

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755- 27521059 Fax: +86-755- 27521011 [Http://www.sz-ctc.com.cn](http://www.sz-ctc.com.cn)

TEST REPORT

Report Reference No.	GTI20191665E
FCC ID	2ASZNSTRC0001
Applicant's name	Sensethink Technology(Shenzhen) Co., Ltd
Address	16F, Tower A, UniCenter, Chuang Ye Yi Road, Bao An District, Shenzhen
Manufacturer	Hangzhou Zhiyuan Electronics Co., Ltd
Address	No. 10 Naxian Street, Liangzhu Dalu Industrial Park, Hangzhou City, Zhejiang Province
Test item description	Senseplay Remote Control
Trade Mark	SENSEPLAY, NAVATICS
Model/Type reference	SRC0001
Listed Model(s)	-
Standard	FCC 47 CFR Part2.1093 IEEE 1528: 2013 ANSI/IEEE C95.1: 2005
Date of receipt of test sample	Jul.10, 2019
Date of testing	Jul.11, 2019 to Jul.16, 2019
Date of issue	Jul.17, 2019
Result	PASS

Compiled by

(position+printedname+signature) .. : Charley Wu

Supervised by

(position+printedname+signature) .. : Eric Zhang

Approved by

(position+printedname+signature) .. : Walter Chen

Testing Laboratory Name

CTC Laboratories, Inc.

Address

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

CTC Laboratories, Inc. All rights reserved.

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Contents

<u>1. Test Standards and Report version</u>	3
1.1. Test Standards	3
1.2. Report version	3
<u>2. Summary</u>	4
2.1. Client Information	4
2.2. Product Description	4
<u>3. Test Environment</u>	5
3.1. Test laboratory	5
3.2. Test Facility	5
<u>4. Equipments Used during the Test</u>	6
<u>5. Measurement Uncertainty</u>	7
<u>6. SAR Measurements System Configuration</u>	9
6.1. SAR Measurement Set-up	9
6.2. DASY5 E-field Probe System	10
6.3. Phantoms	11
6.4. Device Holder	11
<u>7. SAR Test Procedure</u>	12
7.1. Scanning Procedure	12
7.2. Data Storage and Evaluation	14
<u>8. Position of the wireless device in relation to the phantom</u>	16
8.1. Head Position	16
8.2. Body Position	17
8.3. Hotspot Mode Exposure conditions	17
<u>9. System Check</u>	18
9.1. Tissue Dielectric Parameters	18
9.2. SAR System Check	19
<u>10. SAR Exposure Limits</u>	22
<u>11. Conducted Power Measurement Results</u>	23
<u>12. Maximum Tune-up Limit</u>	23
<u>13. Antenna Location</u>	24
<u>14. SAR Measurement Results</u>	25
<u>15. TestSetup Photos</u>	29
<u>16. External and Internal Photos of the EUT</u>	31

1. Test Standards and Report version

1.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093 Radiofrequency Radiation Exposure Evaluation:Portable Devices

IEEE Std C95.1: 2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR Measurement Procedures for 802.11 a/b/g Transmitters

KDB 648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets

KDB 941225 D07 UMPC Mini Tablet v01r02: SAR Evaluation Procedures for UMPC Mini-tablet Devices.

1.2. Report version

Revision No.	Date of issue	Description
N/A	2019-07-17	Original

2. Summary

2.1. Client Information

Applicant:	Sensethink Technology(Shenzhen) Co., Ltd
Address:	16F, Tower A, UniCenter, Chuang Ye Yi Road, Bao An District, Shenzhen
Manufacturer:	Hangzhou Zhiyuan Electronics Co., Ltd
Address:	No. 10 Naxian Street, Liangzhu Dalu Industrial Park, Hangzhou City, Zhejiang Province

2.2. Product Description

Name of EUT:	Senseplay Remote Control
Trade Mark:	SENSEPLAY, NAVATICS
Model No.:	SRC0001
Listed Model(s):	-
Power supply:	DC 3.8V from battery
Device Category:	Portable
Product stage:	Production unit
RF Exposure Environment:	General Population / Uncontrolled
Hardware version:	C1-PCB1-SB
Software version:	C1-8B01-00-01.01.022
Maximum SAR Value	
Separation Distance:	Body: 10mm
Maximun SAR Value (1g):	Body: 0.496W/Kg
SDR 2.4G	
Modulation:	QPSK
Operation frequency:	2402MHz~2483.5MHz
Channel number:	18
Channel separation:	4MHz
Antenna type:	PIFA Antenna
Remark:	
1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power	

3. Test Environment

3.1. Test laboratory

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

3.2. Test Facility

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Registration No.: CN0029

The 3m alternate test site of CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0029 on Dec, 2018.

FCC-Registration No.: CN1208

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration CN1208, Sep 07, 2017.

4. Equipments Used during the Test

Test Equipment	Manufacturer	Type/Model	Serial Number	Calibration	
				Last Cal.	Due Date
Data Acquisition Electronics DAEx	SPEAG	DAE4	1423	2019/05/24	2020/05/23
E-field Probe	SPEAG	EX3DV4	3974	2019/05/21	2020/05/20
System Validation Dipole	SPEAG	D2450V2	928	2018/10/12	2021/10/11
Network analyzer	Agilent	E5071C	MY46520333	2018/08/23	2019/08/22
Signal Generator	Agilent	N5182A	MY47420864	2018/12/29	2019/12/28
Signal Generator	HEWLETT PACKARD	8648A	3426A01533	2018/08/10	2019/08/09
Power sensor	Mini-Circuits	PWR-8GHS	11609010017	2018/08/23	2019/08/22
Power sensor	Mini-Circuits	PWR-8GHS	11607130056	2018/08/23	2019/08/22
Power Amplifier	Mini-Circuits	ZHL-42W+	051701624	2018/08/23	2019/08/22
BI-DIRECTIONAL COUPLER	Mini-Circuits	ZGBDC20-33HP+	996201615	2018/08/23	2019/08/22
Attenuator	MCL	BW-N20W5+	1552	2018/08/23	2019/08/22
Attenuator	MCL	BW-N3W5+	1608	2018/08/23	2019/08/22
Attenuator	MCL	/	/	2018/08/23	2019/08/22

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix A
2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justification. The dipole are also not physically damaged or repaired during the interval.

5. Measurement Uncertainty

Measurement Uncertainty										
No.	Error Description	Type	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement System										
1	Probe calibration	B	6.0%	N	1	1	1	6.0%	6.0%	∞
2	Axial isotropy	B	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	B	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	∞
4	Boundary Effects	B	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	B	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	B	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions-noise	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions-reflection	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Response time	B	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	B	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF ambient	B	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	B	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	∞
13	Probe positioning with respect to phantom shell	B	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
14	Max.SAR evalation	B	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
Test Sample Related										
15	Test sample positioning	A	1.86%	N	1	1	1	1.86%	1.86%	∞
16	Device holder uncertainty	A	1.70%	N	1	1	1	1.70%	1.70%	∞
17	Drift of output power	B	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
Phantom and Set-up										
18	Phantom uncertainty	B	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
19	Liquid conductivity (target)	B	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
20	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	∞
21	Liquid permittivity (target)	B	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
22	Liquid cpermittivity (meas.)	A	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$		/	/	/	/	9.79%	9.67%	∞
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$		R	K=2	/	/	19.57%	19.34%	∞

CTC Laboratories, Inc..

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China
Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cnFor anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

System Check Uncertainty										
No.	Error Description	Type	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement System										
1	Probe calibration	B	6.0%	N	1	1	1	6.0%	6.0%	∞
2	Axial isotropy	B	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	B	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	∞
4	Boundary Effects	B	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	B	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	B	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions-noise	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions-reflection	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Response time	B	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	B	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF ambient	B	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	B	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	∞
13	Probe positioning with respect to phantom shell	B	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
14	Max.SAR evaluation	B	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
System validation source-dipole										
15	Deviation of experimental dipole from numerical dipole	A	1.58%	N	1	1	1	1.58%	1.58%	∞
16	Dipole axis to liquid distance	A	1.35%	N	1	1	1	1.35%	1.35%	∞
17	Input power and SAR drift	B	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
Phantom and Set-up										
18	Phantom uncertainty	B	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
20	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	∞
22	Liquid cpermittivity (meas.)	A	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$		/	/	/	/	8.80%	8.79%	∞
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$		R	K=2	/	/	17.59%	17.58%	∞

CTC Laboratories, Inc..

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China
Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

中国国家认证认可监督管理委员会

Certification and Accreditation Administration of the People's Republic of China

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

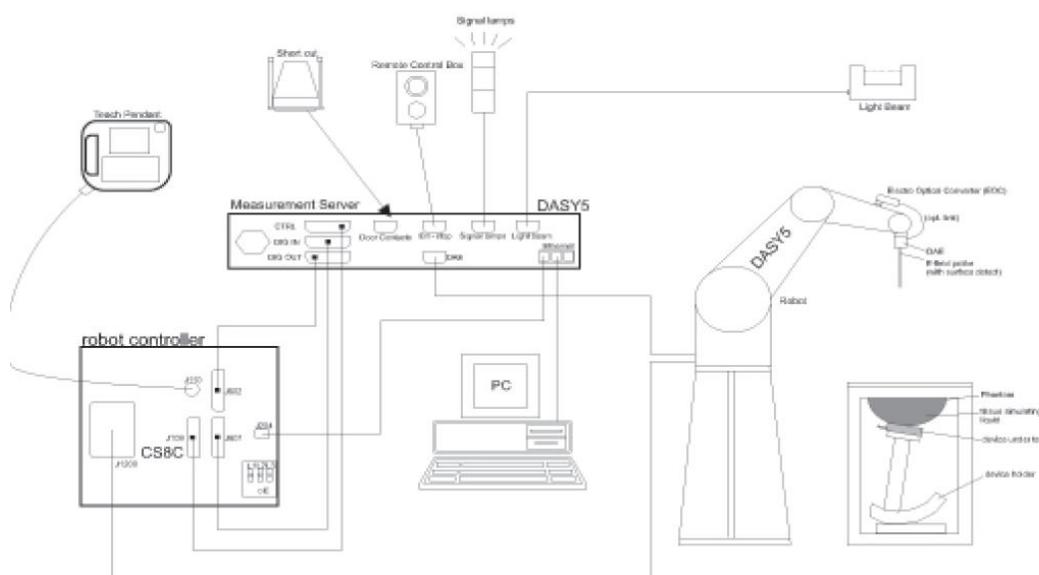
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

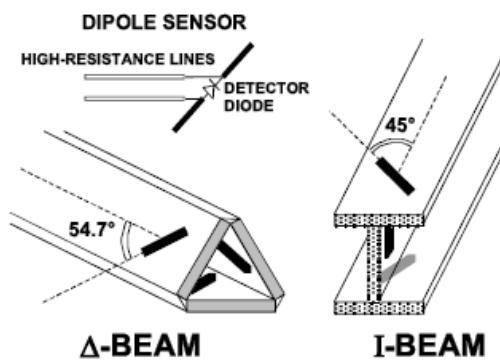
Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

● Probe Specification


Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	4 MHz to 10 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 W/kg; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

● Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. $\pm 5\%$.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
		$\leq 2 \text{ GHz: } \leq 15 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 12 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 12 \text{ mm}$ $4 - 6 \text{ GHz: } \leq 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		$\leq 2 \text{ GHz: } \leq 8 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz: } \leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \leq 4 \text{ mm}^*$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$	$\leq 5 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 4 \text{ mm}$ $4 - 5 \text{ GHz: } \leq 3 \text{ mm}$ $5 - 6 \text{ GHz: } \leq 2 \text{ mm}$
	graded grid	$\Delta z_{\text{Zoom}}(1): \text{between } 1^{\text{st}} \text{ two points closest to phantom surface}$	$\leq 4 \text{ mm}$
		$\Delta z_{\text{Zoom}}(n>1): \text{between subsequent points}$	$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1) \text{ mm}$
Minimum zoom scan volume	x, y, z	$\geq 30 \text{ mm}$	$3 - 4 \text{ GHz: } \geq 28 \text{ mm}$ $4 - 5 \text{ GHz: } \geq 25 \text{ mm}$ $5 - 6 \text{ GHz: } \geq 22 \text{ mm}$
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.			
* When zoom scan is required and the <i>reported</i> SAR from the <i>area scan based 1-g SAR estimation</i> procedures of KDB Publication 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.			

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity:	Normi, ai0, ai1, ai2
	Conversion factor:	ConvFi
	Diode compression point:	Dcp <i>i</i>
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcp*i*: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{fieldprobes} : \quad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes} : \quad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

Vi: compensated signal of channel (i = x, y, z)

Norm*i*: sensor sensitivity of channel (i = x, y, z),
[mV/(V/m)²] for E-field Probes

ConvF: sensitivity enhancement in solution

aij: sensor sensitivity factors for H-field probes

f: carrier frequency [GHz]

Ei: electric field strength of channel i in V/m

Hi: magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in W/kg

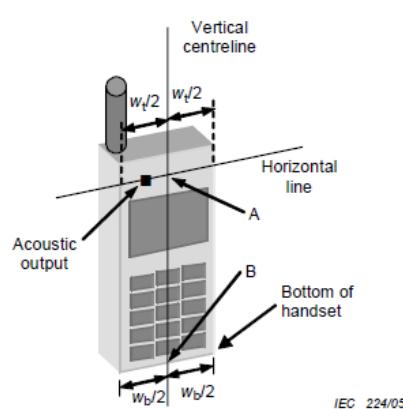
Etot: total field strength in V/m

σ : conductivity in [mho/m] or [Siemens/m]

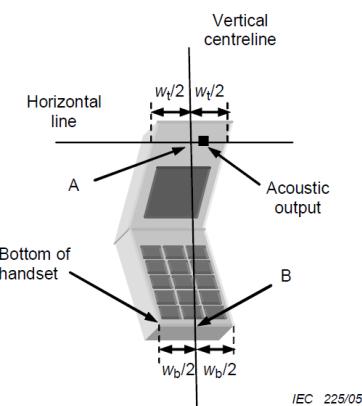
ρ : equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. Position of the wireless device in relation to the phantom

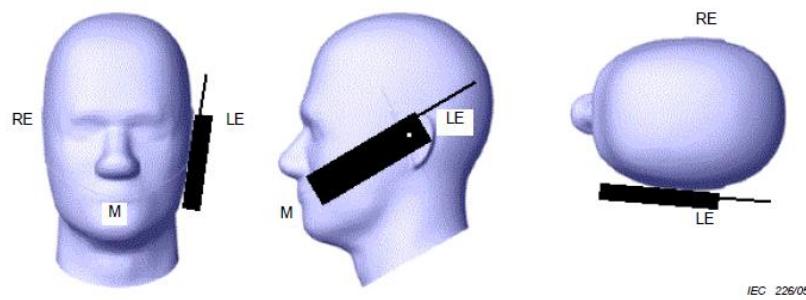

8.1. Head Position

The wireless device define two imaginary lines on the handset, the vertical centreline and the horizontal line, for the handset in vertical orientation as shown in Figures 5a and 5b.

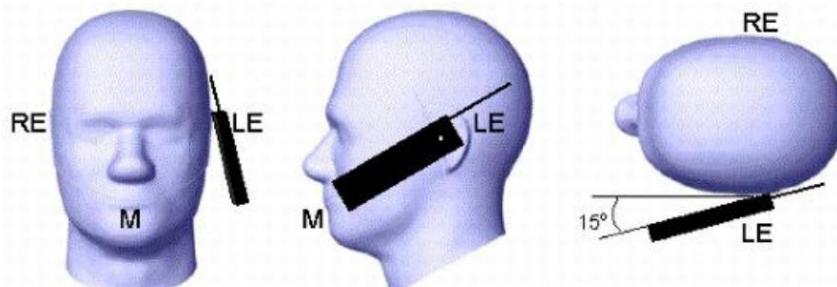

The vertical centreline passes through two points on the front side of the handset: the midpoint of the width W_t of the handset at the level of the acoustic output (point A in Figures 5a and 5b), and the midpoint of the width W_b of the bottom of the handset (point B).

The horizontal line is perpendicular to the vertical centreline and passes through the centre of the acoustic output (see Figures 5a and 5b). The two lines intersect at point A.

Note that for many handsets, point A coincides with the centre of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the handset (see Figure 5b), especially for clam-shell handsets, handsets with flip cover pieces, and other irregularly shaped handsets.


Figures 5a

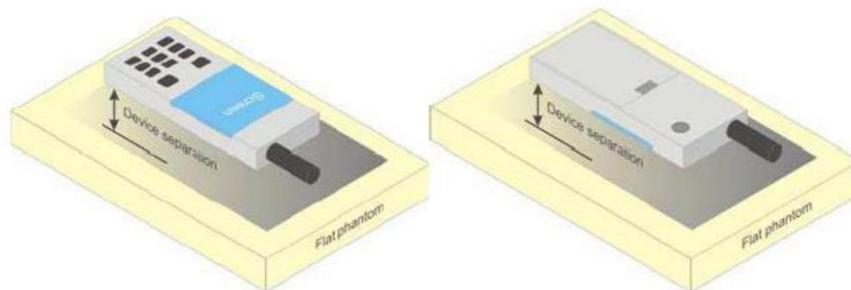
Figures 5b


W_t Width of the handset at the level of the acoustic output
 W_b Width of the bottom of the handset
A Midpoint of the width W_t of the handset at the level of the acoustic output
B Midpoint of the width W_b of the bottom of the handset

Cheek position

Picture 2 Cheek position of the wireless device on the left side of SAM

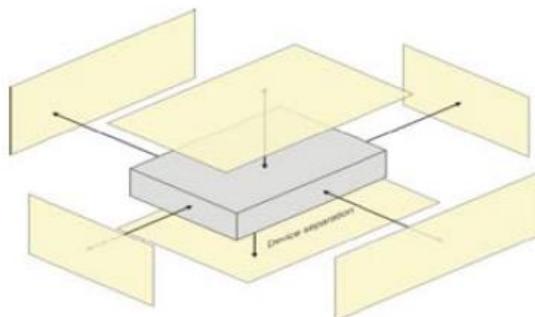
Tilt position



Picture 3 Tilt position of the wireless device on the left side of SAM

8.2. Body Position

Devices that support transmission while used with body-worn accessories must be tested for body-worn accessory SAR compliance, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics.


Devices that are designed to operate on the body of users using lanyards and straps or without requiring additional body-worn accessories must be tested for SAR compliance using a conservative minimum test separation distance ≤ 10 mm to support compliance.

Picture 4 Test positions for body-worn devices

8.3. Hotspot Mode Exposure conditions

The hotspot mode and body-worn accessory SAR test configurations may overlap for handsets. When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations. This typically applies to the back and front surfaces of a handset when SAR is required for both hotspot mode and body-worn accessory exposure conditions. Depending on the form factor and dimensions of a device, the test separation distance used for hotspot mode SAR measurement is either 10 mm or that used in the body-worn accessory configuration, whichever is less for devices with dimension > 9 cm x 5 cm. For smaller devices with dimensions ≤ 9 cm x 5 cm because of a greater potential for next to body use a test separation of ≤ 5 mm must be used.

Picture 5 Test positions for Hotspot Mode

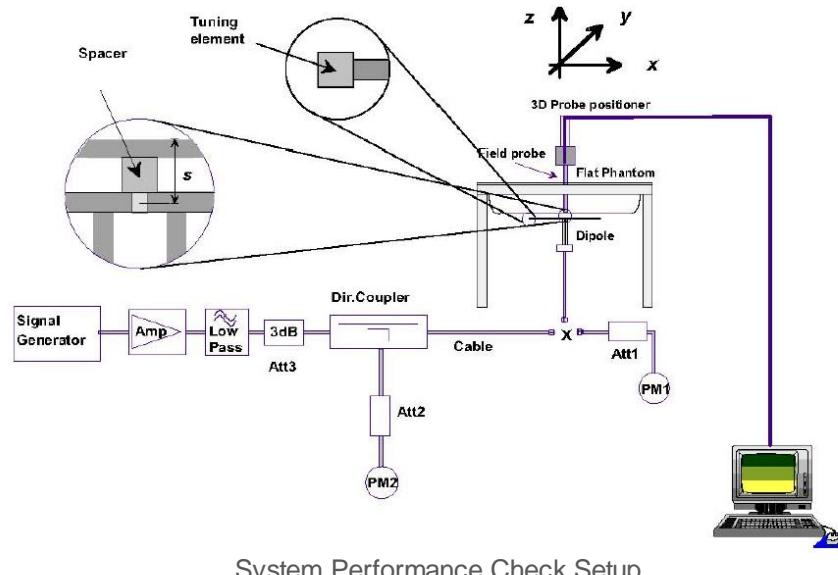
9. System Check

9.1. Tissue Dielectric Parameters

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Tissue dielectric parameters for head and body phantoms		
Target Frequency (MHz)	Body	
	ϵ_r	$\sigma(s/m)$
2450	52.7	1.95

Check Result:


Dielectric performance of Body tissue simulating liquid									
Frequency (MHz)	ϵ_r		$\sigma(s/m)$		Delta (ϵ_r)	Delta (σ)	Limit	Temp (°C)	Date
	Target	Measured	Target	Measured					
2450	52.70	53.03	1.95	2.00	0.63%	2.62%	±5%	22	2019-07-12

9.2. SAR System Check

The purpose of the system check is to verify that the system operates within its specifications at the device test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

System Performance Check Setup

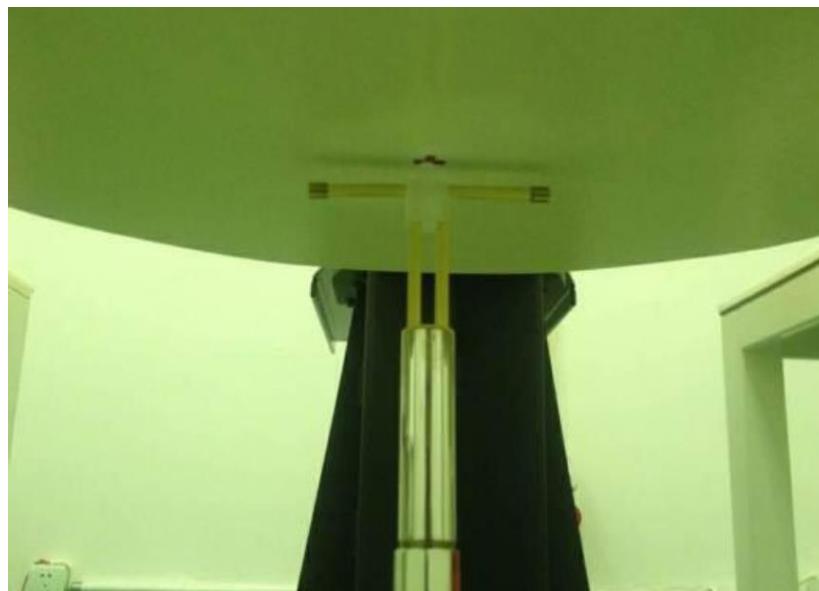


Photo of Dipole Setup

Check Result:

Body									
Frequency (MHz)	1g SAR		10g SAR		Delta (1g)	Delta (10g)	Limit	Temp (°C)	Date
	Target	Measured	Target	Measured					
2450	12.60	12.50	5.96	5.83	-0.79%	-2.18%	±10%	22	2019-07-12

Note:

1. the graph results see below.

System Performance Check at 2450 MHz Body

DUT: D2450V2; Type: D2450V2; Serial: 928

Date: 2019-07-12

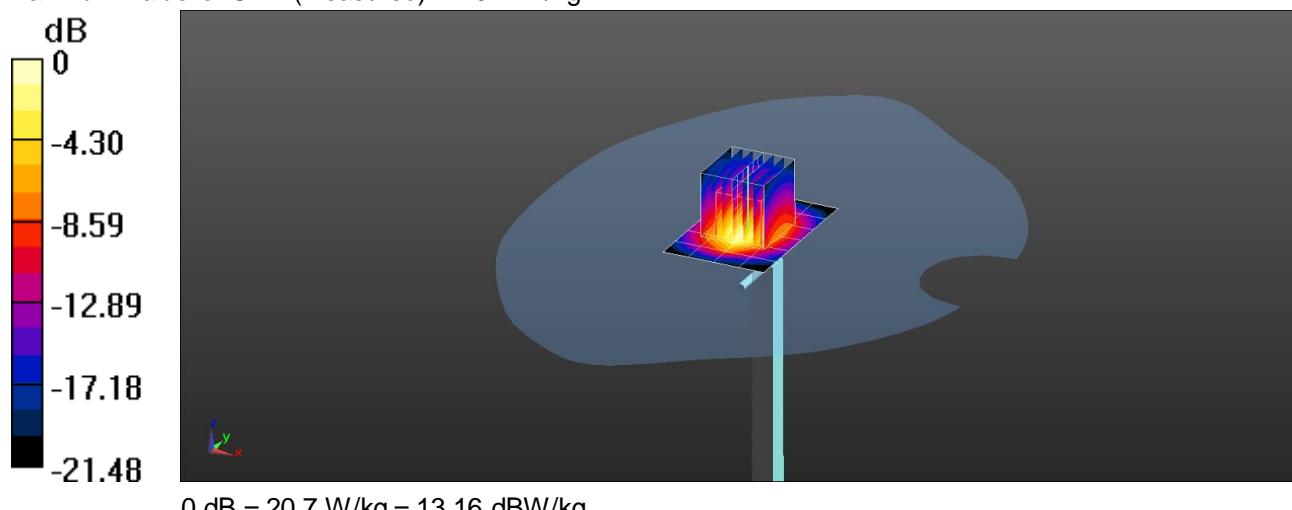
Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.001$ S/m; $\epsilon_r = 53.03$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3974; ConvF(8.01, 8.01, 8.01); Calibrated: 21/5/2019;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1423; Calibrated: 24/5/2019
- Phantom: SAM1; Type: Twin SAM V5.0; Serial: 1812
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Body/d=10mm,Pin=250mW/Area Scan (5x7x1): Measurement grid: dx=12mm, dy=12mm
Maximum value of SAR (measured) = 21.1 W/kg**Body/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.6 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.83 W/kg

Maximum value of SAR (measured) = 20.7 W/kg

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of ANSI/IEEE C95.1-1992

Type Exposure	Limit (W/kg)	
	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment
Spatial Average SAR (whole body)	0.08	0.4
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0
Spatial Peak SAR (10g for limb)	4.0	20.0

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

11. Conducted Power Measurement Results

SDR 2.4G		
Mode	Frequency (MHz)	Conducted power (dBm)
QPSK	2405	20.89
	2441	19.53
	2473	19.50

12. Maximum Tune-up Limit

SDR 2.4G		
Mode	Maximum Tune-up (dBm)	Burst Average Power
QPSK		21.00

13. Antenna Location

Front view

Distance of the Antenna to the EUT surface/edge(mm)						
Antenna	Front side	Back side	Top side	Bottom side	Left side	Right side
SDR 2.4G	<25	<25	<25	>25	>25	<25
SAR Test	Yes	Yes	Yes	No	No	Yes

note:

1. Referring to KDB941225 D07, the test distance is 10mm and the worse case will be tested with 0mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

14. SAR Measurement Results

SDR 2.4G(antenna 0°)											
Mode	Test Position Head	Frequency (MHz)	Conducted Power (dBm)	Duty Cycle	Tune up limit (dBm)	Scaling factor	Power Drift(dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	Limit (W/kg)	Test Plot
QPSK	Front side	2405	20.89	16.6%	21.00	1.03	0.19	0.007	0.043	1.60	
		2441	19.53	16.6%	21.00	1.40				1.60	
		2473	19.50	16.6%	21.00	1.41				1.60	
	Back side	2405	20.89	16.6%	21.00	1.03	-0.20	0.008	0.050	1.60	
		2441	19.53	16.6%	21.00	1.40				1.60	
		2473	19.50	16.6%	21.00	1.41				1.60	
	Right side	2405	20.89	16.6%	21.00	1.03	0.17	0.08	0.496	1.60	B1
		2441	19.53	16.6%	21.00	1.40				1.60	
		2473	19.50	16.6%	21.00	1.41				1.60	
	Top side	2405	20.89	16.6%	21.00	1.03	-0.07	0.014	0.087	1.60	
		2441	19.53	16.6%	21.00	1.40				1.60	
		2473	19.50	16.6%	21.00	1.41				1.60	
The worse case with 0mm(10-g extremity)											
	Right side	2405	20.89	16.6%	21.00	1.03	-0.15	0.203	1.260 _{10g}	4.0	

Note:

1. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested

SDR 2.4G(antenna 90°)											
Mode	Test Position Head	Frequency (MHz)	Conducted Power (dBm)	Duty Cycle	Tune up limit (dBm)	Scaling factor	Power Drift(dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)	Limit (W/kg)	Test Plot
QPSK	Front side	2405	20.89	16.6%	21.00	1.03	-0.13	0.012	0.074	1.60	
		2441	19.53	16.6%	21.00	1.40				1.60	
		2473	19.50	16.6%	21.00	1.41				1.60	
	Back side	2405	20.89	16.6%	21.00	1.03	-0.07	0.009	0.056	1.60	
		2441	19.53	16.6%	21.00	1.40				1.60	
		2473	19.50	16.6%	21.00	1.41				1.60	
	Right side	2405	20.89	16.6%	21.00	1.03	-0.14	0.034	0.211	1.60	
		2441	19.53	16.6%	21.00	1.40				1.60	
		2473	19.50	16.6%	21.00	1.41				1.60	
	Top side	2405	20.89	16.6%	21.00	1.03	-0.17	0.076	0.472	1.60	B2
		2441	19.53	16.6%	21.00	1.40				1.60	
		2473	19.50	16.6%	21.00	1.41				1.60	
The worse case with 0mm(10-g extremity)											
	Top side	2405	20.89	16.6%	21.00	1.03	-0.13	0.200	1.241 _{10g}	4.00	

Note:

- When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested

SAR Test Data Plots

Test mode: QPSK

Test Position: Right Side

Test Plot: B1

Date: 2019-07-12

Communication System: SDR2.4G; Frequency: 2405 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2405$ MHz; $\sigma = 1.959$ mho/m; $\epsilon_r = 53.08$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

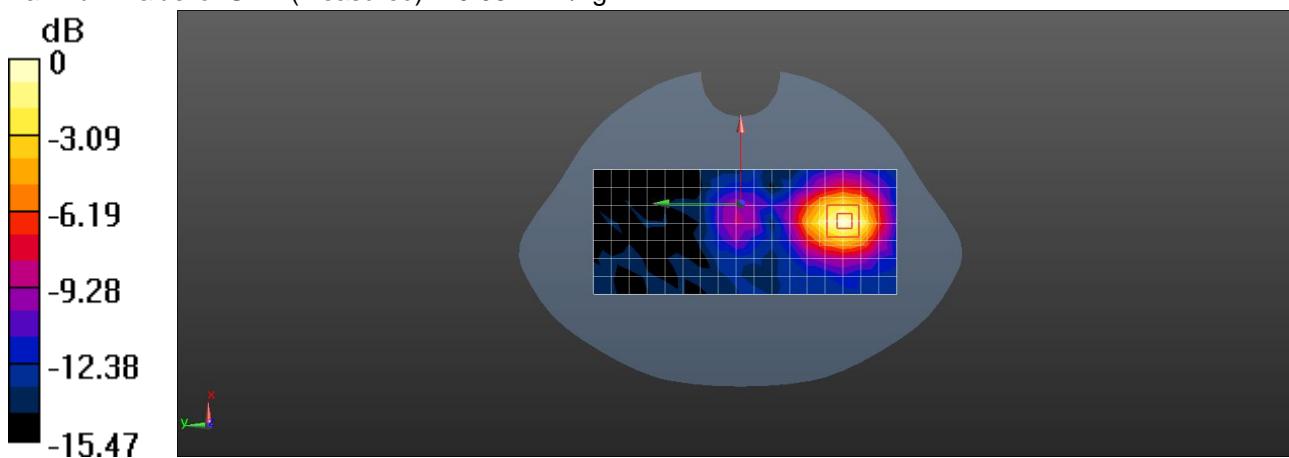
DASY5 Configuration:

- Probe: EX3DV4 - SN3974; ConvF(8.01, 8.01, 8.01); Calibrated: 21/5/2019;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1423; Calibrated: 24/5/2019
- Phantom: SAM1; Type: Twin SAM V5.0; Serial: 1812
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Body/Right side/Area Scan (8x18x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0855 W/kg


Body/Right side/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.276 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.178 W/kg

SAR(1 g) = 0.080 W/kg; SAR(10 g) = 0.039 W/kg**Info:** Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0871 W/kg

Test mode: QPSK

Test Position: Top Side

Test Plot: B2

Date: 2019-07-12

Communication System: SDR 2.4G; Frequency: 2405 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2405 \text{ MHz}$; $\sigma = 1.959 \text{ mho/m}$; $\epsilon_r = 53.08$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

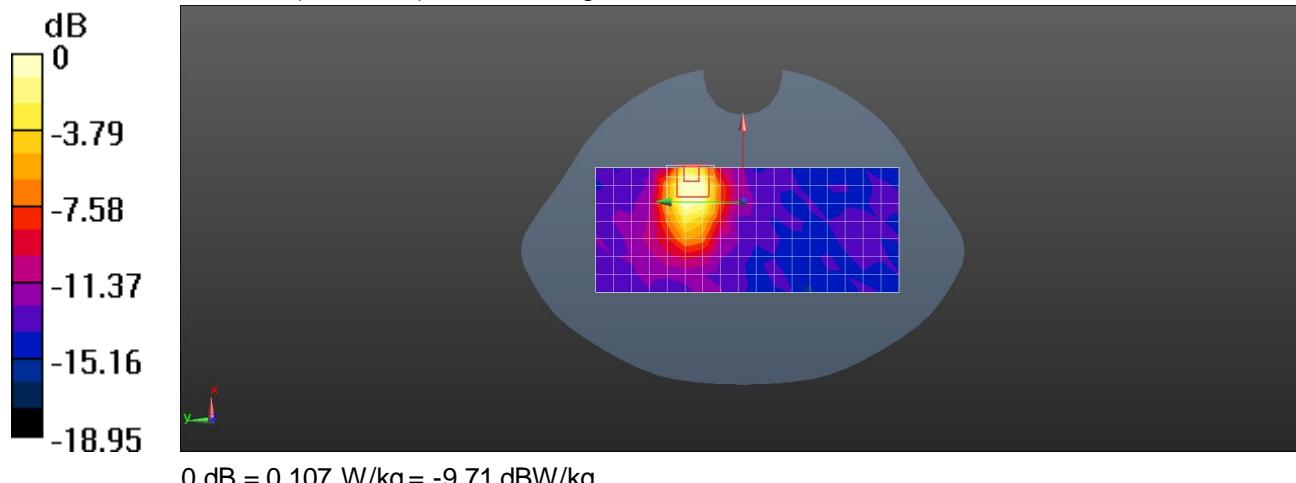
- Probe: EX3DV4 - SN3974; ConvF(8.01, 8.01, 8.01); Calibrated: 21/5/2019;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1423; Calibrated: 24/5/2019
- Phantom: SAM1; Type: Twin SAM V5.0; Serial: 1812
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Body/Up/Area Scan (8x18x1): Measurement grid: $dx=12\text{mm}$, $dy=12\text{mm}$

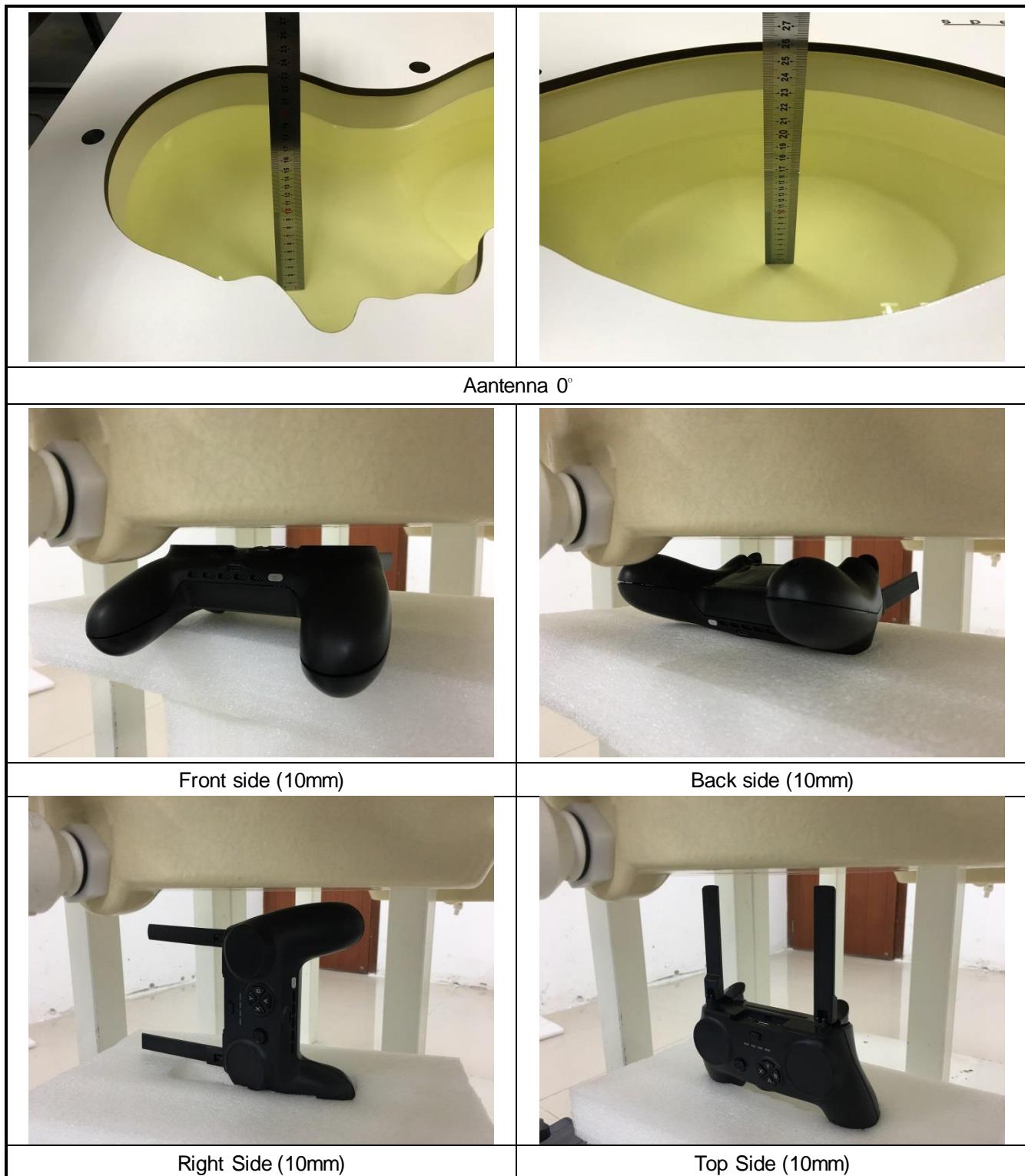
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.129 W/kg

Body/Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$


Reference Value = 1.647 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.156 W/kg


SAR(1 g) = 0.076 W/kg; SAR(10 g) = 0.021 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.107 W/kg

15. TestSetup Photos

CTC Laboratories, Inc..

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China
Tel.: (86)755-27521059 Fax: (86)755-27521011 [Http://www.sz-ctc.org.cn](http://www.sz-ctc.org.cn)

中国国家认证认可监督管理委员会
Certification and Accreditation Administration of the People's Republic of China

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Right Side (0mm)

Aantenna 90°

Front side (10mm)

Back side (10mm)

Right Side (10mm)

Top Side (10mm)

CTC Laboratories, Inc..

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China
Tel.: (86)755-27521059 Fax: (86)755-27521011 [Http://www.sz-ctc.org.cn](http://www.sz-ctc.org.cn)

中国国家认证认可监督管理委员会
Certification and Accreditation Administration of the People's Republic of ChinaFor anti-fake verification, please visit the official website of Certification and
Accreditation Administration of the People's Republic of China : yz.cnca.cn

Top Side (0mm)

16. External and Internal Photos of the EUT

Please reference to the report No.: GTI20191292F

-----*End of Report*-----

CTC Laboratories, Inc..

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China
Tel.: (86)755-27521059 Fax: (86)755-27521011 [Http://www.sz-ctc.org.cn](http://www.sz-ctc.org.cn)

中国国家认证认可监督管理委员会
Certification and Accreditation Administration of the People's Republic of China

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn