

CERTIFICATION TEST REPORT

Report Number.: 12743821-E2V2

Applicant: PI INC

1111 BAYHILL DR

SUITE 235

SAN BRUNO, CA 94066, U.S.A.

Model: SOURCE

FCC ID: 2ASP901EH1

EUT Description: WIRELESS CHARGER

Test Standard(s): FCC 47 CFR PART 1 SUBPART I

FCC 47 CFR PART 2 SUBPART J

Date Of Issue: May 17, 2019

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A.

TEL: (510) 319-4000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	5/13/2019	Initial Issue	
V2	5/17/2019	Updated report to address TCB's question	Tina Chu

TABLE OF CONTENTS

1.	AT.	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	EQ	UIPMENT UNDER TEST	7
	4.1.	DESCRIPTION OF EUT	7
	4.2.	KDB 680106 D01 SECTION 5b EQUIPMENT APPROVAL CONSIDERATIONS	7
	4.3.	DESCRIPTION OF TEST SETUP	8
5.	TE	ST AND MEASUREMENT EQUIPMENT	12
6.	DU	TY CYCLE	13
7.	MA	XIMUM PERMISSIBLE RF EXPOSURE	15
	7.1	FCC LIMITS AND SUMMARY	15
		TEST RESULTS	
0	SE.	THE BUOTO	10

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: PI INC

1111 BAYHILL DR

SUITE 235

SAN BRUNO, CA 94066, U.S.A.

EUT DESCRIPTION: WIRELESS CHARGER

MODEL NUMBER: SOURCE

SERIAL NUMBER: SNEH119030000044

DATE TESTED: APRIL 24 - 29, 2019

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

THU CHAN **OPERATIONS LEAD** UL Verification Services Inc. Prepared By:

TOM CHEN **TEST ENGINEER**

UL Verification Services Inc.

Reviewed By:

TINA CHU SENIOR PROJECT ENGINEER

UL Verification Services Inc. UL Verification

2. TEST METHODOLOGY

All calculations were made in accordance with FCC KDB 447498 D01 and KDB 447498 D03.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd.		
☐ Chamber A (ISED:2324B-1)	☐ Chamber D (ISED:22541-1)	☐ Chamber I (ISED: 2324A-5)		
☐ Chamber B (ISED:2324B-2)	☐ Chamber E (ISED:22541-2)	☐ Chamber J (ISED: 2324A-6)		
☐ Chamber C (ISED:2324B-3)	☐ Chamber F (ISED:22541-3)	☐ Chamber K (ISED: 2324A-1)		
⋈ EMC conducted room	☐ Chamber G (ISED:22541-4)	☐ Chamber L (ISED: 2324A-3)		
	☐ Chamber H (ISED:22541-5)			

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

4. EQUIPMENT UNDER TEST

4.1. **DESCRIPTION OF EUT**

The EUT is a Qi compatible wireless charger for cellphone. Up to 4 devices can be charged through wireless charging + 2 High Power USB charging ports. Total 8 coils (4 pairs of Tx/Rx). Operating Frequency = 113kHz-230kHz.

KDB 680106 D01 SECTION 5b EQUIPMENT APPROVAL 4.2. **CONSIDERATIONS**

Requirement	Device
1. Power transfer frequency is less than 1 MHz.	Yes. Operating frequency is 113kHz to 230kHz.
2. Output power from each primary coil is less than	Yes. The system is designed to deliver 5W to
or equal to 15 watts.	each Wireless Power receiver device placed on
	the charging surface and input power to each
	coil will not exceed 9W at any time. Four coils
	can be active at any given time
3. The transfer system includes only single primary	Yes. Each receiver device is always powered by
and secondary coils. This includes charging	a single transmitter coil, so there is always a 1:1
systems that may have multiple primary coils and	relationship between transmitter and receiver.
clients that are able to detect and allow coupling	Please refer to the operation manual for further
only between individual pairs of coils.	elaboration on this topic, if necessary.
4. Client device is placed directly in contact with the	Yes. Client devices are placed in direct contact
transmitter.	(placed on top of) the charger.
5. Mobile exposure conditions only (portable	Yes. This charger is intended for desktop use
exposure conditions are not covered by this	and therefore is considered to be a mobile
exclusion).	device for the purposes of RF exposure
	evaluation.
6. The aggregate H-field strengths at 15 cm	Yes. The magnetic field test result is less than
surrounding the device and 20 cm above the top	50% of the MPE limit, which is 36.44%.
surface from all simultaneous transmitting coils are	
demonstrated to be less than 50% of the MPE limit.	

4.3. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

SUPPORT EQUIPMENT & PERIPHERALS LIST								
Description Manufacturer Model Serial Number								
Phone	Apple	IPHONE 8	F4HWRUMYJC6C					
Phone	Apple	IPHONE 8	C8PVJXCLJC6D					
Phone	Apple	IPHONE XR	G0NXL08ZKXKT					
Phone	Apple	IPHONE XS	DNQ94D9KPFR					
AC Adapter	DELTA Electronics	ADP-65DWY	6IEW8CS000L-2C-S0					

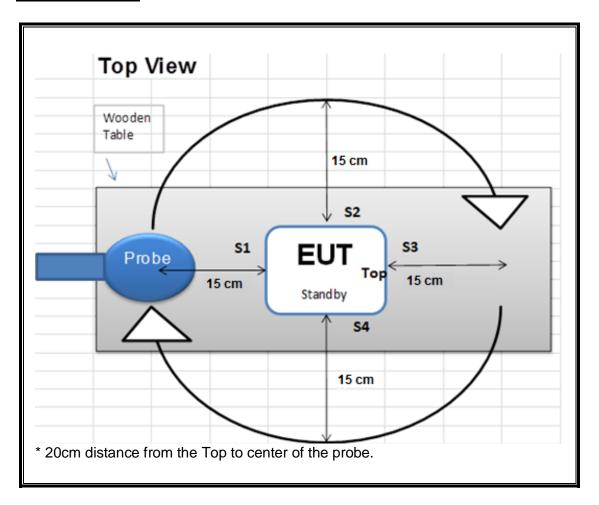
NOTE: Cell Phones were exchanged to ensure the EUT is at the maximum power transfer during testing.

I/O CABLES

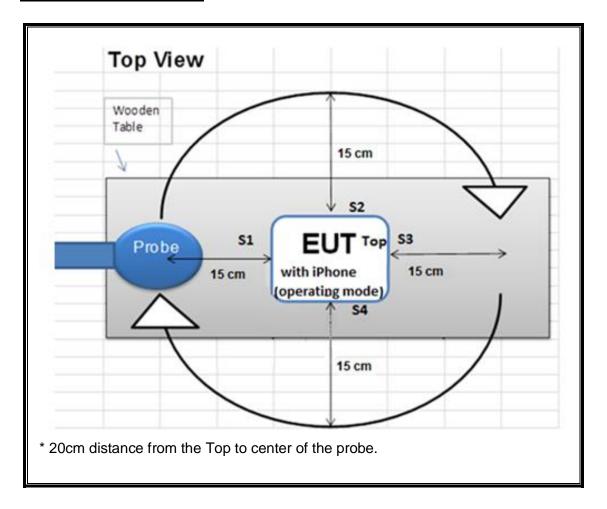
N/A

TEST SETUP

The following configurations are tested:


Configuration	Mode	Descriptions
1	Standby	EUT Alone powered by AC/DC adapter
2 1 cellphone	Operating (power, <10% Power Charging)	EUT and phone powered by AC/DC adapter
WPT (with gap distance and	Operating (power, 20~50% Power Charging)	EUT and phone powered by AC/DC adapter
shift)	Operating (power, >90% Power Charging)	EUT and phone powered by AC/DC adapter
3 2 cellphones	Operating (power, <10% Power Charging)	EUT and phones powered by AC/DC adapter
WPT (with gap	Operating (power, 20~50% Power Charging)	EUT and phones powered by AC/DC adapter
shift)	Operating (power, >90% Power Charging)	EUT and phones powered by AC/DC adapter
4 3 cellphones	Operating (power, <10% Power Charging)	EUT and phones powered by AC/DC adapter
WPT (with gap	Operating (power, 20~50% Power Charging)	EUT and phones powered by AC/DC adapter
shift)	Operating (power, >90% Power Charging)	EUT and phones powered by AC/DC adapter
5 4 cellphones	Operating (power, <10% Power Charging)	EUT and phones powered by AC/DC adapter
WPT (with gap distance and	Operating (power, 20~50% Power Charging)	EUT and phones powered by AC/DC adapter
shift)	Operating (power, >90% Power Charging)	EUT and phones powered by AC/DC adapter

MEASUREMENT SETUP


The measurement was taken using a probe placed 15 cm surrounding the device and 20 cm above the top surface of the EUT. Measurements were taken from the top and all sides of the EUT per KDB680106 D01 v03.

The charger is a desktop device, all the phones charged by the WPT must be at upright position (vertical orientation). Worst case RF exposure configuration was investigated among different coil combinations; with/without USB phones loaded; phones were shifted at various positions/fixed position; with/without gap (either a cellphone case at 3 mm or a cellphone pop socket at 6mm was used to represent the cellphone case). The worst case configuration was EUT without USB phones loaded, phones were shifted away from the charging coil with gap distance from the EUT surface after investigation.

CONFIGURATION 1

CONFIGURATIONS 2&3&4&5

DATE: MAY 17, 2019

MODEL: SOURCE

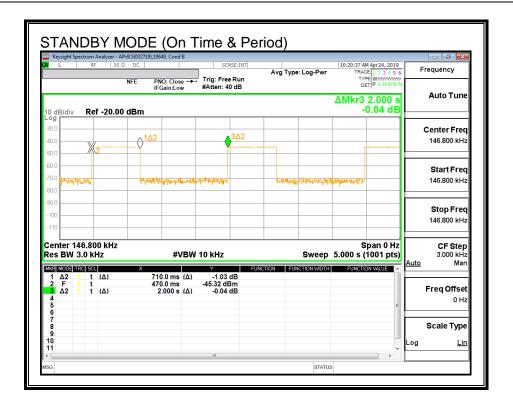
5. TEST AND MEASUREMENT EQUIPMENT

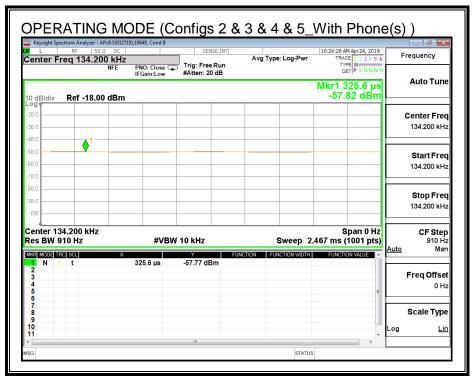
The following test and measurement equipment was used for the tests documented in this report:

Test Equipment List								
Description Manufacturer Model Local ID T No.) Cal Date Cal								
Electric and Magnetic Field Probe	Narda	EHP-200A	T1085	10/24/2018	10/24/2019			

6. DUTY CYCLE

LIMITS


None; for reporting purposes only.


PROCEDURE

Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle
	В		х	Cycle	Correction Factor
	(msec)	(msec)	(linear)	(%)	(dB)
Standby	710.00	2000.00	0.36	35.50%	4.50
Operating	100.00	100.00	1.00	100.00%	0.00

7. MAXIMUM PERMISSIBLE RF EXPOSURE

7.1. **FCC LIMITS AND SUMMARY**

7.1.1. FCC LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)		
(A) Lim	nits for Occupational	I/Controlled Exposu	res			
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6		
(B) Limits for General Population/Uncontrolled Exposure						
0.3–1.34	614 824 <i>f</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30		

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposured, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

REPORT NO: 12743821-E2V2 DATE: MAY 17, 2019 MODEL: SOURCE FCC ID: 2ASP901EH1

7.1.2. FCC SUMMARY OF RESULTS

RESULTS

ID:	29435	Date:	4/30/19
-----	-------	-------	---------

Note: Both magnetic and electric field strengths have been investigated from 9 kHz to 30 MHz at 15cm to find that the EUT operation frequency is at 113 kHz to 230kHz.

FCC RF Exposure Summary of Results

	Electric Field Lim	it		Magnetic Field Lir	mit
FCC	FCC Maximum RMS (V/m) Percentage (%)			Maximum RMS (A/m)	Percentage (%)
614	12.247	1.99%	1.63	0.594	36.44%

7.2. TEST RESULTS

7.2.1. FCC RF EXPOSURE

E- FIELD AND H- FIELD MEASUREMENTS

Note: Peak measurements were performed.

DATE: MAY 17, 2019

MODEL: SOURCE