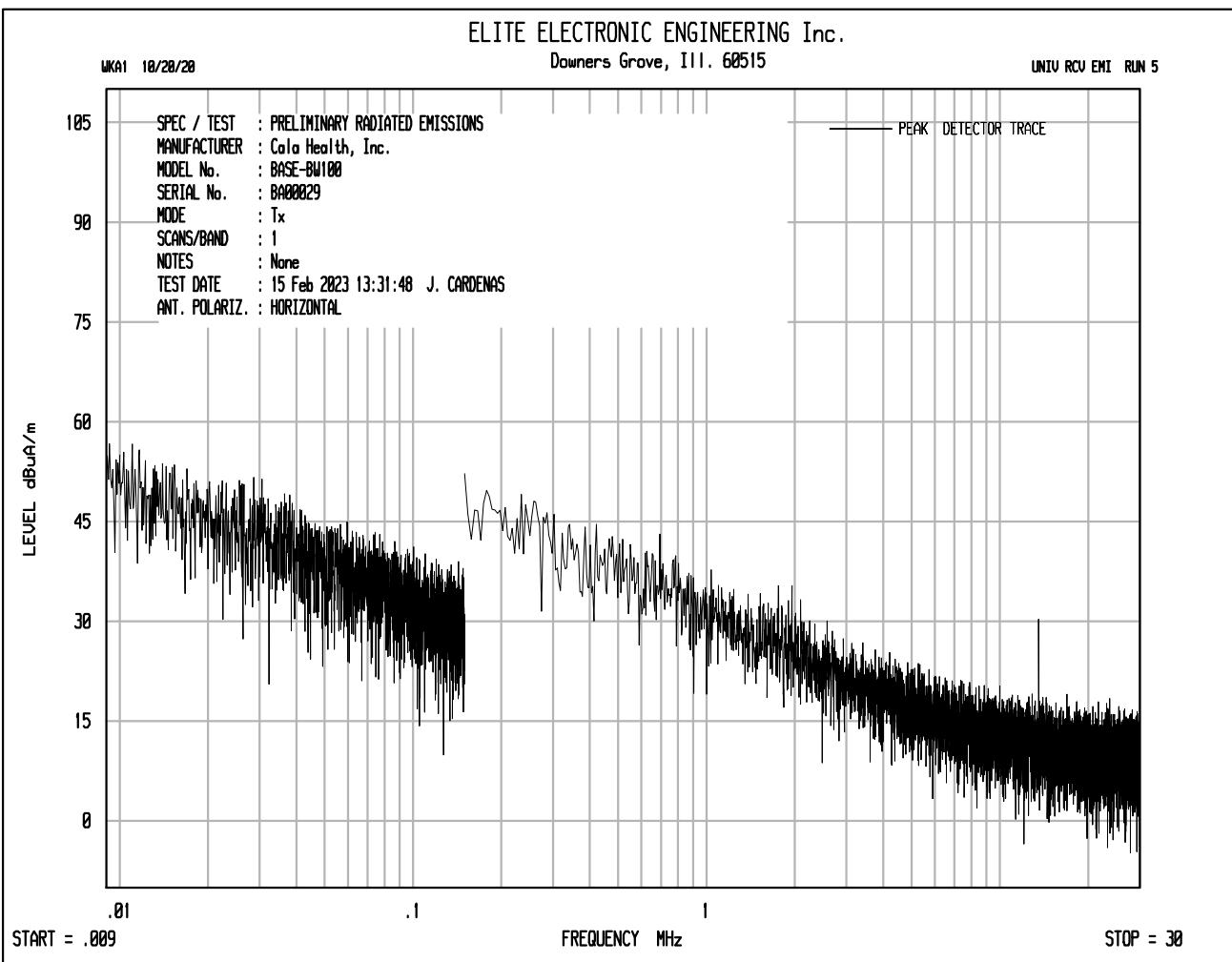
The final open field emission tests were then manually performed over the frequency range of 9kHz to 1000MHz.

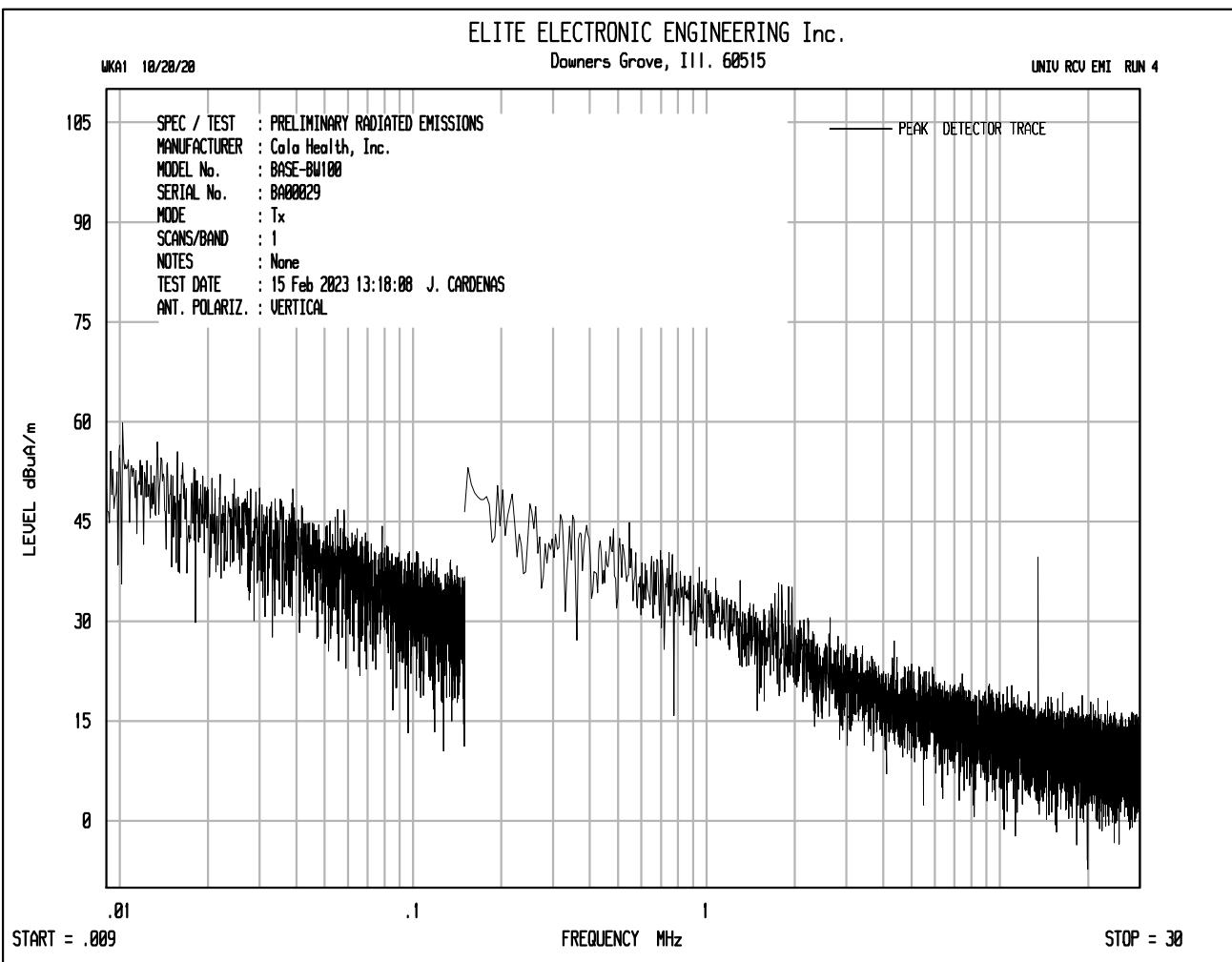

- a) The field strength of the fundamental was measured using a loop antenna. The antenna was positioned at a 3 meter distance from the EUT. The EUT was on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
- b) The field strengths of all of the harmonics were then measured using a Quasi-peak detector with a resolution bandwidth of 200Hz below 150kHz, 9kHz below 30MHz and 100 kHz above 30MHz on a spectrum analyzer.
- c) To ensure that maximum or worst case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
  - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
  - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
  - iii) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer. The measuring antenna was not raised or lowered to ensure maximized readings, instead the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.

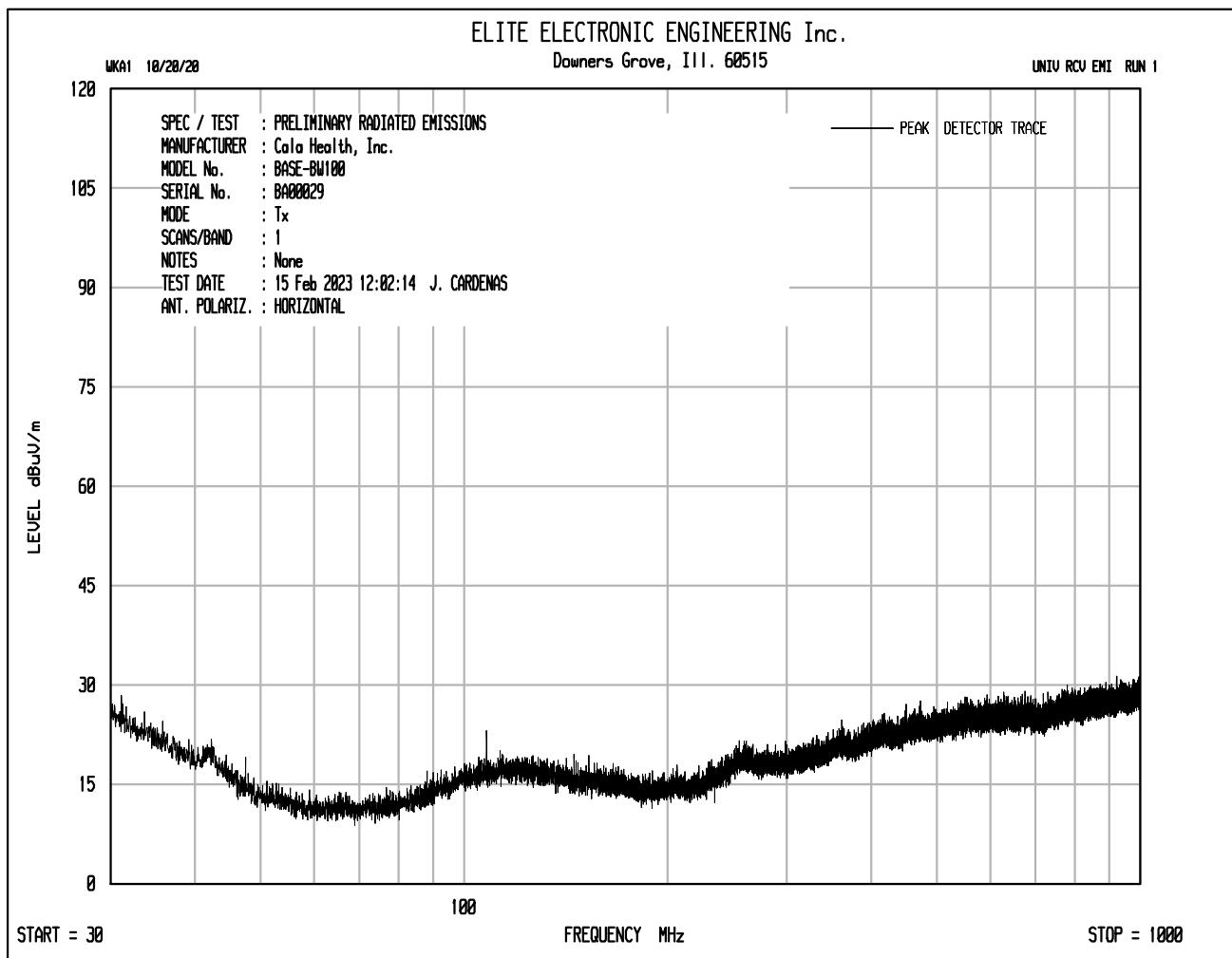


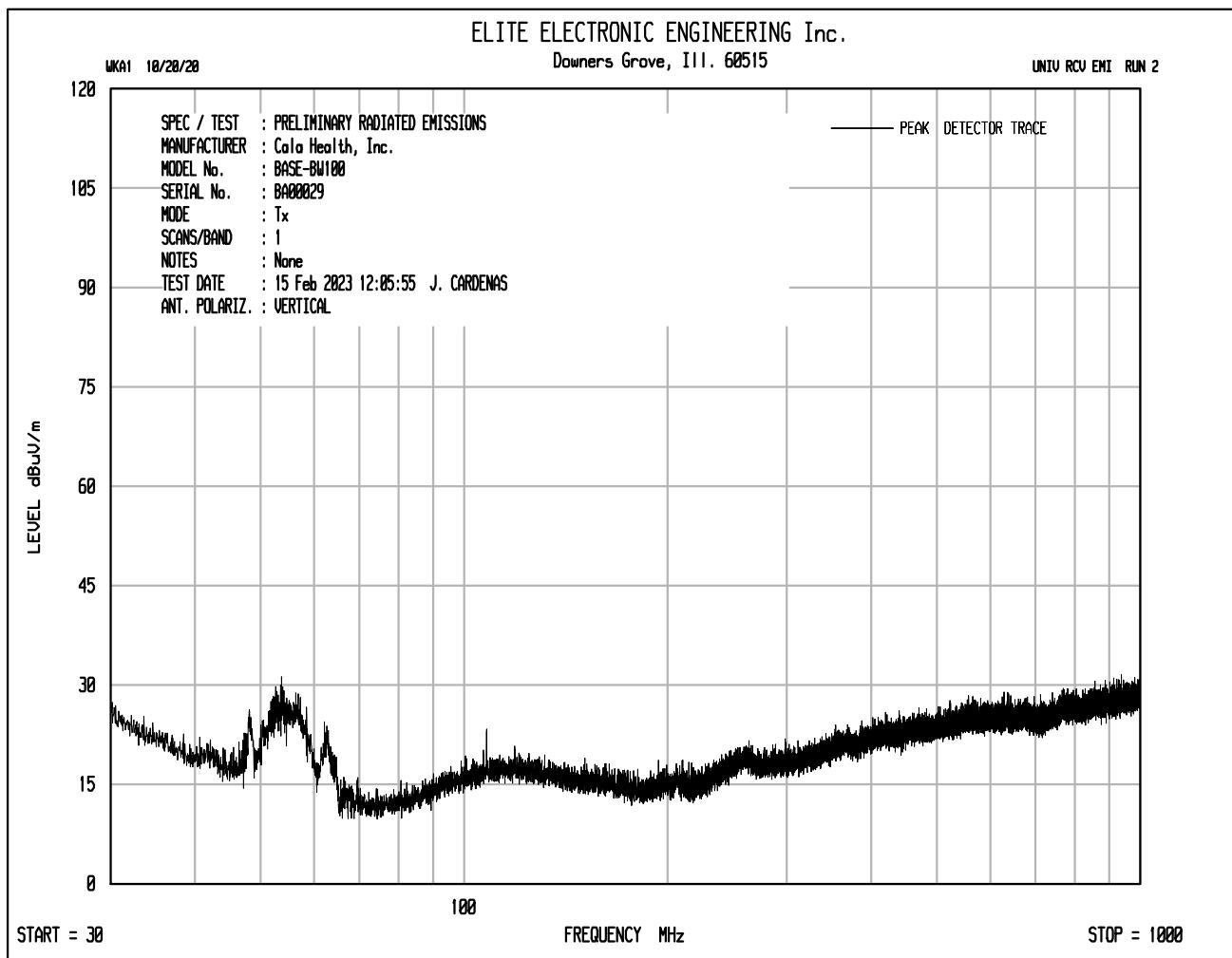

Test Setup for Spurious Radiated Emissions, 9kHz-30MHz – Antenna Polarization  
Horizontal




Test Setup for Spurious Radiated Emissions, 9kHz-30MHz – Antenna Polarization  
Vertical





Test Setup for Spurious Radiated Emissions, Above 30GHz – Antenna Polarization  
Horizontal




Test Setup for Spurious Radiated Emissions, Above 30GHz – Antenna Polarization  
Vertical









| Test Details      |  |                                          |  |  |  |  |  |  |  |  |  |
|-------------------|--|------------------------------------------|--|--|--|--|--|--|--|--|--|
| Manufacturer      |  | Cala Health, Inc                         |  |  |  |  |  |  |  |  |  |
| Model             |  | BW100                                    |  |  |  |  |  |  |  |  |  |
| S/N               |  | BA00067                                  |  |  |  |  |  |  |  |  |  |
| Mode              |  | Tx                                       |  |  |  |  |  |  |  |  |  |
| Carrier Frequency |  | 13.56MHz                                 |  |  |  |  |  |  |  |  |  |
| Parameters        |  | FCC 15C Final Measurements - Fundamental |  |  |  |  |  |  |  |  |  |
| Notes             |  | None                                     |  |  |  |  |  |  |  |  |  |

| Freq (MHz) | Ant Pol | Meter Reading (dB $\mu$ V) | Ambient | Cable Factor (dB) | Antenna Factor (dB/m) | Pre Amp (dB) | Distance Correction (dB) | Total (dB $\mu$ V/m) | Total ( $\mu$ V/m) | Limit ( $\mu$ V/m) | Margin (dBm) |
|------------|---------|----------------------------|---------|-------------------|-----------------------|--------------|--------------------------|----------------------|--------------------|--------------------|--------------|
| 13.56      | H       | 42.6                       |         | 0.2               | 10.4                  | 0.0          | -40.0                    | 13.184               | 4.562              | 15848              | -70.8        |
|            | V       | 53.2                       |         | 0.2               | 10.4                  | 0.0          | -40.0                    | 23.734               | 15.371             | 15848              | -60.3        |

| Test Details      |  |                                                     |  |  |  |  |  |  |  |  |  |
|-------------------|--|-----------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Manufacturer      |  | Cala Health, Inc                                    |  |  |  |  |  |  |  |  |  |
| Model             |  | BW100                                               |  |  |  |  |  |  |  |  |  |
| S/N               |  | BA00067                                             |  |  |  |  |  |  |  |  |  |
| Mode              |  | Tx                                                  |  |  |  |  |  |  |  |  |  |
| Carrier Frequency |  | 13.56MHz                                            |  |  |  |  |  |  |  |  |  |
| Parameters        |  | FCC -15C Final Measurements – Out of Band emissions |  |  |  |  |  |  |  |  |  |
| Notes             |  | None                                                |  |  |  |  |  |  |  |  |  |

| Freq (MHz) | Ant Pol | Meter Reading (dB $\mu$ V) | Ambient | Cable Factor (dB) | Antenna Factor (dB/m) | Pre Amp (dB) | Distance Correction (dB) | Total (dB $\mu$ V/m) | Total ( $\mu$ V/m) | Limit ( $\mu$ V/m) | Margin (dBm) |
|------------|---------|----------------------------|---------|-------------------|-----------------------|--------------|--------------------------|----------------------|--------------------|--------------------|--------------|
| 27.12      | H       | 5.3                        | *       | 0.3               | 8.4                   | 0.0          | -40.0                    | -26.088              | 0.050              | 30                 | -55.6        |
|            | V       | 3.2                        | *       | 0.3               | 8.4                   | 0.0          | -40.0                    | -28.158              | 0.039              | 30                 | -57.7        |
| 40.68      | H       | 5.7                        | *       | 0.3               | 18.6                  | 0.0          | 0.0                      | 24.609               | 17.000             | 100                | -15.4        |
|            | V       | 5.8                        |         | 0.3               | 18.6                  | 0.0          | 0.0                      | 24.699               | 17.178             | 100                | -15.3        |
| 54.24      | H       | 5.1                        | *       | 0.4               | 13.1                  | 0.0          | 0.0                      | 18.534               | 8.447              | 100                | -21.5        |
|            | V       | 14.0                       |         | 0.4               | 13.1                  | 0.0          | 0.0                      | 27.494               | 23.698             | 100                | -12.5        |
| 67.80      | H       | 5.8                        | *       | 0.4               | 12.3                  | 0.0          | 0.0                      | 18.503               | 8.417              | 100                | -21.5        |
|            | V       | 13.2                       |         | 0.4               | 12.3                  | 0.0          | 0.0                      | 25.943               | 19.822             | 100                | -14.1        |
| 81.36      | H       | 5.1                        | *       | 0.5               | 13.1                  | 0.0          | 0.0                      | 18.684               | 8.594              | 100                | -21.3        |
|            | V       | 5.5                        | *       | 0.5               | 13.1                  | 0.0          | 0.0                      | 19.114               | 9.030              | 100                | -20.9        |
| 94.92      | H       | 5.0                        | *       | 0.5               | 15.9                  | 0.0          | 0.0                      | 21.430               | 11.789             | 150                | -22.1        |
|            | V       | 8.2                        |         | 0.5               | 15.9                  | 0.0          | 0.0                      | 24.660               | 17.099             | 150                | -18.9        |
| 108.48     | H       | 6.9                        |         | 0.5               | 18.0                  | 0.0          | 0.0                      | 25.362               | 18.539             | 150                | -18.2        |
|            | V       | 8.0                        |         | 0.5               | 18.0                  | 0.0          | 0.0                      | 26.472               | 21.066             | 150                | -17.1        |
| 122.04     | H       | 5.8                        |         | 0.6               | 18.3                  | 0.0          | 0.0                      | 24.672               | 17.123             | 150                | -18.9        |
|            | V       | 6.6                        |         | 0.6               | 18.3                  | 0.0          | 0.0                      | 25.472               | 18.775             | 150                | -18.1        |
| 135.60     | H       | 4.6                        | *       | 0.6               | 17.5                  | 0.0          | 0.0                      | 22.721               | 13.678             | 150                | -20.8        |
|            | V       | 4.6                        | *       | 0.6               | 17.5                  | 0.0          | 0.0                      | 22.771               | 13.757             | 150                | -20.8        |

| Test Details      |  |                                       |  |  |  |  |  |  |  |  |  |
|-------------------|--|---------------------------------------|--|--|--|--|--|--|--|--|--|
| Manufacturer      |  | Cala Health, Inc                      |  |  |  |  |  |  |  |  |  |
| Model             |  | BW100                                 |  |  |  |  |  |  |  |  |  |
| S/N               |  | BA00067                               |  |  |  |  |  |  |  |  |  |
| Mode              |  | Tx                                    |  |  |  |  |  |  |  |  |  |
| Carrier Frequency |  | 13.56MHz                              |  |  |  |  |  |  |  |  |  |
| Parameters        |  | ISED Final Measurements - Fundamental |  |  |  |  |  |  |  |  |  |
| Notes             |  | None                                  |  |  |  |  |  |  |  |  |  |

| Freq (MHz) | Ant Pol | Meter Reading (dB $\mu$ V) | Ambient | Cable Factor (dB) | Antenna Factor (dB/m) | Pre Amp (dB) | Distance Correction (dB) | Total (dB $\mu$ V/m) | Total ( $\mu$ V/m) | Limit ( $\mu$ V/m) | Margin (dBm) |
|------------|---------|----------------------------|---------|-------------------|-----------------------|--------------|--------------------------|----------------------|--------------------|--------------------|--------------|
| 13.56      | H       | 42.6                       |         | 0.2               | 10.4                  | 0.0          | -40.0                    | 13.184               | 4.562              | 15848              | -70.8        |
|            | V       | 53.2                       |         | 0.2               | 10.4                  | 0.0          | -40.0                    | 23.734               | 15.371             | 15848              | -60.3        |

| Test Details      |  |                                                 |  |  |  |  |  |  |  |  |  |
|-------------------|--|-------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Manufacturer      |  | Cala Health, Inc                                |  |  |  |  |  |  |  |  |  |
| Model             |  | BW100                                           |  |  |  |  |  |  |  |  |  |
| S/N               |  | BA00067                                         |  |  |  |  |  |  |  |  |  |
| Mode              |  | Tx                                              |  |  |  |  |  |  |  |  |  |
| Carrier Frequency |  | 13.56MHz                                        |  |  |  |  |  |  |  |  |  |
| Parameters        |  | ISED Final Measurements – Out of Band emissions |  |  |  |  |  |  |  |  |  |
| Notes             |  | None                                            |  |  |  |  |  |  |  |  |  |

| Freq (MHz) | Ant Pol | Meter Reading (dB $\mu$ V) | Ambient | Cable Factor (dB) | Antenna Factor (dB $\mu$ A/m) | Pre Amp (dB) | Distance Correction (dB) | Total (dB $\mu$ A/m) | Total ( $\mu$ A/m) | Limit ( $\mu$ A/m) | Margin (dBm) |
|------------|---------|----------------------------|---------|-------------------|-------------------------------|--------------|--------------------------|----------------------|--------------------|--------------------|--------------|
| 27.12      | H       | 5.3                        | *       | 0.3               | -43.1                         | 0.0          | -40.0                    | -77.614              | 0.00013            | 0.080              | -55.7        |
|            | V       | 3.2                        | *       | 0.3               | -43.1                         | 0.0          | -40.0                    | -79.684              | 0.00010            | 0.080              | -57.7        |
| Freq (MHz) | Ant Pol | Meter Reading (dB $\mu$ V) | Ambient | Cable Factor (dB) | Antenna Factor (dB/m)         | Pre Amp (dB) | Distance Correction (dB) | Total (dB $\mu$ V/m) | Total ( $\mu$ V/m) | Limit ( $\mu$ V/m) | Margin (dBm) |
| 40.68      | H       | 5.7                        | *       | 0.3               | 18.6                          | 0.0          | 0.0                      | 24.609               | 17.000             | 100.000            | -15.4        |
|            | V       | 5.8                        |         | 0.3               | 18.6                          | 0.0          | 0.0                      | 24.699               | 17.178             | 100.000            | -15.3        |
| 54.24      | H       | 5.1                        | *       | 0.4               | 13.1                          | 0.0          | 0.0                      | 18.534               | 8.447              | 100.000            | -21.5        |
|            | V       | 14.0                       |         | 0.4               | 13.1                          | 0.0          | 0.0                      | 27.494               | 23.698             | 100.000            | -12.5        |
| 67.80      | H       | 5.8                        | *       | 0.4               | 12.3                          | 0.0          | 0.0                      | 18.503               | 8.417              | 100.000            | -21.5        |
|            | V       | 13.2                       |         | 0.4               | 12.3                          | 0.0          | 0.0                      | 25.943               | 19.822             | 100.000            | -14.1        |
| 81.36      | H       | 5.1                        | *       | 0.5               | 13.1                          | 0.0          | 0.0                      | 18.684               | 8.594              | 100.000            | -21.3        |
|            | V       | 5.5                        | *       | 0.5               | 13.1                          | 0.0          | 0.0                      | 19.114               | 9.030              | 100.000            | -20.9        |
| 94.92      | H       | 5.0                        | *       | 0.5               | 15.9                          | 0.0          | 0.0                      | 21.430               | 11.789             | 150.000            | -22.1        |
|            | V       | 8.2                        |         | 0.5               | 15.9                          | 0.0          | 0.0                      | 24.660               | 17.099             | 150.000            | -18.9        |
| 108.48     | H       | 6.9                        |         | 0.5               | 18.0                          | 0.0          | 0.0                      | 25.362               | 18.539             | 150.000            | -18.2        |
|            | V       | 8.0                        |         | 0.5               | 18.0                          | 0.0          | 0.0                      | 26.472               | 21.066             | 150.000            | -17.1        |
| 122.04     | H       | 5.8                        |         | 0.6               | 18.3                          | 0.0          | 0.0                      | 24.672               | 17.123             | 150.000            | -18.9        |
|            | V       | 6.6                        |         | 0.6               | 18.3                          | 0.0          | 0.0                      | 25.472               | 18.775             | 150.000            | -18.1        |
| 135.60     | H       | 4.6                        | *       | 0.6               | 17.5                          | 0.0          | 0.0                      | 22.721               | 13.678             | 150.000            | -20.8        |
|            | V       | 4.6                        | *       | 0.6               | 17.5                          | 0.0          | 0.0                      | 22.771               | 13.757             | 150.000            | -20.8        |

## 24. Frequency Stability

| Test Information |                               |
|------------------|-------------------------------|
| Manufacturer     | Cala Health, Inc              |
| Product          | Tremor Therapy Device Charger |
| Model            | BW100                         |
| Serial No        | BA00067                       |
| Mode             | Tx                            |
| Test Date        | February 21, 2023             |

| Test Setup Details |                     |
|--------------------|---------------------|
| Setup Format       | Tabletop            |
| Height of Support  | NA                  |
| Type of Test Site  | Temperature chamber |
| Test site used     | Bench A3            |
| Notes              | None                |

| Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The unit was set to transmit continuously. With an antenna positioned nearby, occupied bandwidth emissions were displayed on the spectrum analyzer. The resolution bandwidth was set to 1% to 5% of the actual occupied bandwidth and span was set to 5MHz. The 99% Power Bandwidth function of the spectrum analyzer was enabled. A screen capture was taken of the frequency spectrum near the carrier using a screen dump function on the spectrum analyzer. |  |

| Test Details      |  |                             |  |  |  |  |  |  |  |
|-------------------|--|-----------------------------|--|--|--|--|--|--|--|
| Manufacturer      |  | Cala Health, Inc            |  |  |  |  |  |  |  |
| Model             |  | BW100                       |  |  |  |  |  |  |  |
| S/N               |  | BA00067                     |  |  |  |  |  |  |  |
| Mode              |  | Tx                          |  |  |  |  |  |  |  |
| Carrier Frequency |  | 13.56MHz                    |  |  |  |  |  |  |  |
| Parameters        |  | FCC 15C Frequency Stability |  |  |  |  |  |  |  |
| Notes             |  | None                        |  |  |  |  |  |  |  |

| Temperature<br>°C | Input<br>Voltage | Nominal<br>Frequency<br>Hz | Measured<br>Frequency<br>Hz | Frequency Variation in Hz |                             |                      | Frequency Variation in % |                            |                     | Pass/Fail |
|-------------------|------------------|----------------------------|-----------------------------|---------------------------|-----------------------------|----------------------|--------------------------|----------------------------|---------------------|-----------|
|                   |                  |                            |                             | Lower<br>Limit<br>Hz      | Measured<br>Variation<br>Hz | Upper<br>Limit<br>Hz | Lower<br>Limit<br>%      | Measured<br>Variation<br>% | Upper<br>Limit<br>% |           |
| -20               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| -20               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| -20               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| -10               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| -10               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| -10               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| 0                 | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| 0                 | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| 0                 | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +10               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +10               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +10               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +20               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +20               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +20               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +30               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +30               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +30               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +40               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +40               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +40               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +50               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +50               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |
| +50               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -0.010000000             | 0.000000000                | 0.010000000         | Pass      |

| Test Details      |  |                          |  |  |  |  |  |  |  |
|-------------------|--|--------------------------|--|--|--|--|--|--|--|
| Manufacturer      |  | Cala Health, Inc         |  |  |  |  |  |  |  |
| Model             |  | BW100                    |  |  |  |  |  |  |  |
| S/N               |  | BA00067                  |  |  |  |  |  |  |  |
| Mode              |  | Tx                       |  |  |  |  |  |  |  |
| Carrier Frequency |  | 13.56MHz                 |  |  |  |  |  |  |  |
| Parameters        |  | ISED Frequency Stability |  |  |  |  |  |  |  |
| Notes             |  | None                     |  |  |  |  |  |  |  |

| Temperature<br>°C | Input<br>Voltage | Nominal<br>Frequency<br>Hz | Measured<br>Frequency<br>Hz | Frequency Variation in Hz |                             |                      | Frequency Variation in ppm |                              |                       | Pass/Fail |
|-------------------|------------------|----------------------------|-----------------------------|---------------------------|-----------------------------|----------------------|----------------------------|------------------------------|-----------------------|-----------|
|                   |                  |                            |                             | Lower<br>Limit<br>Hz      | Measured<br>Variation<br>Hz | Upper<br>Limit<br>Hz | Lower<br>Limit<br>ppm      | Measured<br>Variation<br>ppm | Upper<br>Limit<br>ppm |           |
| -20               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| -20               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| -20               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| -10               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| -10               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| -10               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| 0                 | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| 0                 | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| 0                 | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +10               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +10               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +10               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +20               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +20               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +20               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +30               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +30               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +30               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +40               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +40               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +40               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +50               | 120.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +50               | 102.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |
| +50               | 138.0            | 13,560,000                 | 13,560,000.00               | -1,356                    | 0                           | 1,356                | -100.0000000               | 0.000000                     | 100.0000000           | Pass      |

## 25. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC.  
1516 Centre Circle  
Downers Grove, IL 60515  
Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168  
Email: [rbugielski@elitetest.com](mailto:rbugielski@elitetest.com)  
Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112  
Email: [cfanning@elitetest.com](mailto:cfanning@elitetest.com)  
Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163  
Email: [blugo@elitetest.com](mailto:blugo@elitetest.com)  
Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123  
Email: [reking@elitetest.com](mailto:reking@elitetest.com)  
Website: [www.elitetest.com](http://www.elitetest.com)

## ELECTRICAL

Valid To: June 30, 2023

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following automotive electromagnetic compatibility and other electrical tests:

**Test Technology:****Test Method(s):*****Transient Immunity***

ISO 7637-2 (including emissions); ISO 7637-3;  
ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;  
CS-11979, Section 6.4; CS.00054, Section 5.9;  
EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);  
GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12;  
ECE Regulation 10.06 Annex 10

***Electrostatic Discharge (ESD)***

ISO 10605 (2001, 2008);  
CS-11979 Section 7.0; CS.00054, Section 5.10;  
EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13;  
GMW 3097 Section 3.6

***Conducted Emissions***

CISPR 25 (2002, 2008), Sections 6.2 and 6.3;  
CISPR 25 (2016), Sections 6.3 and 6.4;  
CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2;  
GMW 3097, Section 3.3.2;  
EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)

***Radiated Emissions Anechoic***

CISPR 25 (2002, 2008), Section 6.4;  
CISPR 25 (2016), Section 6.5;  
CS-11979, Section 5.3; CS.00054, Section 5.6.3;  
GMW 3097, Section 3.3.1;  
EMC-CS-2009.1 (RE 310); FMC1278 (RE310);

(A2LA Cert. No. 1786.01) Revised 08/08/2022

 Page 1 of 8

| <u>Test Technology:</u>                                                             | <u>Test Method(s)<sup>1:</sup></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Vehicle Radiated Emissions</b>                                                   | CISPR 12; CISPR 36; ICES-002; ECE Regulation 10.06 Annex 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Bulk Current Injection (BCI)</b>                                                 | ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112); ECE Regulation 10.06 Annex 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Radiated Immunity Anechoic (Including Radar Pulse)</b>                           | ISO 11452-2; ISO 11452-5; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21; ECE Regulation 10.06 Annex 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Radiated Immunity Magnetic Field</b>                                             | ISO 11452-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Radiated Immunity Reverb</b>                                                     | ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (RI114); FMC1278 (RI114); ISO 11452-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Radiated Immunity (Portable Transmitters)</b>                                    | ISO 11452-9; EMC-CS-2009.1 (RI115); FMC1278 (RI115)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Vehicle Radiated Immunity (ALSE)</b>                                             | ISO 11451-2; ECE Regulation 10.06 Annex 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Vehicle Product Specific EMC Standards</b>                                       | EN 14982; EN ISO 13309; ISO 13766; EN 50498; EC Regulation No. 2015/208; EN 55012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Electrical Loads</b>                                                             | ISO 16750-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Emissions</b><br>Radiated and Conducted (3m Semi-anechoic chamber, up to 40 GHz) | 47 CFR, FCC Part 15 B (using ANSI C63.4:2014); 47 CFR, FCC Part 18 (using FCC MP-5:1986); ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003); CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; CISPR 16-2-1 (2008); CISPR 16-2-1; KS C 9814-1; KN 14-1; IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz); CISPR 32; EN 55032; KS C 9832; KN 32; ECE Regulation 10.06 Annex 7 (Broadband) ECE Regulation 10.06 Annex 8 (Narrowband) ECE Regulation 10.06 Annex 14 (Conducted) |

Test Technology:
Test Method(s)<sup>1</sup>:
**Emissions (cont'd)**

Cellular Radiated Spurious Emissions

 ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12;  
 ETSI TS 134 124 UMTS; 3GPP TS 34.124;  
 ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124

Current Harmonics

 IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2;  
 KS C 9610-3-2; ECE Regulation 10.06 Annex 11

Flicker and Fluctuations

 IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3;  
 KS C 9610-3-3; ECE Regulation 10.06 Annex 12

**Immunity**

Electrostatic Discharge

 IEC 61000-4-2, Ed. 1.2 (2001);  
 IEC 61000-4-2 (1995) + A1(1998) + A2(2000);  
 EN 61000-4-2 (1995); EN 61000-4-2 (2009-05);  
 KN 61000-4-2 (2008-5);  
 RRL Notice No. 2008-4 (May 20, 2008);  
 IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2;  
 KS C 9610-4-2; IEEE C37.90.3 2001

Radiated Immunity

 IEC 61000-4-3 (1995) + A1(1998) + A2(2000);  
 IEC 61000-4-3, Ed. 3.0 (2006-02);  
 IEC 61000-4-3, Ed. 3.2 (2010);  
 KN 61000-4-3 (2008-5);  
 RRL Notice No. 2008-4 (May 20, 2008);  
 IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3;  
 KS C 9610-4-3; IEEE C37.90.2 2004

Electrical Fast Transient/Burst

 IEC 61000-4-4, Ed. 2.0 (2004-07);  
 IEC 61000-4-4, Ed. 2.1 (2011);  
 IEC 61000-4-4 (1995) + A1(2000) + A2(2001);  
 KN 61000-4-4 (2008-5);  
 RRL Notice No. 2008-5 (May 20, 2008);  
 IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4;  
 KS C 9610-4-4; ECE Regulation 10.06 Annex 15

Surge

 IEC 61000-4-5 (1995) + A1(2000);  
 IEC 61000-4-5, Ed 1.1 (2005-11);  
 EN 61000-4-5 (1995) + A1(2001);  
 KN 61000-4-5 (2008-5);  
 RRL Notice No. 2008-4 (May 20, 2008);  
 IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5;  
 KS C 9610-4-5;  
 IEEE C37.90.1 2012; IEEE STD C62.41.2 2002;  
 ECE Regulation 10.06 Annex 16

Test Technology:
Test Method(s)<sup>1</sup>:
**Immunity (cont'd)**

Conducted Immunity

IEC 61000-4-6 (1996) + A1(2000);  
 IEC 61000-4-6, Ed 2.0 (2006-05);  
 IEC 61000-4-6 Ed. 3.0 (2008);  
 KN 61000-4-6 (2008-5);  
 RRL Notice No. 2008-4 (May 20, 2008);  
 EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6;  
 EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6

 Power Frequency Magnetic Field  
 Immunity (*Down to 3 A/m*)

IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009);  
 EN 61000-4-8 (1994) + A1(2000);  
 KN 61000-4-8 (2008-5);  
 RRL Notice No. 2008-4 (May 20, 2008);  
 IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8

 Voltage Dips, Short Interrupts, and Line  
 Voltage Variations

IEC 61000-4-11, Ed. 2 (2004-03);  
 KN 61000-4-11 (2008-5);  
 RRL Notice No. 2008-4 (May 20, 2008);  
 IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11;  
 KS C 9610-4-11

Ring Wave

IEC 61000-4-12, Ed. 2 (2006-09);  
 EN 61000-4-12:2006;  
 IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12;  
 IEEE STD C62.41.2 2002

 Generic and Product Specific EMC  
 Standards

IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1;  
 KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2;  
 KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3;  
 AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3;  
 IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4;  
 KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2;  
 EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3;  
 EN 55015; EN 60730-1; EN 60945; IEC 60533;  
 EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2;  
 AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2;  
 IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24;  
 IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35;  
 KS C 9835; IEC 60601-1-2; JIS T0601-1-2

***TxRx EMC Requirements***

EN 301 489-1; EN 301 489-3; EN 301 489-9;  
 EN 301 489-17; EN 301 489-19; EN 301 489-20

**Test Technology:*****European Radio Test Standards*****Test Method(s)<sup>1</sup>:**

ETSI EN 300 086-1; ETSI EN 300 086-2;  
ETSI EN 300 113-1; ETSI EN 300 113-2;  
ETSI EN 300 220-1; ETSI EN 300 220-2;  
ETSI EN 300 220-3-1; ETSI EN 300 220-3-2;  
ETSI EN 300 330-1; ETSI EN 300 330-2;  
ETSI EN 300 440-1; ETSI EN 300 440-2;  
ETSI EN 300 422-1; ETSI EN 300 422-2;  
ETSI EN 300 328; ETSI EN 301 893;  
ETSI EN 301 511; ETSI EN 301 908-1;  
ETSI EN 908-2; ETSI EN 908-13;  
ETSI EN 303 413; ETSI EN 302 502;  
EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4

***Canadian Radio Tests***

RSS-102 (RF Exposure Evaluation<sup>MEAS</sup>);  
RSS-102 (Nerve Stimulation<sup>MEAS</sup>) (5Hz to 400kHz);  
SPR-002; RSS-111; RSS-112; RSS-117; RSS-119; RSS-123;  
RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133;  
RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141;  
RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192;  
RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210;  
RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222;  
RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-248;  
RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN

***Mexico Radio Tests***

IFT-008-2015; NOM-208-SCFI-2016

***Japan Radio Tests***

Radio Law No. 131, Ordinance of MPT No. 37, 1981,  
MIC Notification No. 88:2004, Table No. 22-11;  
ARIB STD-T66, Regulation 18

***Taiwan Radio Tests***

LP-0002 (July 15, 2020)

***Australia/New Zealand Radio Tests***

AS/NZS 4268; Radiocommunications (Short Range Devices)  
Standard (2014)

***Hong Kong Radio Tests***

HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7;  
HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057;  
HKCA 1073

***Korean Radio Test Standards***

KN 301 489-1; KN 301 489-3; KN 301 489-9;  
KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125;  
KS X 3130; KS X 3126; KS X 3129

***Vietnam Radio Test Standards***

QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT;  
QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT;  
QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT;  
QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT

***Vietnam EMC Test Standards***

QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT;  
QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT

**Test Technology:**

***Unlicensed Radio Frequency Devices***  
*(3 Meter Semi-Anechoic Room)*

***Licensed Radio Service Equipment***

***OTA (Over the Air) Performance***  
 GSM, GPRS, EGPRS  
 UMTS (W-CDMA)  
 LTE including CAT M1  
 A-GPS for UMTS/GSM  
 LTS A-GPS, A-GLONASS,  
 SIB8/SIB16  
 Large Device/Laptop/Tablet Testing  
 Integrated Device Testing  
 WiFi 802.11 a/b/g/n/a

***Electrical Measurements and Simulation***

**AC Voltage / Current**

(1mV to 5kV) 60 Hz  
 (0.1V to 250V) up to 500 MHz  
 (1µA to 150A) 60 Hz

FAA AC 150/5345-10H

FAA AC 150/5345-43J

FAA AC 150/5345-44K

**DC Voltage / Current**

(1mV to 15-kV) / (1µA to 10A)

FAA AC 150/5345-46E

Power Factor / Efficiency / Crest Factor

(Power to 30kW)

FAA AC 150/5345-47C

FAA EB 67D

**Resistance**

(1mΩ to 4000MΩ)

**Surge**

(Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

**On the following products and materials:**

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

<sup>1</sup> When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA R101 - *General Requirements- Accreditation of ISO-IEC 17025 Laboratories*.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1<sup>2</sup>

| Rule Subpart/Technology                                                                                                                                 | Test Method                                      | Maximum Frequency (MHz) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|
| <u>Unintentional Radiators</u><br>Part 15B                                                                                                              | ANSI C63.4:2014                                  | 40000                   |
| <u>Industrial, Scientific, and Medical Equipment</u><br>Part 18                                                                                         | FCC MP-5 (February 1986)                         | 40000                   |
| <u>Intentional Radiators</u><br>Part 15C                                                                                                                | ANSI C63.10:2013                                 | 40000                   |
| <u>Unlicensed Personal Communication Systems Devices</u><br>Part 15D                                                                                    | ANSI C63.17:2013                                 | 40000                   |
| <u>U-NII without DFS Intentional Radiators</u><br>Part 15E                                                                                              | ANSI C63.10:2013                                 | 40000                   |
| <u>U-NII with DFS Intentional Radiators</u><br>Part 15E                                                                                                 | FCC KDB 905462 D02 (v02)                         | 40000                   |
| <u>UWB Intentional Radiators</u><br>Part 15F                                                                                                            | ANSI C63.10:2013                                 | 40000                   |
| <u>BPL Intentional Radiators</u><br>Part 15G                                                                                                            | ANSI C63.10:2013                                 | 40000                   |
| <u>White Space Device Intentional Radiators</u><br>Part 15H                                                                                             | ANSI C63.10:2013                                 | 40000                   |
| <u>Commercial Mobile Services (FCC Licensed Radio Service Equipment)</u><br>Parts 22 (cellular), 24, 25 (below 3 GHz), and 27                           | ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015 | 40000                   |
| <u>General Mobile Radio Services (FCC Licensed Radio Service Equipment)</u><br>Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz) | ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015 | 40000                   |
| <u>Citizens Broadband Radio Services (FCC Licensed Radio Service Equipment)</u><br>Part 96                                                              | ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015 | 40000                   |

(A2LA Cert. No. 1786.01) Revised 08/08/2022

 Page 7 of 8

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1<sup>2</sup>

| Rule Subpart/Technology                                                                                                          | Test Method                                            | Maximum Frequency (MHz) |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|
| <u>Maritime and Aviation Radio Services</u>                                                                                      |                                                        |                         |
| Parts 80 and 87                                                                                                                  | ANSI/TIA-603-E;<br>ANSI C63.26:2015                    | 40000                   |
| <u>Microwave and Millimeter Bands Radio Services</u>                                                                             |                                                        |                         |
| Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101                                                                    | ANSI/TIA-603-E;<br>TIA-102.CAAA-E;<br>ANSI C63.26:2015 | 40000                   |
| <u>Broadcast Radio Services</u>                                                                                                  |                                                        |                         |
| Parts 73 and 74 (below 3 GHz)                                                                                                    | ANSI/TIA-603-E;<br>TIA-102.CAAA-E;<br>ANSI C63.26:2015 | 40000                   |
| <u>Signal Boosters</u>                                                                                                           |                                                        |                         |
| Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters)<br>Section 90.219 | ANSI C63.26:2015                                       | 40000                   |

<sup>2</sup> Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (<https://apps.fcc.gov/oetcf/eas/>) for a listing of FCC approved laboratories.



## Accredited Laboratory

A2LA has accredited

### ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

#### Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 *General requirements for the competence of testing and calibration laboratories*. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 19<sup>th</sup> day of May 2021.



Vice President, Accreditation Services  
For the Accreditation Council  
Certificate Number 1786.01  
Valid to June 30, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.