

Report No.: HK1901240232E

TEST REPORT

FCC PART 15 SUBPART C 15.247

Test report
On Behalf of
Meizhou Qing Tang Industrial Co., Ltd.
For
TOLK

Model No.: QF200

FCC ID: 2ASMFQF200

Prepared for: Meizhou Qing Tang Industrial Co., Ltd.

2/F Building C Gaodi Industrial Zone No. 1 Binjiang East Road She Jiang

Town Mei Xian District Mei Zhou Guangdong

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Feb. 22, 2019 to Mar. 01, 2019

Date of Report: Mar. 01, 2019
Report Number: HK1901240232E

Page 2 of 47 Report No.: HK1901240232E

TEST RESULT CERTIFICATION

Applicant's name	Meizhou Qing	g Tang Industrial Co., Ltd.
Address	2/F Building (Town Mei Xia	C Gaodi Industrial Zone No. 1 Binjiang East Road She Jiang an District Mei Zhou Guangdong
Manufacture's Name		
Address	2/F Building (Town Mei Xia	C Gaodi Industrial Zone No. 1 Binjiang East Road She Jiang an District Mei Zhou Guangdong
Factory		g Tang Industrial Co., Ltd.
Address	_	C Gaodi Industrial Zone No. 1 Binjiang East Road She Jiang an District Mei Zhou Guangdong
Product description		
Trade Mark:	TOLK	
Product name	TOLK	
Model and/or type reference	QF200	
Standards	47 CFR FCC	Part 15 Subpart C 15.247
This publication may be reprodu	uced in whole	or in part for non-commercial purposes as long as the Shenzhen
HUAK Testing Technology Co.,	Ltd. is acknow	vledged as copyright owner and source of the material. Shenzhen
HUAK Testing Technology Co.,	Ltd. takes no	responsibility for and will not assume liability for damages
resulting from the reader's inter	pretation of th	e reproduced material due to its placement and context.
Date of Test	:	
Date (s) of performance of tests	:	Feb. 22, 2019 ~ Mar. 01, 2019
Date of Issue	:	Mar. 01, 2019
Test Result	::	Pass

Testing Engineer :

(Gary Qian)

Technical Manager :

Eden Hu)

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

Report No.: HK1901240232E

1.SUMMARY	
1.1 TEST STANDARDS	4
1.2 TEST DESCRIPTION	
1.3 TEST FACILITY	5
1.4 STATEMENT OF THE MEASUREMENT UNCERTAINTY	5
2.GENERAL INFORMATION	ε
2.1 ENVIRONMENTAL CONDITIONS	6
2.2 GENERAL DESCRIPTION OF EUT	6
2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
2.4 DESCRIPTION OF TEST SETUP	
2.5 RELATED SUBMITTAL(S) / GRANT (S)	
2.6 MODIFICATIONS	
2.7 EQUIPMENT USED	
3. PEAK OUTPUT POWER	
3.1. MEASUREMENT PROCEDURE	9
3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	9
3.3. LIMITS AND MEASUREMENT RESULT	
4. 6 DB BANDWIDTH	12
4.1. MEASUREMENT PROCEDURE	
4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	12
4.3. LIMITS AND MEASUREMENT RESULTS	12
5. CONDUCTED SPURIOUS EMISSION	14
5.1. MEASUREMENT PROCEDURE	
5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
5.3. MEASUREMENT EQUIPMENT USED	
5.4. LIMITS AND MEASUREMENT RESULT	
6. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	
6.1 MEASUREMENT PROCEDURE	
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3 MEASUREMENT EQUIPMENT USED	
6.4 LIMITS AND MEASUREMENT RESULT	
7. RADIATED EMISSION	
7.1. MEASUREMENT PROCEDURE	
7.2. TEST SETUP	22
7.3. LIMITS AND MEASUREMENT RESULT	
7.4. TEST RESULT	
8.FCC LINE CONDUCTED EMISSION TEST	
8.1 LIMITS OF LINE CONDUCTED EMISSION TEST	
8.2 BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	
8.3 PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	
8.5 TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	37
APPENDIX B. PHOTOGRAPHS OF FUT	30

Page 4 of 47 Report No.: HK1901240232E

1.SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

1.2 TEST DESCRIPTION

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247	Peak Output Power	Compliant
15.247	6 dB Bandwidth	Compliant
15.247	Conducted Spurious Emission and Band Edges	Compliant
15.247	Maximum Conducted Output Power Density	Compliant
15.247&15.209	Radiated Emission	Compliant
§15.207	Line Conduction Emission	Compliant

Page 5 of 47 Report No.: HK1901240232E

1.3 TEST FACILITY

1.3.1 ADDRESS OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd.

Add.:1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 LABORATORY ACCREDITATION

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 21210

The 3m alternate test site of Shenzhen HUAK Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 21210 on May 24, 2016.

FCC Registration No.: CN1229

Test Firm Registration Number: 616276

1.4 STATEMENT OF THE MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for HUAK laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 6 of 47 Report No.: HK1901240232E

2.GENERAL INFORMATION

2.1 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

	<u> </u>	
Normal Temperature:	25°C	
Relative Humidity:	55 %	
Air Pressure:	101 kPa	

2.2 GENERAL DESCRIPTION OF EUT

Product Name:	TOLK
Model/Type reference:	QF200
Power supply:	DC 5V by adapter or DC3.7V by battery
Version:	V4.0
Modulation:	GFSK(BLE)
Operation frequency:	2402MHz~2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	FPC Antenna
Antenna gain:	0dBi
Hardware Version:	1.0
Software Version:	1.0

Note: For more details, refer to the user's manual of the EUT.

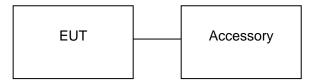
2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY

Frequency Band	Channel Number	Frequency	
2400~2483.5MHZ	0	2402MHZ	
	1	2404MHZ	
	:	:	
	38	2478MHZ	
	39	2480MHZ	

NO.	TEST MODE DESCRIPTION	
1	Low channel TX	
2	Middle channel TX	
3	High channel TX	

Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.


Page 7 of 47 Report No.: HK1901240232E

2.4 DESCRIPTION OF TEST SETUP

Conducted Emission Configure :

Radiated Emission Configure:

Item	Equipment	Model No.	ID or Specification	Remark
1	Adapter	WTA0501000USA1	DC 5V	Marketed with EUT

2.5 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.6 MODIFICATIONS

No modifications were implemented to meet testing criteria.

Page 8 of 47 Report No.: HK1901240232E

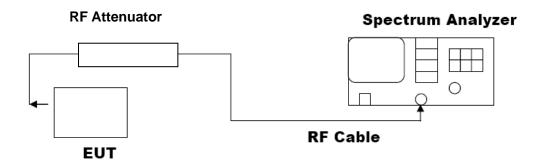
2.7 EQUIPMENT USED

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 27, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 27, 2018	1 Year
4.	Horn Antenna	Schewarzbeck	BBHA 9170	HKE-090	Dec. 27, 2018	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 27, 2018	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 27, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 27, 2018	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 27, 2018	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 27, 2018	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 27, 2018	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 27, 2018	N/A
14.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 27, 2018	3 Year

The calibration interval was one year

Page 9 of 47 Report No.: HK1901240232E

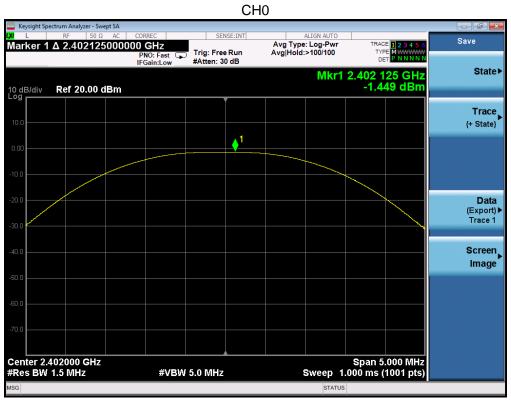
3. PEAK OUTPUT POWER


3.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW≥DTS bandwidth
- 3. VBW≥3*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.


3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP

Page 10 of 47 Report No.: HK1901240232E

3.3. LIMITS AND MEASUREMENT RESULT

PEAK OUTPUT POWER MEASUREMENT RESULT				
	FOR GFSK MOUDULAT	ION		
Frequency (GHz) Peak Power (Applicable Limits (dBm) Pass or Fail				
2.402	-1.449	30	Pass	
2.440	-1.143	30	Pass	
2.480	-1.311	30	Pass	

Report No.: HK1901240232E

CH19

CH39

Page 12 of 47 Report No.: HK1901240232E

4. 6 DB BANDWIDTH

4.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

4.3. LIMITS AND MEASUREMENT RESULTS

		UDENENT DEGULT			
	LIMITS AND MEASUREMENT RESULT				
Applicable Limits					
Applicable Limits	pplicable Limits Test Data (kHz) Criteria				
	Low Channel	669.6	PASS		
>500KHZ	Middle Channel	661.9	PASS		
	High Channel	667.3	PASS		

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Report No.: HK1901240232E

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 14 of 47 Report No.: HK1901240232E

5. CONDUCTED SPURIOUS EMISSION

5.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

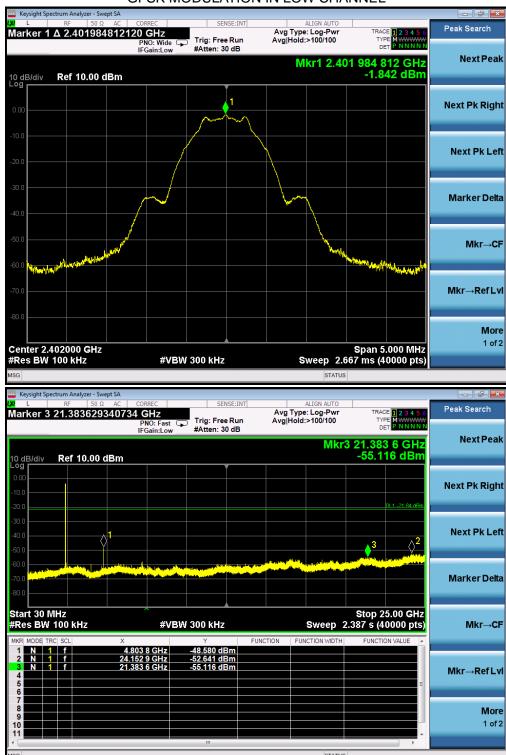
5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

5.3. MEASUREMENT EQUIPMENT USED

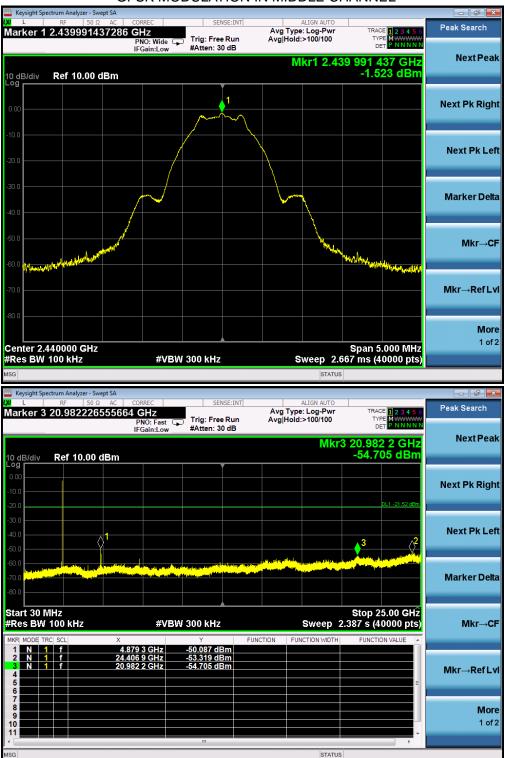
The same as described in section 6.

5.4. LIMITS AND MEASUREMENT RESULT


LIMITS AND MEASUREMENT RESULT					
A P I I	Measurement Result				
Applicable Limits	Test Data	Criteria			
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	At least -20dBc than the reference level	PASS PASS			

TEST RESULT FOR ENTIRE FREQUENCY RANGE

Report No.: HK1901240232E

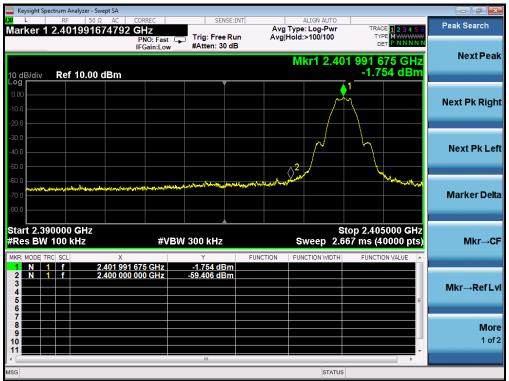

GFSK MODULATION IN LOW CHANNEL

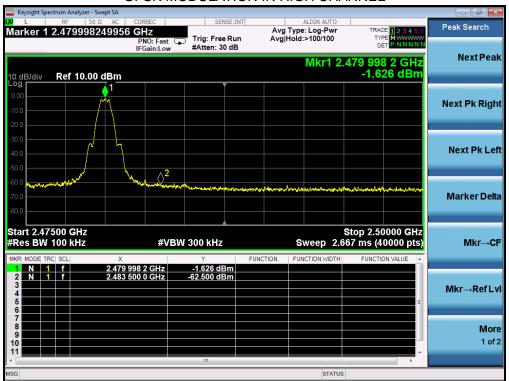
GFSK MODULATION IN MIDDLE CHANNEL

Report No.: HK1901240232E

Page 17 of 47 Report No.: HK1901240232E

GFSK MODULATION IN HIGH CHANNEL Avg Type: Log-Pwr Avg|Hold:>100/100 Peak Search Marker 1 2.479995562389 GHz Trig: Free Run #Atten: 30 dB PNO: Wide C **Next Peak** Mkr1 2.479 995 562 GHz -1.707 dBm 10 dB/div Log Ref 10.00 dBm **Next Pk Right** Next Pk Left Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Center 2.480000 GHz #Res BW 100 kHz Span 5.000 MHz Sweep 2.667 ms (40000 pts) **#VBW** 300 kHz Marker 3 4.960449761244 GHz PNO: Fast Picain:Low Peak Search Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run **Next Peak** Mkr3 4.960 4 GHz -53.300 dBm Ref 10.00 dBm **Next Pk Right** Next Pk Left Marker Delta Start 30 MHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.387 s (40000 pts) **#VBW** 300 kHz Mkr→**CF** Mkr→RefLvl More 1 of 2


Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.


Report No.: HK1901240232E

TEST RESULT FOR BAND EDGE

GFSK MODULATION IN LOW CHANNEL

GFSK MODULATION IN HIGH CHANNEL

Page 19 of 47 Report No.: HK1901240232E

6. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

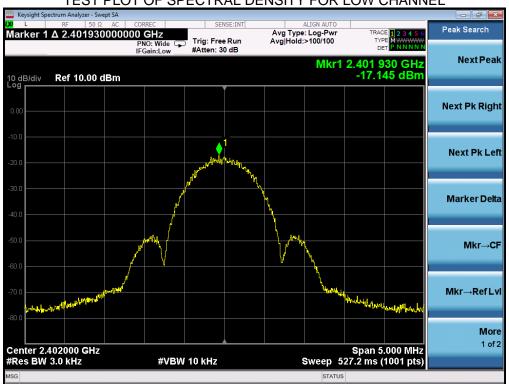
6.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

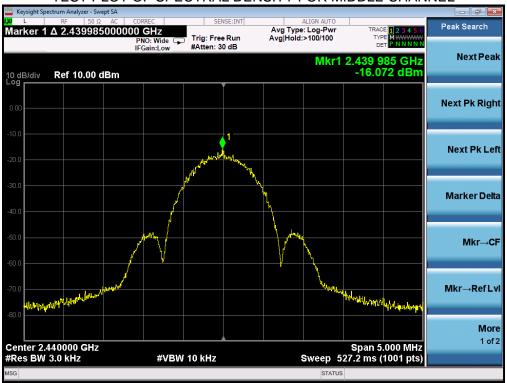
Refer To Section 7.2.

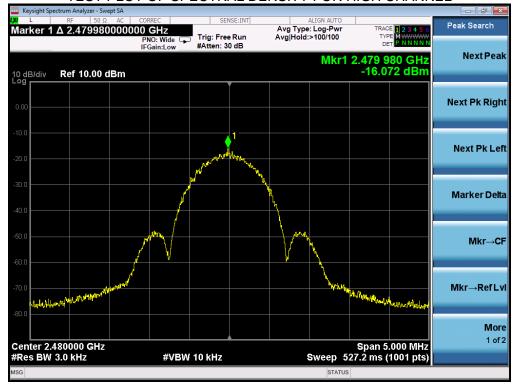

6.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

6.4 LIMITS AND MEASUREMENT RESULT

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-17.145	8	Pass
Middle Channel	-16.072	8	Pass
High Channel	-16.072	8	Pass





TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

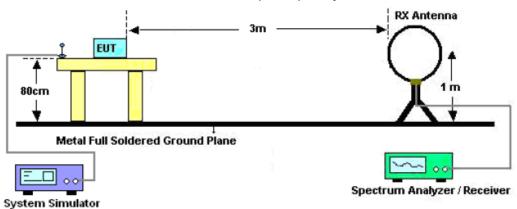
Report No.: HK1901240232E

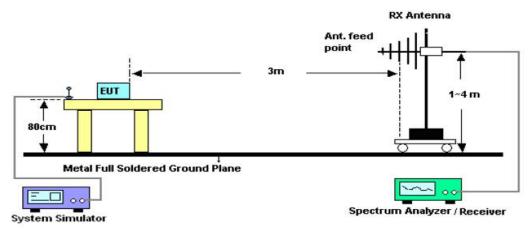
Page 21 of 47 Report No.: HK1901240232E

7. RADIATED EMISSION

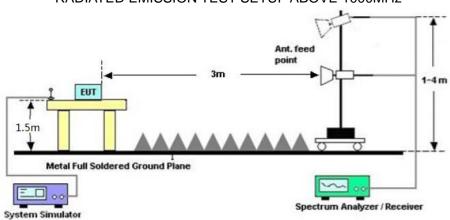
7.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.




7.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz


Report No.: HK1901240232E

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 23 of 47 Report No.: HK1901240232E

7.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

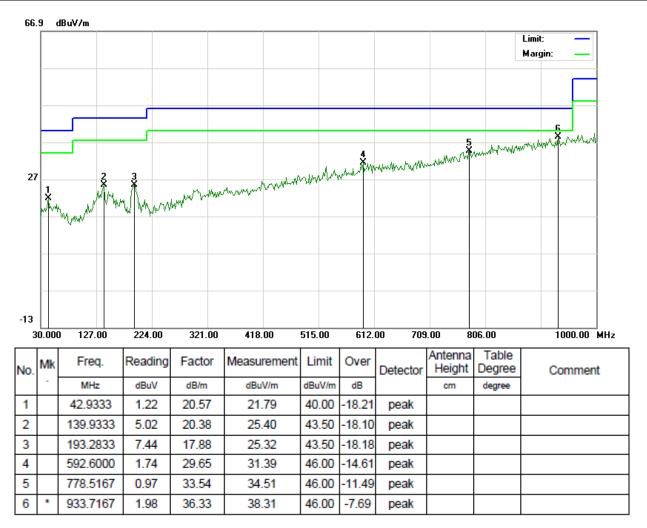
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

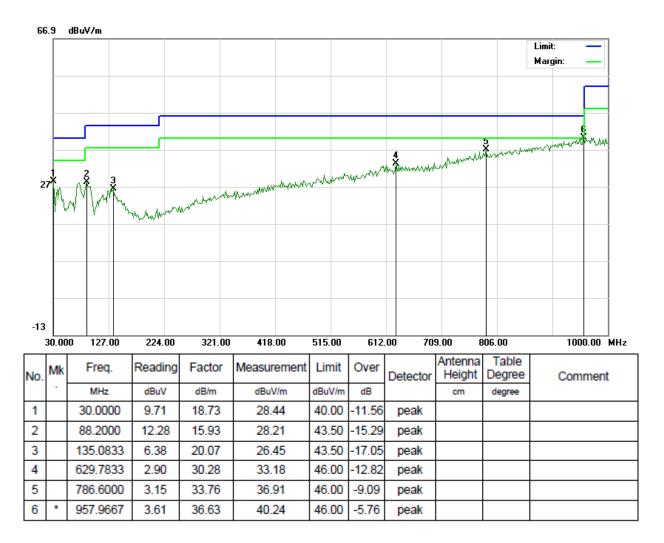
7.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ


No emission found between lowest internal used/generated frequencies to 30MHz.

Page 24 of 47 Report No.: HK1901240232E

RADIATED EMISSION BELOW 1GHZ


EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Page 25 of 47 Report No.: HK1901240232E

EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

RESULT: PASS Note:

- 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.
- 2. All test modes had been tested. The mode 1 is the worst case and recorded in the report.

Page 26 of 47 Report No.: HK1901240232E

RADIATED EMISSION ABOVE 1GHZ

EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.062	47.05	3.76	50.81	74.00	-23.19	peak
4804.062	44.76	3.76	48.52	54.00	-5.48	AVG
7206.093	37.07	8.17	45.24	74.00	-28.76	peak
7206.093	32.62	8.17	40.79	54.00	-13.21	AVG
Remark:						

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.062	49.45	3.76	53.21	74.00	-20.79	peak
4804.062	43.39	3.76	47.15	54.00	-6.85	AVG
7206.093	38.09	8.17	46.26	74.00	-27.74	peak
7206.093	37.07	8.17	45.24	54.00	-8.76	AVG

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 27 of 47 Report No.: HK1901240232E

EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4880.062	47.06	3.78	50.84	74.00	-23.16	peak
4880.062	41.75	3.78	45.53	54.00	-8.47	AVG
7320.093	40.32	8.23	48.55	74.00	-25.45	peak
7320.093	38.95	8.23	47.18	54.00	-6.82	AVG
Remark:	•				•	•
Factor = Ante	enna Factor + Ca	able Loss – P	re-amplifier.			

EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity 55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4880.062	47.65	3.78	51.43	74.00	-22.57	peak	
4880.062	44.63	3.78	48.41	54.00	-5.59	AVG	
7320.093	40.41	8.23	48.64	74.00	-25.36	peak	
7320.093	37.74	8.23	45.97	54.00	-8.03	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Page 28 of 47 Report No.: HK1901240232E

EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	dB) (dBμV/m) (dBμ		(dB)	Value Type	
4960.062	46.62	3.81	50.43	74.00	-23.57	peak	
4960.062	44.77	3.81	48.58	54.00	-5.42	AVG	
7440.093	41.69	8.27	49.96	74.00	-24.04	peak	
7440.093	38.41	8.27	46.68	54.00	-7.32	AVG	
Remark:							
Nemaik.							
-actor = Ante	enna Factor + Ca	able Loss – P	re-amplifier.				

EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Value Type	Margin	Limits	Emission Level	Factor	Meter Reading	Frequency
value Type	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
peak	-23.53	74.00	50.47	46.66 3.81		4960.062
AVG	-5.02	54.00	48.98	3.81	45.17	4960.062
peak	-28.47	74.00	45.53	8.27	40.093 37.26	
AVG	-8.24	54.00	45.76	8.27	37.49	7440.093
1						Pomark:

Remark

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

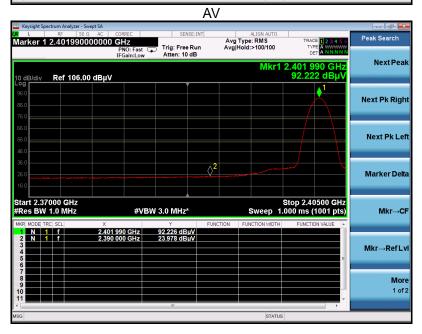
RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report.

Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

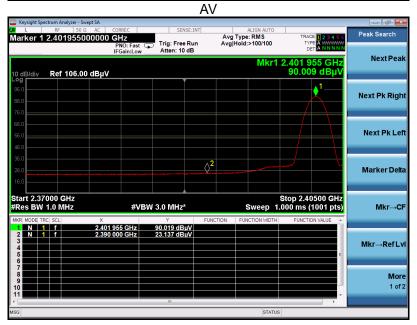
The "Factor" value can be calculated automatically by software of measurement system.



Page 29 of 47 Report No.: HK1901240232E

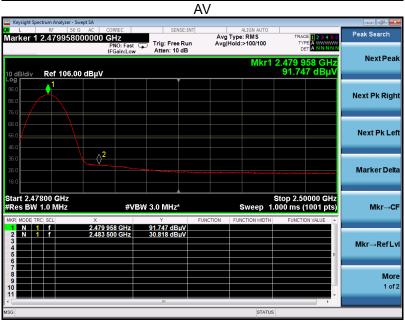
TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

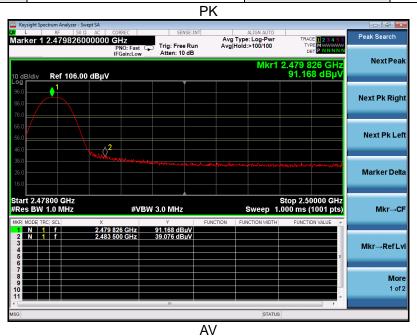


Page 30 of 47 Report No.: HK1901240232E

EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical



Page 31 of 47 Report No.: HK1901240232E


EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Page 32 of 47 Report No.: HK1901240232E

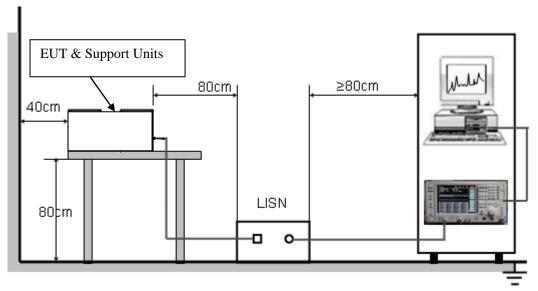
EUT	TOLK	Model Name	QF200
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

Page 33 of 47 Report No.: HK1901240232E

8.FCC LINE CONDUCTED EMISSION TEST


8.1LIMITS OF LINE CONDUCTED EMISSION TEST

Frequency	Maximum RF Line Voltage				
	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

8.2BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

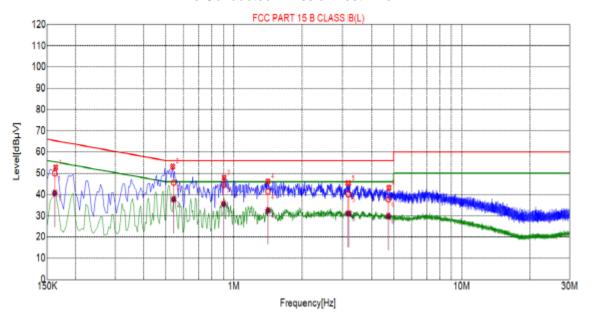
Page 34 of 47 Report No.: HK1901240232E

8.3PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

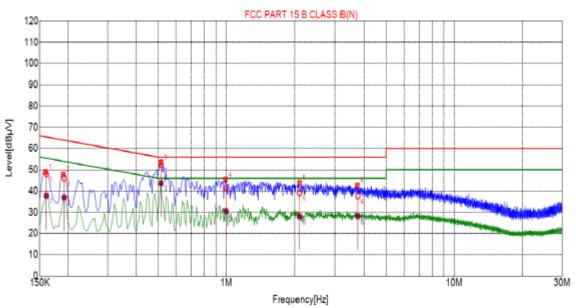
8.4FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST


- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

8.5TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

Report No.: HK1901240232E

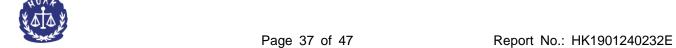


Susp	Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Umit [dBµV]	Margin [dB]	Detector			
1	0.1635	52.78	9.98	65.28	12.50	PK			
2	0.5370	53.12	10.05	56.00	2.88	PK			
3	0.9060	47.92	10.06	56.00	8.08	PK			
4	1.4145	46.17	10.11	56.00	9.83	PK			
5	3.1695	45.26	10.23	56.00	10.74	PK			
6	4.7715	43.08	10.26	56.00	12.92	PK			

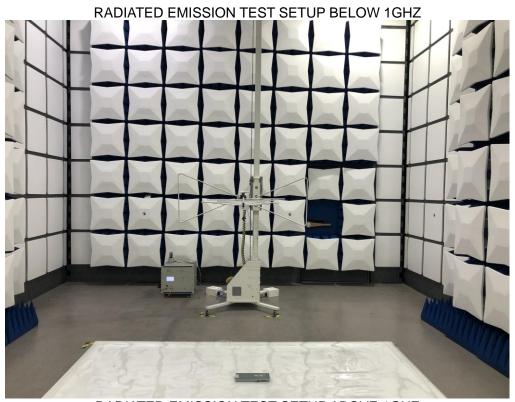
Final	Final Data List								
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin (dB)	AV Value [dBµV]	AV Limit [d8µV]	AV Margin [dB]	
1	0.1619	9.99	49.89	65.37	15.48	40.66	55.37	14.71	
2	0.5424	10.05	45.50	56.00	10.50	37.76	46.00	8.24	
3	0.9022	10.08	44.62	56.00	11.38	35.54	46.00	10.46	
4	1.4150	10.11	41.31	56.00	14.69	32.45	46.00	13.55	
5	3.1799	10.23	40.19	56.00	15.81	31.07	46.00	14.93	
6	4.7455	10.26	37.74	56.00	18.26	29.81	46.00	16.19	

Page 36 of 47 Report No.: HK1901240232E

Line Conducted Emission Test Line 2-N

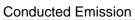


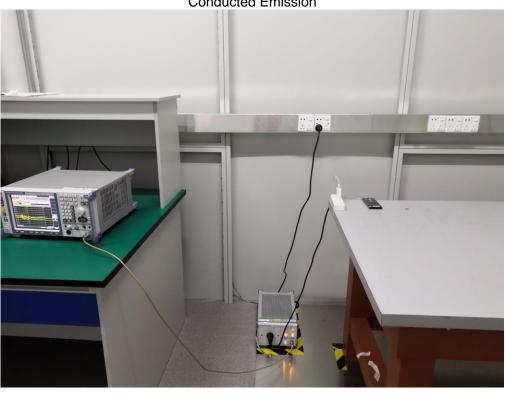
Suspected List											
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Umit [dBµV]	Margin [dB]	Detector					
1	0.1590	48.93	10.01	65.52	16.59	PK					
2	0.1905	47.80	10.04	64.02	16.22	PK					
3	0.5145	53.54	10.04	56.00	2.46	PK					
4	0.9915	45.34	10.06	56.00	10.66	PK					
5	2.0940	43.83	10.15	56.00	12.17	PK					
6	3.7320	42.56	10.25	56.00	13.44	PK					

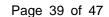

Final Data List												
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [d8]	AV Value [dBµV]	AV Limit [d8µV]	AV Margin [dB]				
1	0.1604	10.00	47.98	65.44	17.48	37.84	55.44	17.60				
2	0.1924	10.04	45.99	63.93	17.94	36.91	53.93	17.02				
3	0.5148	10.04	52.18	56.00	3.82	43.70	46.00	2.30				
4	0.9961	10.06	41.39	56.00	14.61	30.54	46.00	15.46				
5	2.0930	10.15	39.06	56.00	16.94	28.08	46.00	17.92				
6	3.7499	10.25	37.58	56.00	18.42	28.13	46.00	17.87				

RESULT: PASS

Note: All the test modes had been tested, the mode 1 was the worst case. Only the data of the worst case would be record in this test report.

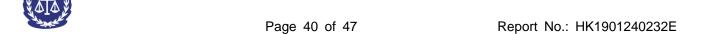

APPENDIX A: PHOTOGRAPHS OF TEST SETUP





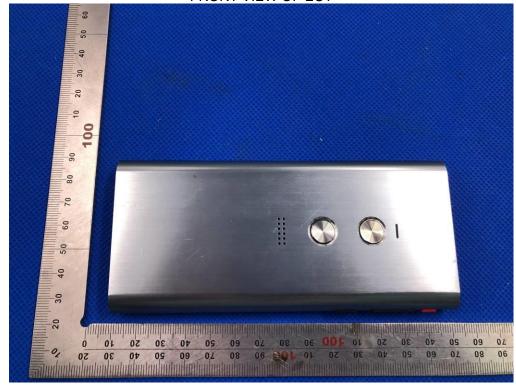
Page 38 of 47 Report No.: HK1901240232E

APPENDIX B: PHOTOGRAPHS OF EUT

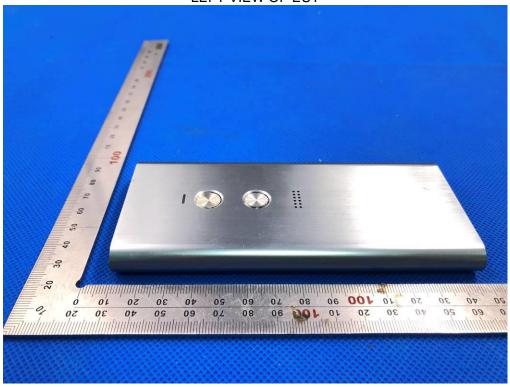

Report No.: HK1901240232E

ALL VIEW OF EUT

TOP VIEW OF EUT

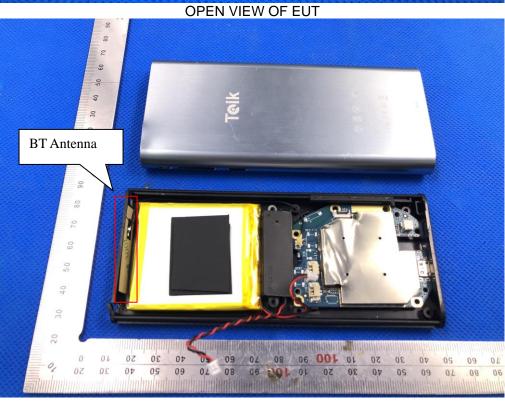


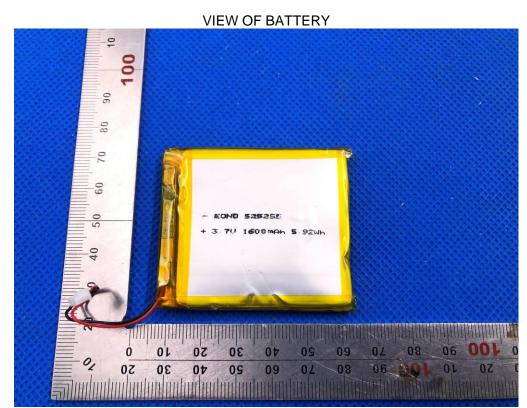
FRONT VIEW OF EUT

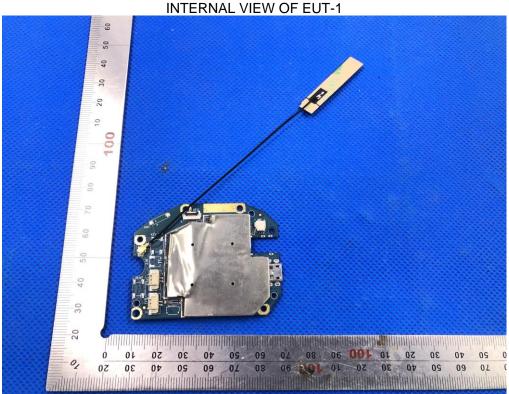

Page 41 of 47 Report No.: HK1901240232E

06 0

LEFT VIEW OF EUT

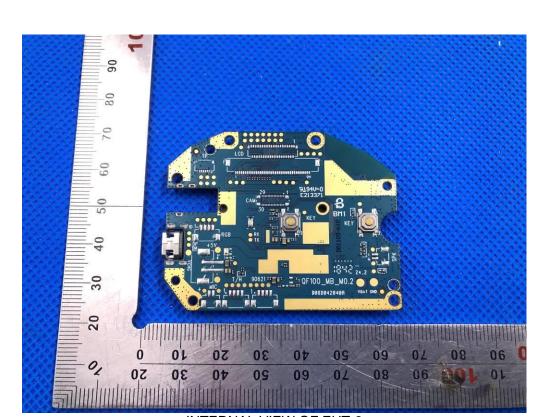

2 0 01 0Z 0E 0† 05 09 04 08 06 001 01 0Z 0E 0† 05 09 04 08 06 02 02 02 05 09 04 05 09 04 08 06 00 05 00 05 09 04 08 06 00 05 000 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05

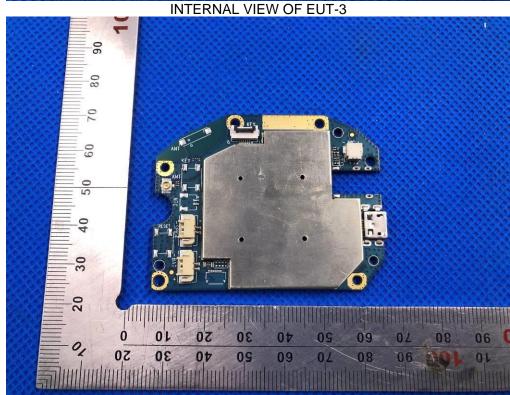

Page 42 of 47 Report No.: HK1901240232E

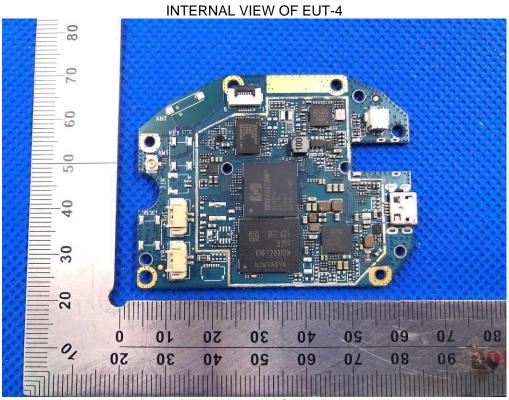


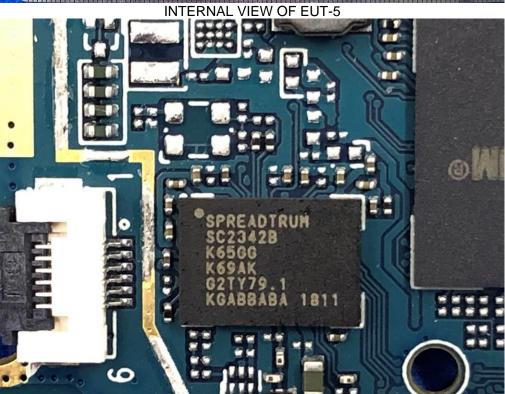


Page 43 of 47 Report No.: HK1901240232E



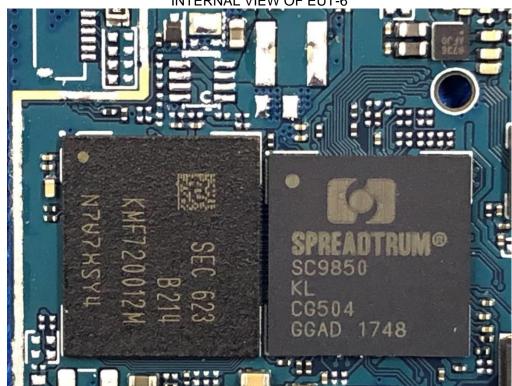

INTERNAL VIEW OF EUT-2

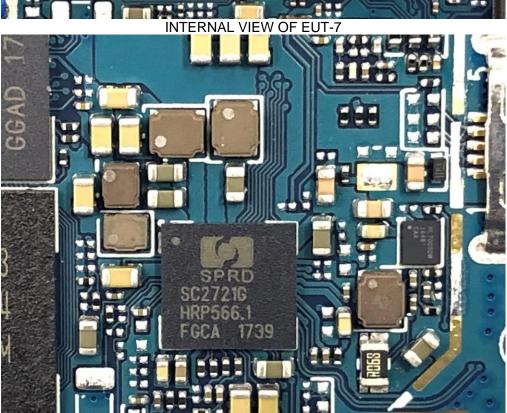


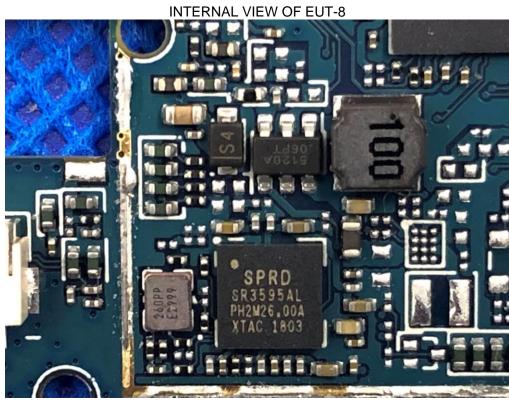


Report No.: HK1901240232E

Page 45 of 47 Report No.: HK1901240232E






INTERNAL VIEW OF EUT-6

Report No.: HK1901240232E

Page 47 of 47 Report No.: HK1901240232E

----END OF REPORT----