

TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR21-SRF0268-A
Page (1) of (23)

KCTL

1. Client

- Name : HYUNDAI M SYSTEMS Co.,Ltd.
- Address : #102-805~806, 88 Sinwon-ro, YeongTong-Gu, Suwon-Si, GyeongGi-Do, Korea
- Date of Receipt : 2021-07-13

2. Use of Report : Certification

3. Name of Product / Model : IP6K7 RADAR SENSOR / 24RA-20000

4. Manufacturer / Country of Origin : HYUNDAI M SYSTEMS Co.,Ltd. / Korea

5. FCC ID : 2ASWA-24RA-20000

6. Date of Test : 2021-10-01 to 2022-01-05

7. Location of Test : Permanent Testing Lab On Site Testing
(Address:65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea)

8. Test method used : FCC Part 2

FCC Part 95 Subpart M

9. Test Result : Refer to the test result in the test report

Affirmation	Tested by Name : Jungwon Seo	Technical Manager Name : Heesu Ahn
-------------	---	---

2022-01-06

KCTL Inc.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR21-SRF0268-A
Page (2) of (23)

REPORT REVISION HISTORY

Date	Revision	Page No
2021-12-21	Originally issued	-
2022-01-06	Updated	5 - 23

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Note. The report No. KR21-SRF0268 is superseded by the report No. KR21-SRF0268-A.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests

(may be required by the product standard or client)

Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:

Procedure number, issue date and title:

Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

CONTENTS

1. General information	4
2. Device information	4
2.1. Frequency/channel operations.....	4
3. Summary of tests.....	5
4. Measurement uncertainty	5
5. Test results	6
5.1. Occupied bandwidth	6
5.2. The Maximum Power(EIRP) & Maximum Peak Power(EIRP)	8
5.3. Undesirable emissions.....	11
5.4. Frequency stability.....	20
6. Measurement equipment	22

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR21-SRF0268-A
Page (4) of (23)

1. General information

Client : HYUNDAI M SYSTEMS Co.,Ltd.
Address : #102-805~806, 88 Sinwon-ro, YeongTong-Gu, Suwon-Si, GyeongGi-Do, Korea
Manufacturer : HYUNDAI M SYSTEMS Co.,Ltd.
Address : #102-805~806, 88 Sinwon-ro, YeongTong-Gu, Suwon-Si, GyeongGi-Do, Korea
Laboratory : KCTL Inc.
Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132
VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
CAB Identifier: KR0040, ISED Number: 8035A
KOLAS No.: KT231

2. Device information

Equipment under test : IP6K7 RADAR SENSOR
Model : 24RA-20000
Modulation technique : FMCW
Frequency range : 80 GHz ~ 81 GHz
Power source : DC 24 V
Antenna specification : Serial Feeding Antenna
Antenna gain : 12.9 dBi
Software version : V1.0
Hardware version : V0.5
Operation temperature : -20 °C ~ 50 °C

2.1. Frequency/channel operations

This device contains the following capabilities:
FMCW

Ch.	Frequency (GHz)
01	80 ~ 81

Table 2.1.1. FMCW

3. Summary of tests

FCC Part section(s)	Parameter	Test condition	Test results
2.1049	Occupied Bandwidth	Radiated	Pass
95.3367(a)	Maximum power(EIRP)		Pass
95.3367(b)	Maximum peak power(EIRP)		Pass
2.1053 95.3379(a)	Undesirable Emissions		Pass
2.1055 95.3379(b)	Frequency Stability		Pass

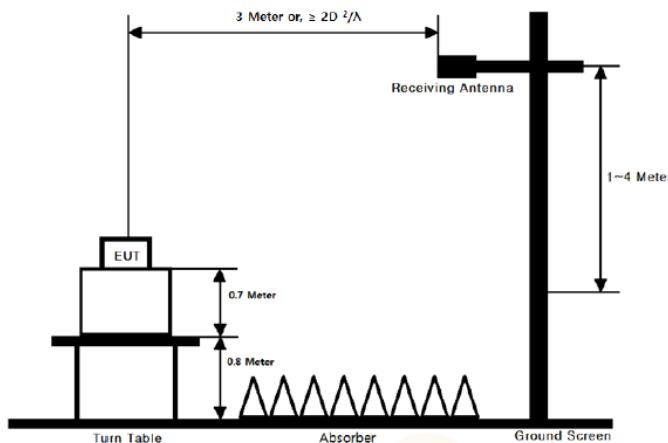
Notes:

1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
2. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
3. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that Y orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in Y orientation.
4. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.26-2015
 - ANSI/TIA-603-E-2016
 - KDB 653005 D01v01r01

4. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicated a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.


Parameter	Expanded uncertainty (\pm)	
Radiated spurious emissions	9 kHz ~ 30 MHz	2.3 dB
	30 MHz ~ 1 000 MHz	2.2 dB
	1 000 MHz ~ 18 000 MHz	5.6 dB
	Above 18 000 GHz	5.7 dB

5. Test results

5.1. Occupied bandwidth

Test setup

Above 1 GHz

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

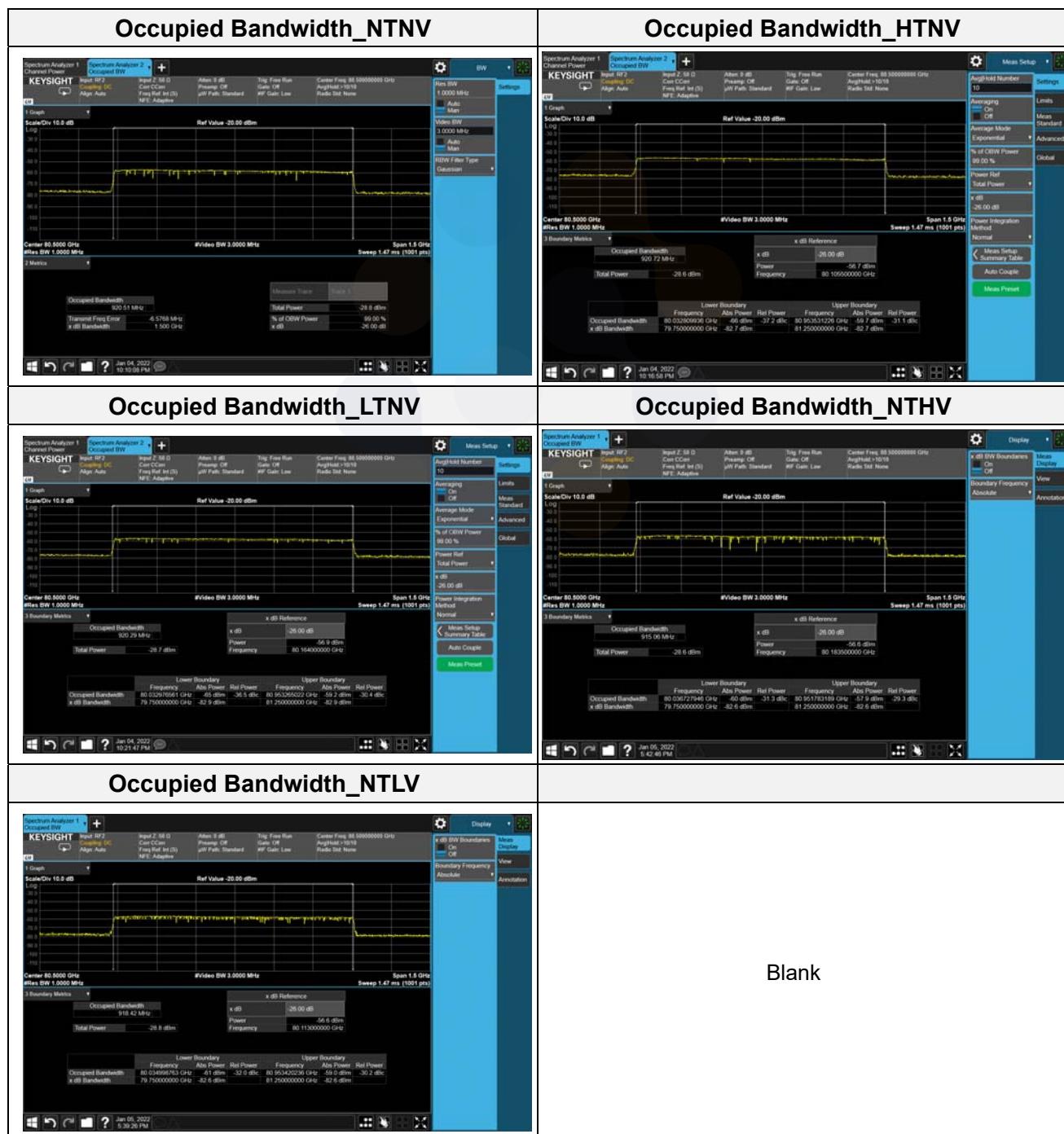
Limit

Within the designated 76 ~ 81 GHz frequency band

Test procedure

ANSI C63.26-2015 - Section 5.4.4

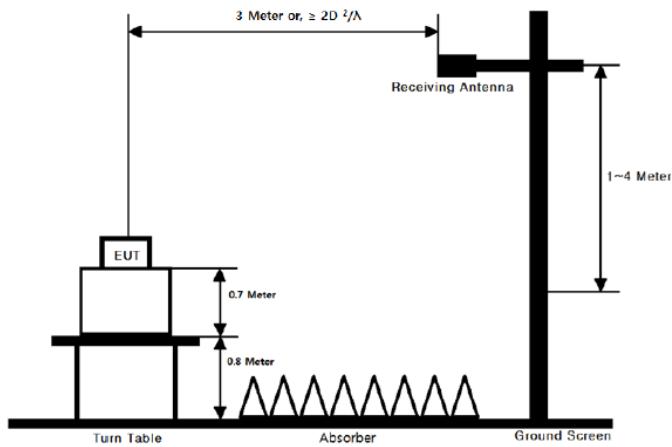
The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.


Test settings

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 1 ~ 5% of the expected OBW & VBW $\geq 3 \times$ RBW
3. Detector = Peak
4. Trace mode = Max hold
5. Sweep = Auto couple
6. The trace was allowed to stabilize
7. If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 ~ 5 % of the 99 % occupied band width observed in step 6.

Note: The RBW and VBW were setting up to the limitations of the test equipment.

Test results


Test Condition	Frequency Range(MHz)	Occupied Bandwidth(MHz)
NTNV	80 000 ~ 81 000	920.51
HTNV		920.72
LTNV		920.29
NTLV		918.42
NTHV		915.06

5.2. The Maximum Power(EIRP) & Maximum Peak Power(EIRP)

Test setup

Above 1 GHz

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz , the absorbers are removed.

Far field distance(R_m)

$$R_m = 2D^2 / \lambda,$$

Where, D=the largest dimension of the antenna / λ =the wavelength of the emissions

Frequency Range(GHz)	$\lambda(\text{cm})$	$R_m(\text{m})$	Measurement Distance(m)
80.0 ~ 81.0	0.37	1.25	1.50

Note: Dimension of EUT Antenna = 3.30cm, Dimension of Measurement Antenna = 4.82 cm

Limit

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

- The maximum power(EIRP) within the 76-81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth(RBW).
- The maximum peak power(EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

Test procedure

ANSI C63.26-2015 - Section 5
KDB 653005 D01v01r01 – Section 4

Test setting

-Maximum power(EIRP) – Averaging detector

Note: The maximum power(averaging detector) measurements are performed using the “channel power” measurement capability and integrated over the 99 % OBW to obtain the result.

1. Measurement capability of instrument = channel power
2. Set RBW = 1 MHz
3. Set VBW \geq 3 X RBW
4. span to 2 x to 3 x the OBW
5. Channel bandwidth setting of instrument \geq OBW
6. Detector = power averaging (rms)
7. Set number of points in sweep \geq 2 x span / RBW
8. Sweep time = auto-couple
9. Trace = averaging

-Maximum peak power(EIRP) – Peak detector

1. Set RBW = 1 MHz
2. Set VBW \geq 3 X RBW
3. span to 2 x to 3 x the OBW
4. Detector = Peak
5. Set number of points in sweep \geq 2 x span / RBW
6. Sweep time = auto-couple
7. Trace = max-hold

Note1.

Sample Calculation

$$E(\text{dB}\mu\text{V}/\text{m}) = \text{Measured level}(\text{dB}\mu\text{V}) + 107 + \text{AFCL}(\text{dB}/\text{m})$$

Where, E=field strength / AFCL= Antenna Factor(dB/m) + Cable Loss(dB/m)

The mixer loss was applied to the measured level by SA correction factor.

EIRP(dBm)= E($\text{dB}\mu\text{V}/\text{m}$) + 20log(D)-104.8; where, D is measurement distance(in the far field region) in m.

Note2.

P.C.F Calculation (P.C.F=Peak amplitude correction factor of the FMCW signal)

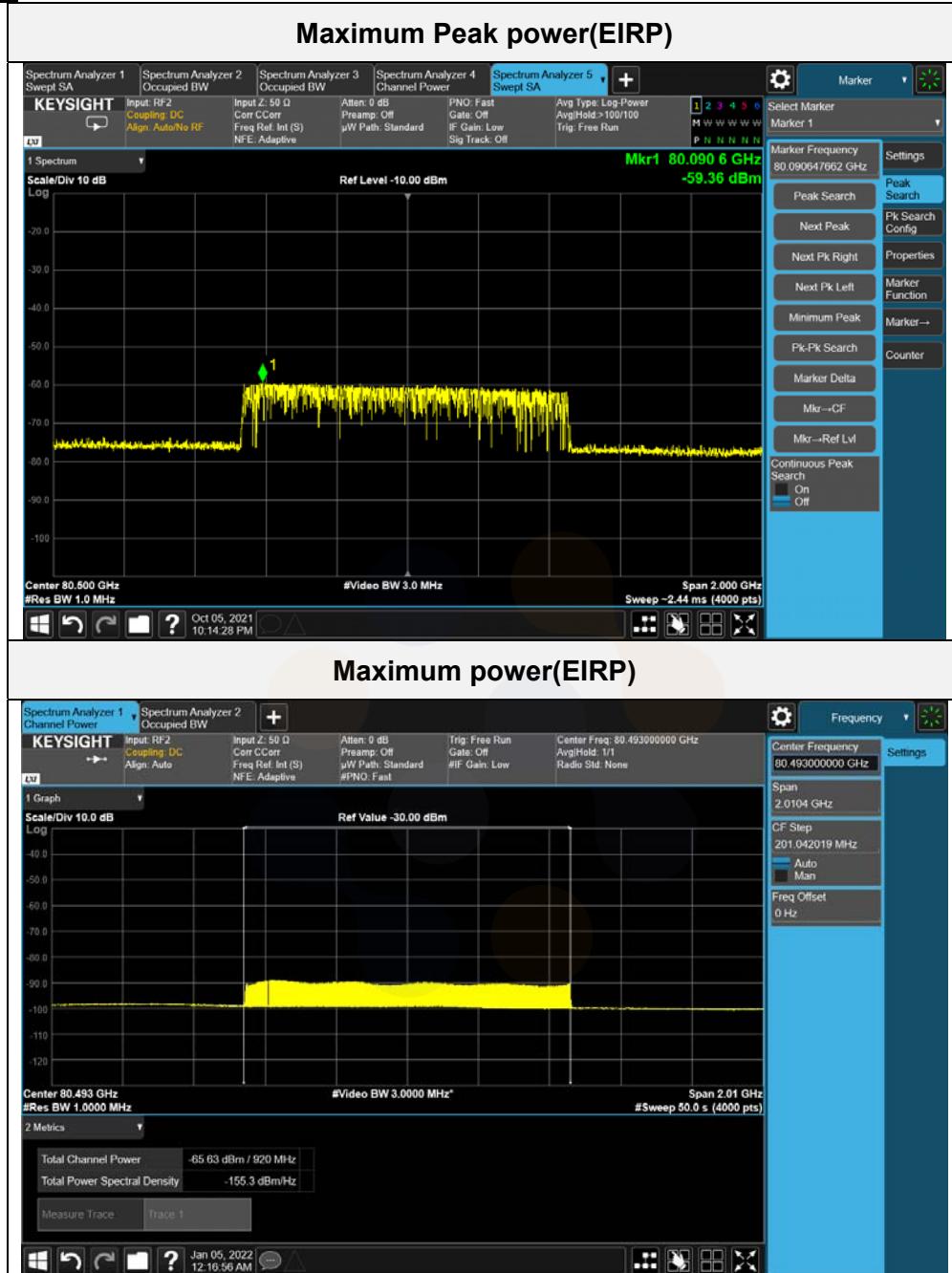
$$\text{P.C.F} = 20 * \log_{10}(1/\alpha)$$

$$\alpha = \frac{1}{\sqrt[4]{1 + \left(\frac{2 \ln(2)}{\pi}\right)^2 \left(\frac{F_S}{T_S B^2}\right)^2}}$$

- FS = Sweep Width of FMCW Signal Under Test = 825 MHz

- TS = Sweep Time of FMCW Signal Under Test = 31 μs

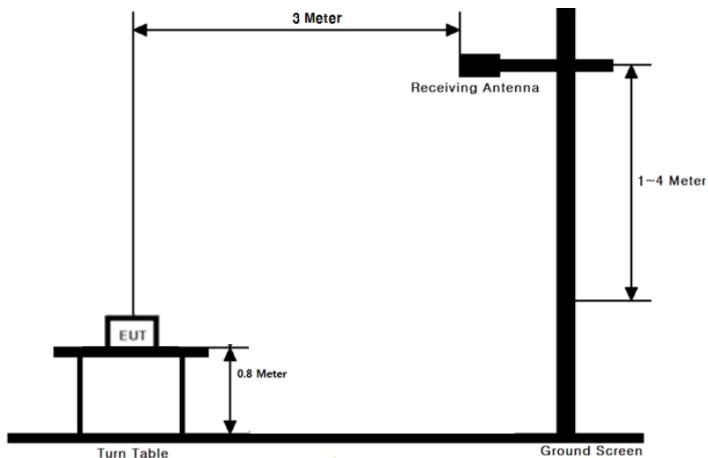
- B = 1 MHz


(Sweep width and sweep time have been declared by the manufacturer.)

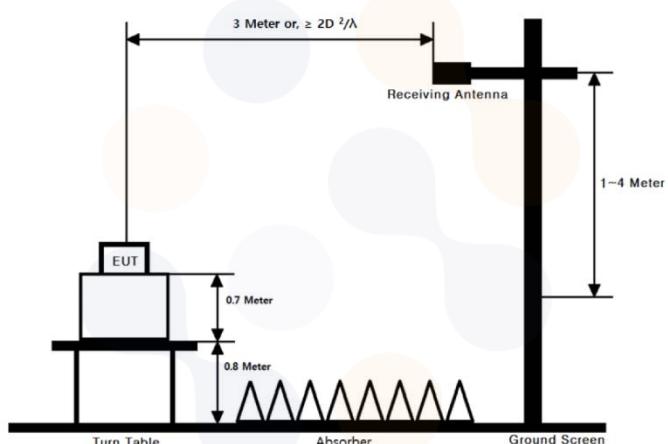
Test results

Measurement distance(D)	Frequency (GHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dBm)	AFCL (dB/m)	P.C.F (dB)	E (dB $\mu\text{V}/\text{m}$)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1.5 m	80.09	V	Y	Peak	-59.36	54.67	10.71	113.02	11.74	55.00	43.26
1.5 m	80.50	V	Y	Average	-65.63	55.22	-	96.59	-4.69	50.00	54.69

Note.


1. The EIRP was measured in each axis EUT positions and the worst case data was reported.

Test results


5.3. Undesirable emissions

Test setup

Below 1 GHz

Above 1 GHz

These measurements were performed at 3 test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plane and 3 meters(for below 1 GHz: 0.8-m) from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections.
For measurements below 1 GHz, the absorbers are removed.

Limit

(a) The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:

(1) Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	$2400/F(\text{kHz})$	300
0.490-1.705	$24000/F(\text{kHz})$	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

- (i) In the emissions table in paragraph (a)(1) of this section, the tighter limit applies at the band edges.
- (ii) The limits in the table in paragraph (a)(1) of this section are based on the frequency of the unwanted emissions and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (iii) The emissions limits shown in the table in paragraph (a)(1) of this section are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9.0-90.0 kHz , 110.0-490.0 kHz , and above 1000 MHz . Radiated emissions limits in these three bands are based on measurements employing an average detector with a 1 MHz RBW.

(2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:

- (i) For radiated emissions outside the 76-81 GHz band between 40 GHz and 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 600 pW/cm^2 at a distance of 3 meters from the exterior surface of the radiating structure.
- (ii) For radiated emissions above 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 1000 pW/cm^2 at a distance of 3 meters from the exterior surface of the radiating structure.

(3) For field disturbance sensors and radar systems operating in the 76-81 GHz band, the spectrum shall be investigated up to 231.0 GHz .

Test procedure

ANSI C63.26-2015 - Section 5.5

Test settings**Below 1 GHz**

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector= Peak or Quasi Peak

1 ~ 40 GHz

Peak Measurement

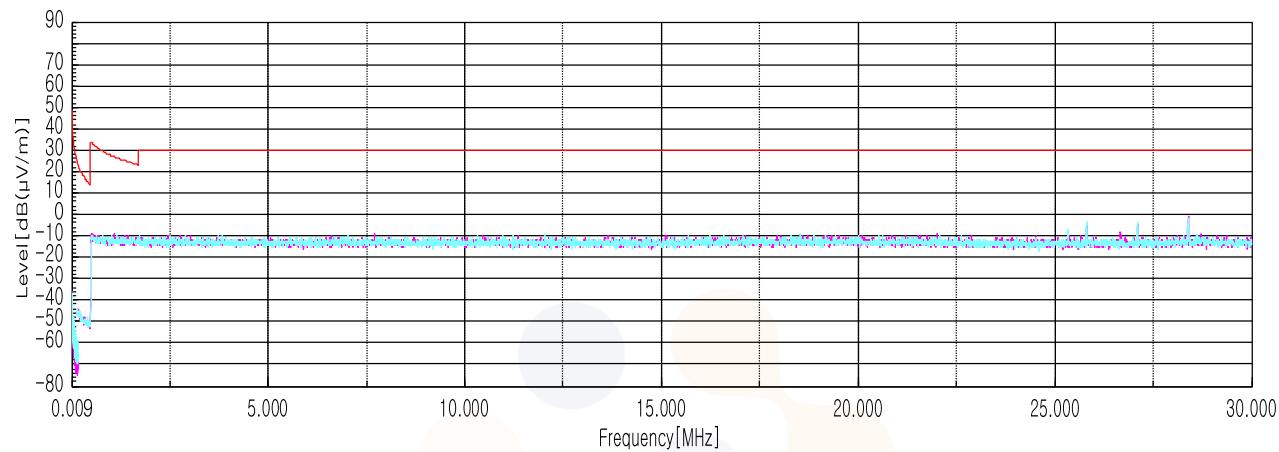
RBW: 1 MHz, VBW= 3 MHz, Detector = Peak, Sweep time = Auto,
Trace mode = Max Hold until the trace stabilizes

Average Measurement

RBW: 1 MHz, VBW= 3 MHz, Detector = RMS, Sweep time = Auto,
Trace mode = Averaging or Max Hold

Above 40 GHz

Average Measurement


RBW: 1 MHz, VBW= 3 MHz, Detector = RMS, Sweep time = Auto,
Trace mode = Averaging or Max Hold

The limits in CFR 47, part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dB μ V/m, which is equivalent to $Y - 51.5 = Z$ dB μ V/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209 (a) limit.

Test results

Frequency Range: 9 kHz ~ 30 MHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB μ V)	T.F (dB/m)	Distance Factor (dB)	Result (dB(μ V/m))	Limit (dB(μ V/m))	Margin (dB)
No spurious emissions were detected within 20 dB of the limit.									

Horizontal/Vertical**Note.**

1. No other spurious and harmonic emissions were found above listed frequencies.

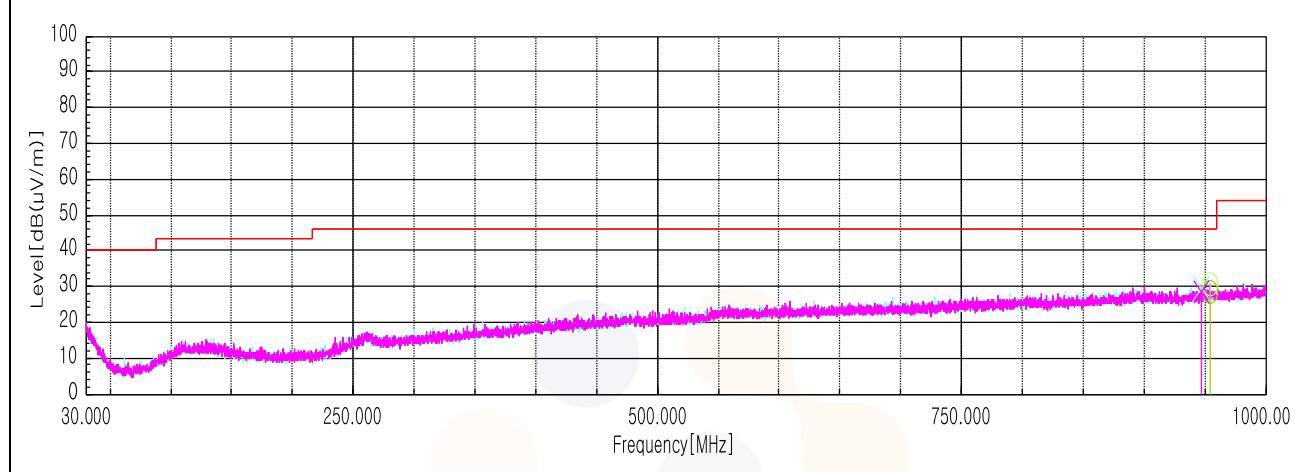
2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.

-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.

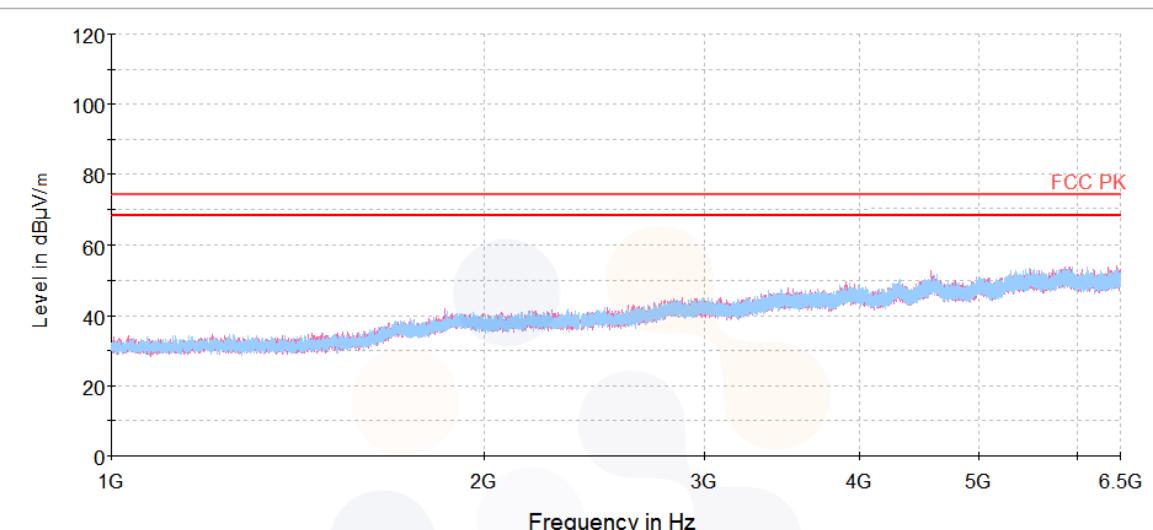

Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Factor, CL= Cable Loss, AG= Amplifier Gain

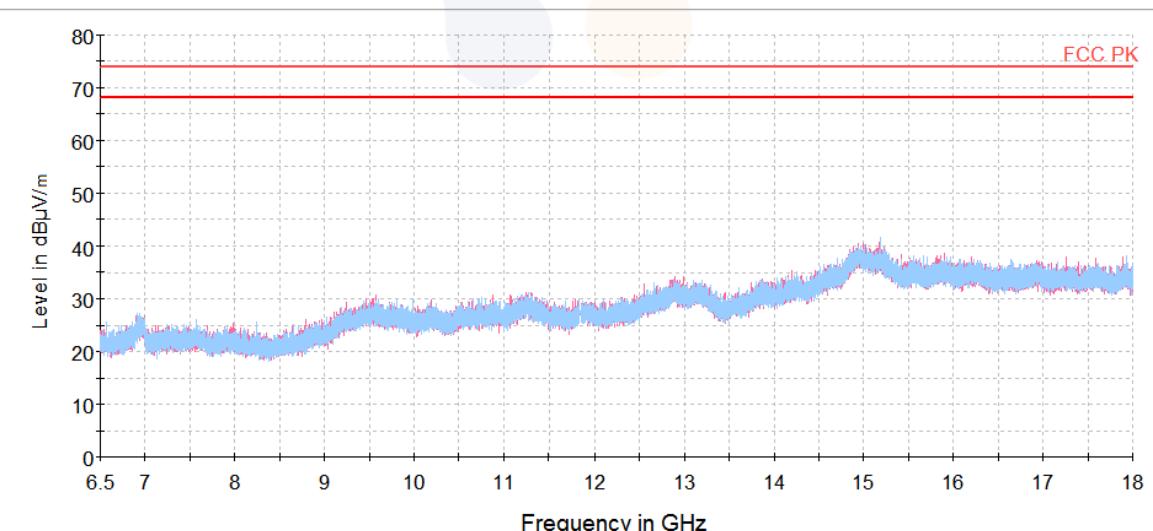
Frequency Range: 30 MHz ~ 1 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB μ V)	T.F (dB/m)	Distance Factor (dB)	Result (dB(μ N/m))	Limit (dB(μ N/m))	Margin (dB)
947.14	V	Y	QP	20.40	7.80	-	28.20	46.00	17.80
954.41	H	Y	QP	20.60	8.00	-	28.60	46.00	17.40

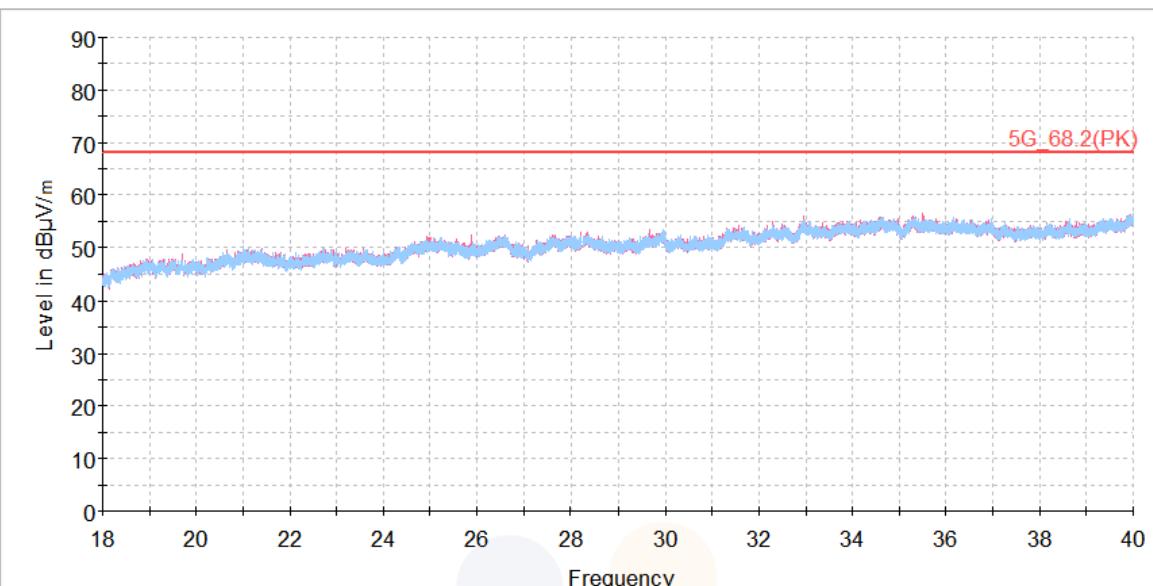
Horizontal/Vertical


Note.

1. No other spurious and harmonic emissions were found above listed frequencies.
2. Information of Distance Factor
 For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.
 -Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$
 When distance factor is "N/A", the distance is 3 m and distance factor is not applied.
3. Sample Calculation.
 $\text{Margin} = \text{Limit} - \text{Result} = \text{Measured Level} + \text{T.F} + \text{Distance factor} / \text{T.F} = \text{AF} + \text{CL} - \text{AG}$
 Where, T.F= Total Factor, AF= Antenna Factor, CL= Cable Loss, AG= Amplifier Gain

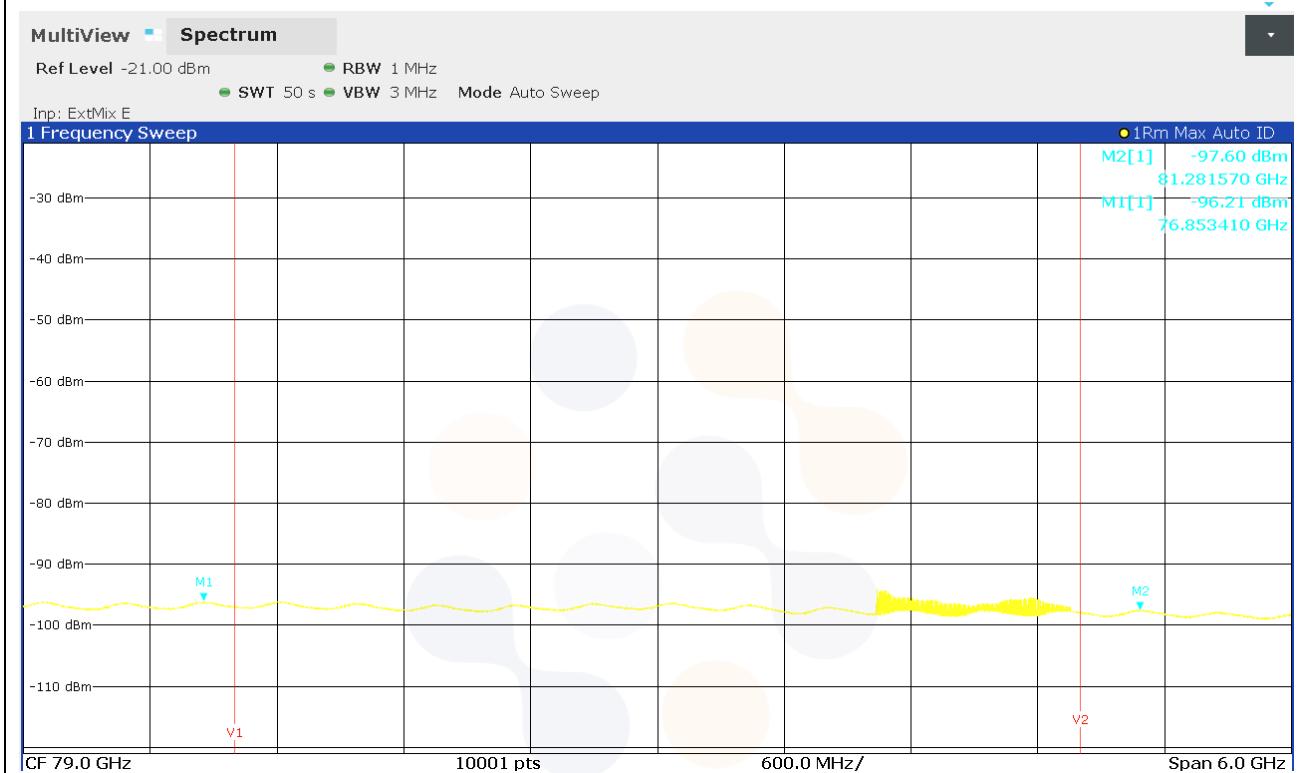

Frequency Range: 1 GHz ~ 40 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB(μV))	T.F (dB/m)	Distance Factor (dB)	Result (dB(μV/m))	Limit (dB(μV/m))	Margin (dB)
*6 458.06	V	Y	PK	59.77	-5.73	-	54.04	74.00	19.96
*15 191.48	V	Y	PK	44.09	-2.56	-	41.53	74.00	32.47
*39 898.94	V	Y	PK	93.62	-37.45	-	56.17	74.00	17.83


Horizontal/Vertical_1~6.5 GHz

Horizontal/Vertical_1.6 ~ 18 GHz

Horizontal/Vertical_18~40 GHz



Note.

1. No other spurious and harmonic emissions were found above listed frequencies.
2. Information of Distance Factor
For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result.
-Calculation of distance factor = $20 \log(\text{applied distance} / \text{required distance})$
When distance factor is "N/A", the distance is 3 m and distance factor is not applied.
3. Sample Calculation.
Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG
Where, T.F= Total Factor, AF= Antenna Factor, CL= Cable Loss, AG= Amplifier Gain
4. *Noise floor.

Frequency Range: 40 GHz ~ 90 GHz

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(μV/m))	EIRP (dBm)	Power density (pW/cm ²)	Limit (pW/cm ²)
*76 853.41	V	Y	-96.21	75.05	85.84	-32.94	0.45	600.00
*81 281.57	V	Y	-97.60	76.10	85.50	-33.28	0.42	600.00

Horizontal/Vertical for Worst Data

Note.

1. The radiated emissions were investigated up to 250 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

$$E(\text{dB}\mu\text{V/m}) = \text{Measured level (dB}\mu\text{V/m}) + 107 + \text{AFCL(dB/m)}$$

The mixer loss was applied to the measured level by SA correction factor.

Where, E=field strength / AFCL = Antenna Factor(dB/m) + Cable Loss(dB/m)

$$\text{EIRP(dBm)} = E(\text{dB}\mu\text{V/m}) + 20\log(D) - 104.8; \text{ where, D is measurement distance(in the far field region) in m.}$$

$$PD = \text{EIRP}_{\text{Linear}}/4\pi d^2$$

 Where, PD = the power density at the distance specified by the limit, in W/m²

$$\text{EIRP}_{\text{Linear}} = \text{EIRP, in watts}$$

D= is the distance at which the power density limit is specified, in m

3.*Noise floor

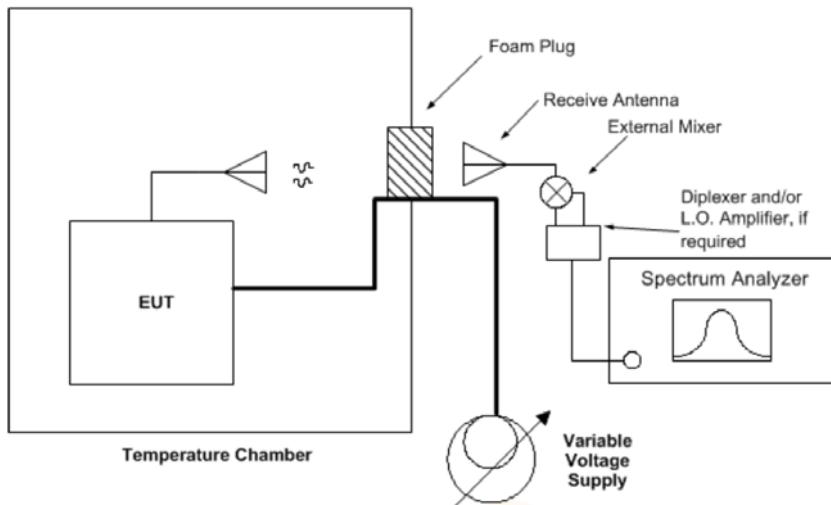
4. Band edge test results.

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR21-SRF0268-A
Page (19) of (23)

Frequency Range: 90 GHz ~ 250 GHz


Frequency (MHz)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(μV/m))	EIRP (dBm)	Power density (pW/cm ²)	Limit (pW/cm ²)
No spurious emissions were detected.								

Note.

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total = Reading Value + Antenna Factor + Cable Loss - Amplifier Gain + Distance Factor

5.4. Frequency stability

Test setup

Limit

Fundamental emissions must be contained within the frequency bands specified in Part 95(M) during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

Test procedure

ANSI C63.26-2015 – Section 5.6

The frequency stability of the transmitter is measured by:

1. At 10 °C intervals of temperatures between -30°C and +50°C at the manufacturer's rated supply voltage, and
2. At +20°C temperature and $\pm 15\%$ supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage.

Time period and procedure:

1. The carrier frequency of the transmitter is measured at room temperature.
(20 °C to provide a reference)
2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C.
A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR21-SRF0268-A
Page (21) of (23)

Test results

Voltage	Voltage	TEMP	Measure Frequency(F_L)	Measure Frequency(F_H)
[%]	[V]	[°C]	[MHz]	[MHz]
100	24.00	20(Ref.)	80 030.65	80 955.15
		-30	80 033.45	80 956.95
		-20	80 031.85	80 956.75
		-10	80 030.85	80 956.55
		0	80 029.65	80 956.35
		10	80 029.85	80 955.95
		30	80 030.65	80 955.15
		40	80 030.85	80 955.35
		50	80 030.65	80 954.75
		115	27.60	80 030.45
85	10.20*	20	80 032.05	80 954.15

Note: Fundamental emissions were contained within the frequency bands.

Note: *-15%variation was applied to the lowermost voltage.

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR21-SRF0268-A
Page (22) of (23)

6. Measurement equipment

Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
Spectrum Analyzer	R&S	FSW50	101013	22.07.09
UXA Signal Analyzer	KEYSIGHT	N9041B	MY60100003	22.01.21
Signal Generator	R&S	SMB100A	176206	22.01.20
Temp & Humid Chamber	Myeongseong R&P	CTHC-50P-DT	20150824-2	22.07.27
DC Power Supply	AGILENT	E3632A	MY40027567	22.05.10
Millimeter Wave Source Module	OML, Inc.	S19MS-A	190725-1	22.10.22
Millimeter Wave Source Module	OML, Inc.	S12MS-A	190621-1	22.10.22
Millimeter Wave Source Module	OML, Inc.	S08MS-A	190621-1	22.10.23
Millimeter Wave Source Module	OML, Inc.	S05MS-A	190621-1	22.10.23
Millimeter Wave Source Module	OML, Inc.	S03MS-A	190621-1	22.11.01
Harmonic Mixer	OML, Inc.	M19HWD	190621-1	22.10.25
Harmonic Mixer	OML, Inc.	M12HWD	190621-1	22.10.26
Harmonic Mixer	OML, Inc.	M08HWD	190621-1	22.10.26
Harmonic Mixer	OML, Inc.	M05HWD	190621-1	22.10.26
Harmonic Mixer	OML, Inc.	M03HWD	190621-1	22.11.01
Horn Antenna	OML, Inc.	M19RH	190621-1	22.08.18
Horn Antenna	OML, Inc.	M12RH	190621-1	22.08.18
Horn Antenna	OML, Inc.	M08RH	190621-1	22.08.18
Horn Antenna	OML, Inc.	M05RH	190621-1	22.08.20
Horn Antenna	OML, Inc.	M03RH	190621-1	22.08.20
Horn Antenna	OML, Inc.	M19RH	190621-2	22.08.18
Horn Antenna	OML, Inc.	M12RH	190621-2	22.08.18
Horn Antenna	OML, Inc.	M08RH	190621-2	22.08.18
Horn Antenna	OML, Inc.	M05RH	190621-2	22.08.17
Horn Antenna	OML, Inc.	M03RH	190621-2	22.08.20
Horn Antenna	ETS.lindgren	3116	00086632	22.01.29
Amplifier	L-3 Narda-MITEQ	JS44-18004000-33-8P	2000996	22.01.21
Antenna Mast	MATURO	EAS 1.5	042/8941211	-
Antenna Mast	MATURO	EAS 1.5	043/8941211	-
Turn Table	MATURO	TT 0.8 PF	041/8941211	-

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR21-SRF0268-A
Page (23) of (23)

mmWave Single-Axis measuring jig	C&K Technologies, Inc.	-	-	-
EMI TEST RECEIVER	R&S	ESCI7	100732	22.03.05
Bi-Log Antenna	TESEQ	CBL 6112D	55545	22.04.24
Amplifier	SONOMA INSTRUMENT	310N	284608	22.08.19
ATTENUATOR	KEYSIGHT	8491B-6dB	MY39271060	22.09.02
Horn antenna	ETS.lindgren	3117	155787	22.10.05
Horn antenna	ETS.lindgren	3116	86632	22.05.17
Attenuator	API Inmet	40AH2W-10	12	22.05.11
Broadband PreAmplifier	SCHWARZBECK	BBV9718	216	22.07.27
AMPLIFIER	L-3 Narda-MITEQ	AMF-7D-01001800-22-10P	2031196	22.08.19
AMPLIFIER	L-3 Narda-MITEQ	JS44-18004000-33-8P	2000996	22.01.21
LOOP Antenna	R&S	HFH2-Z2	100355	22.08.21
Antenna Mast	Innco Systems	MA4640-XP-ET	-	-
Turn Table	Innco Systems	DT2000	79	-
Antenna Mast	Innco Systems	MA4000-EP	303	-
Turn Table	Innco Systems	DT2000	79	-
Highpass Filter	WT	WT-A1699-HS	WT160411002	22.05.10

End of test report