

ENGINEERING TEST REPORT

POSI-TRAIL
Model(s): POSI-TRAIL
FCC ID: 2ASKU-POSI-TRAIL

Applicant:

ENASI Industries Inc.
830 Boulevard Ford, Suite 408
Chateauguay, Quebec J6J 4Z2
Canada

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247
Digital Modulation Systems (DTS) Operating in 902 - 928 MHz Band

UltraTech's File No.: 19ANAS001_FCC15C247

This Test report is Issued under the Authority of
Tri M. Luu
Vice President of Engineering
UltraTech Group of Labs

Date: March 1, 2019

Report Prepared by: Dan Huynh

Tested by: Nimisha Desai

Issued Date: March 1, 2019

Test Dates:
January 9, 10, 22, 2019

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.*
- This report must not be used by the client to claim product endorsement by any agency of the US Government.*
- This test report shall not be reproduced, except in full, without a written approval from UltraTech*

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

APEC TEL CA0001

1309

CA 0001/2049

AT-1945

SL2-IN-E-1119R

Korea KCC-RRA
CA2049

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION.....	1
1.1. SCOPE	1
1.2. RELATED SUBMITTAL(S)/GRANT(S)	1
1.3. NORMATIVE REFERENCES	1
EXHIBIT 2. PERFORMANCE ASSESSMENT	2
2.1. CLIENT INFORMATION	2
2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION	2
2.3. EUT'S TECHNICAL SPECIFICATIONS.....	3
2.4. ASSOCIATED ANTENNA DESCRIPTIONS	3
2.5. LIST OF EUT'S PORTS.....	3
2.6. ANCILLARY EQUIPMENT.....	3
EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	4
3.1. CLIMATE TEST CONDITIONS	4
3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS.....	4
EXHIBIT 4. SUMMARY OF TEST RESULTS.....	5
4.1. LOCATION OF TESTS	5
4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	5
4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	5
EXHIBIT 5. TEST DATA.....	6
5.1. OCCUPIED BANDWIDTH [§ 15.247(a)(2)].....	6
5.2. MAXIMUM PEAK CONDUCTED OUTPUT POWER - DTS [§ 15.247(b)].....	8
5.3. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]	13
5.4. POWER SPECTRAL DENSITY [§ 15.247(e)].....	17
5.5. RF EXPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091].....	19
TEST EQUIPMENT LIST.....	21
EXHIBIT 6. MEASUREMENT UNCERTAINTY	22
6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY.....	22
6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY	22

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.247
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15 – Radio Frequency Devices
Purpose of Test:	Equipment Certification for Digital Modulation Systems (DTS) Operating Under §15.247
Test Procedures:	<ul style="list-style-type: none">▪ ANSI C63.4▪ ANSI C63.10▪ FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05
Environmental Classification:	<input checked="" type="checkbox"/> Commercial, industrial or business environment <input checked="" type="checkbox"/> Residential environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2018	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
FCC, KDB Publication No. 558074 D01 15.247 Meas Guidance v05	2018	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

Applicant	
Name:	ENASI Industries Inc.
Address:	830 Boulevard Ford, Suite 408 Chateauguay, Quebec J6J 4Z2 Canada
Contact Person:	Igor Armano Phone #: 450-692-2850 ext 225 Fax #: n/a Email Address: Igor.armano@enasinc.com

Manufacturer	
Name:	ENASI Industries Inc.
Address:	830 Boulevard Ford, Suite 408 Chateauguay, Quebec J6J 4Z2 Canada
Contact Person:	Igor Armano Phone #: 450-692-2850 ext 225 Fax #: n/a Email Address: Igor.armano@enasinc.com

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	ENASI Industries Inc.
Product Name:	POSI-TRAIL
Model(s):	POSI-TRAIL
Serial Number:	Test Sample
Type of Equipment:	Digital Transmission System (DTS)
Input Power Supply Type:	12 VDC
Primary User Functions of EUT:	Recreational Vehicle like snowmobile/ VTT

2.3. EUT'S TECHNICAL SPECIFICATIONS

Transmitter	
Equipment Type:	Mobile
Intended Operating Environment:	Residential environment Commercial, industrial or business environment
Power Supply Requirement:	12 VDC
RF Output Power Rating:	8.108 dBm Maximum Conducted Average Output Power
Operating Frequency Range:	903 MHz
RF Output Impedance:	50 Ω
Duty Cycle:	< 2% Nominal
Modulation Type:	FSK
Antenna Connector Types:	Integral

2.4. ASSOCIATED ANTENNA DESCRIPTIONS

Antenna Type	Manufacturer	Model	Maximum Gain (dBi)
Straight RF antenna	RF Solutions	ANT-GHEL2-SMA	2

2.5. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
None.				

2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

None.

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21 to 23 °C
Humidity:	45 to 58%
Pressure:	102 kPa
Power Input Source:	12 VDC

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.
Special Test Software:	The manufacturer has provided the test samples pre-configured for necessary test configurations.
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment as described with the test results.

Transmitter Test Signals	
Frequency Band(s):	903 MHz
Frequency(ies) Tested:	903 MHz
RF Power Output: (measured maximum output power at antenna terminals)	8.108 dBm Maximum Conducted Average Output Power
Normal Test Modulation:	FSK
Modulating Signal Source:	Internal

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with ANAB File No.: AT-1945.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.203	Antenna requirements	Yes*
15.207(a)	AC Power Line Conducted Emissions	Not Applicable
15.247(a)(2)	6 dB Bandwidth	Yes
15.247(b)(3)	Peak Conducted Output Power	Yes
15.247(d)	Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
15.247(d), 15.209 & 15.205	Transmitter Spurious Radiated Emissions	Yes
15.247(e)	Power Spectral Density	Yes
15.247(i), 1.1307, 1.1310, 2.1091	RF Exposure	Yes

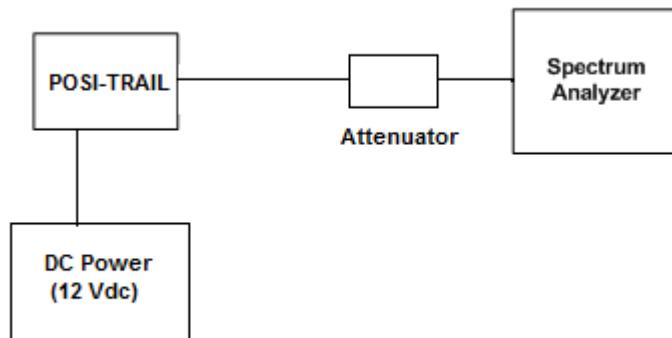
* The EUT complies with the requirement; it employs a unique (non-standard) antenna connector or integral antenna.

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

EXHIBIT 5. TEST DATA

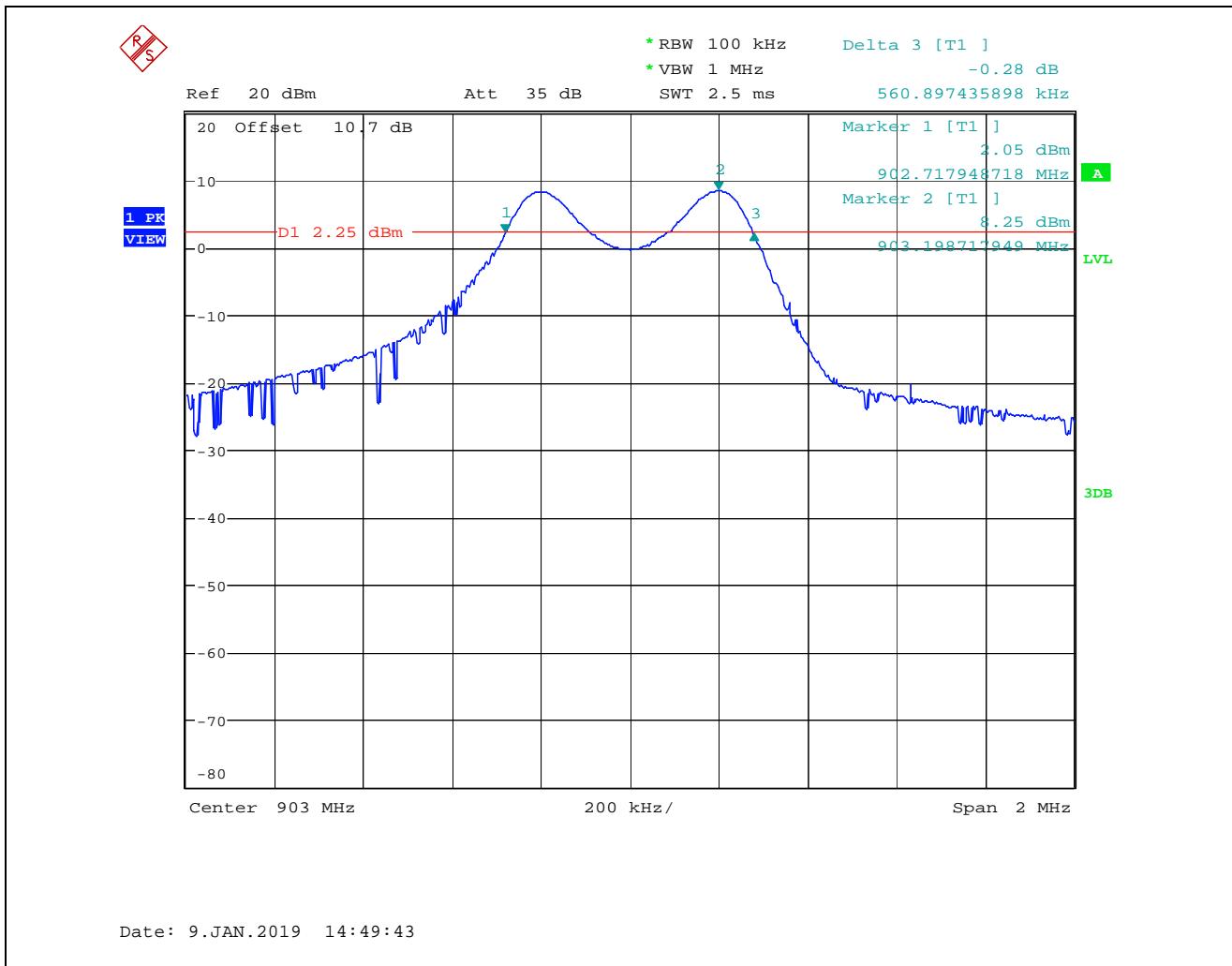
5.1. OCCUPIED BANDWIDTH [§ 15.247(a)(2)]


5.1.1. Limit(s)

The minimum 6 dB bandwidth shall be at least 500 kHz.

5.1.2. Method of Measurements

KDB 558074 D01 DTS Meas Guidance v05, Section 8.2 , ANSI 63.10: 11.8.2 Option 2


5.1.3. Test Arrangement

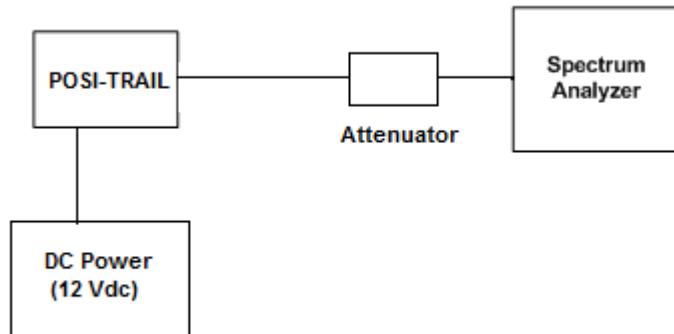
5.1.4. Test Data

Modulation	Frequency (MHz)	6dB BW (kHz)	Min. Limit (kHz)
FSK	903	560.90	500

Plot 5.1.4.1. 6 dB Bandwidth, FSK Modulation, 903 MHz

5.2. MAXIMUM PEAK CONDUCTED OUTPUT POWER - DTS [§ 15.247(b)]

5.2.1. Limit(s)


§ 15.247(b)(3): For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

§ 15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2. Method of Measurements

KDB 558074 D01 DTS Meas Guidance v05, Section 8.3.2.2, ANSI C63.10 Section 11.9.2.2.5

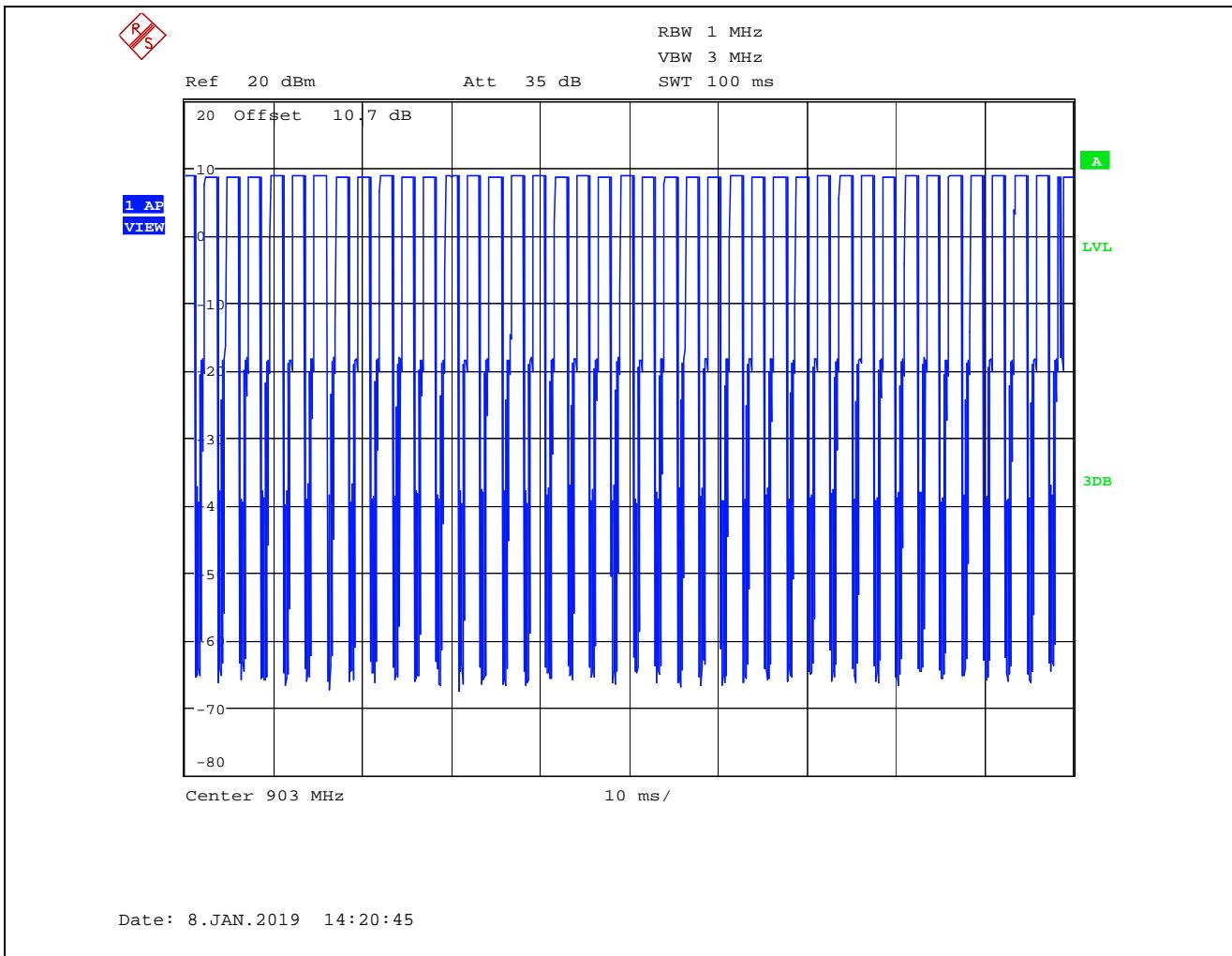
5.2.3. Test Arrangement

5.2.4. Test Data

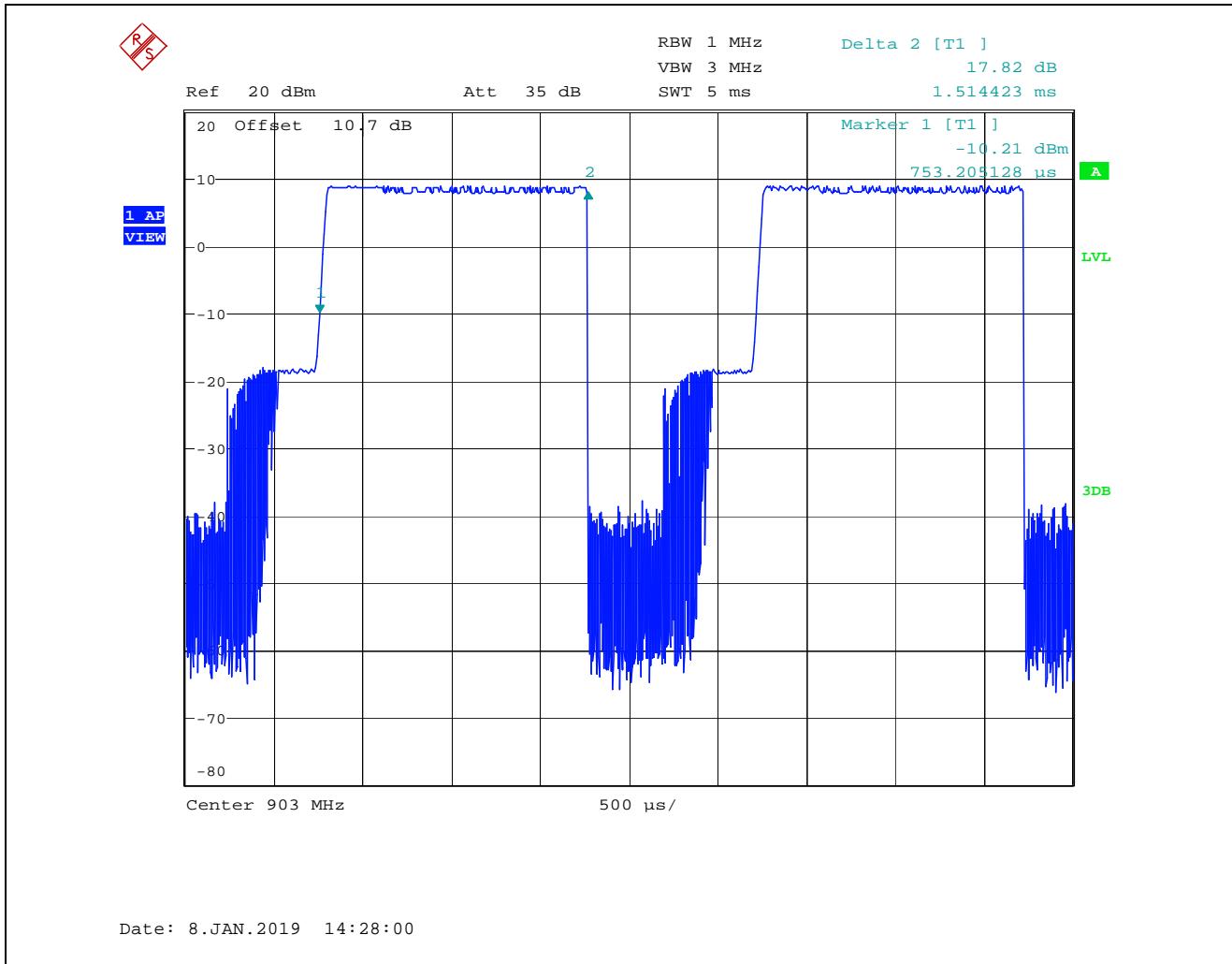
Remarks:

Duty cycle for test mode is 60.56% < 98%, Duty Cycle Correction = $10^{\log}(1/x) = 10^{\log}(1/0.6056) = 2.178$ dB

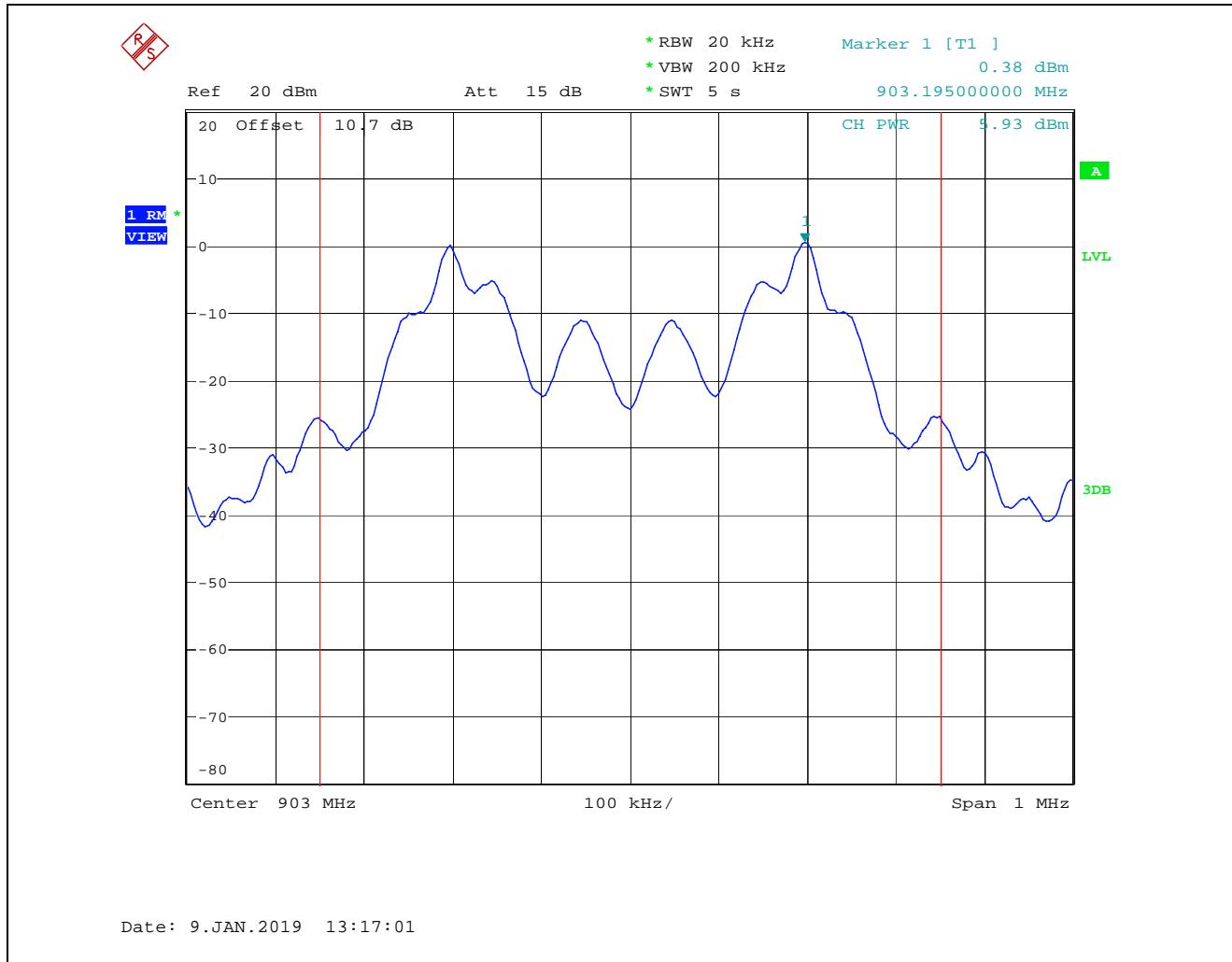
Computation of duty-cycle factor


Sub-Pulse	Duration (ms)	Number of pulses	Sub-Pulse “On Time” (ms)
1	1.514	40	60.56
		TOTAL ON TIME:	
Duty cycle correction factor: $10^{\log}(1/x) = 10^{\log}(1/0.6056) = 2.178$ dB			

Maximum Conducted Average Output Power


Modulation	Frequency (MHz)	Measured Power (dBm)	Duty Cycle Correction (dB)	*Maximum Conducted Average Output Power (dBm)	Limit (dBm)
FSK	903	5.93	2.178	8.108	30
* Maximum Conducted Average Output Power = Measured Power (CH PWR) + Duty Cycle Correction					

See the following test data plots for measurement of duty cycle and power.


Plot 5.2.4.1. Duty Cycle (in 100ms), 40 Pulses

Plot 5.2.4.2. Duty Cycle, Pulse Duration: 1.514 ms

Plot 5.2.4.3. Measured Power (CH PWR), 903 MHz, FSK modulation

5.3. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

5.3.1. Limit(s)

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

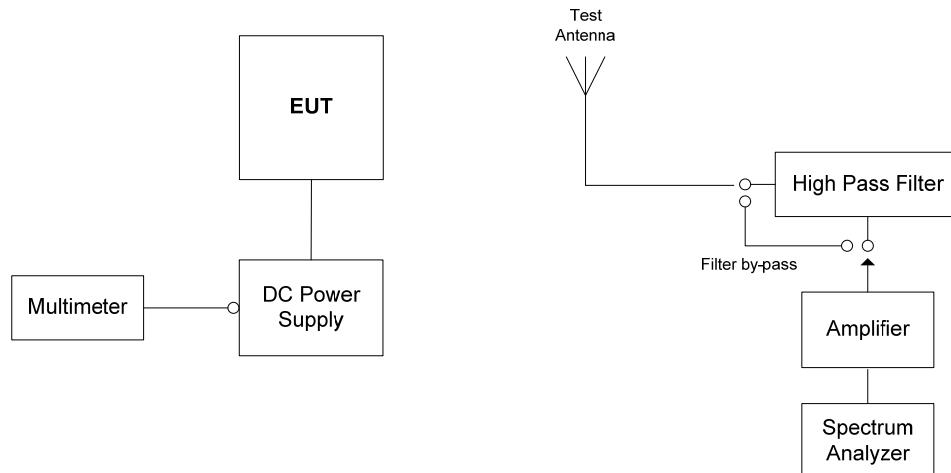
Section 15.205(a) - Restricted Bands of Operation

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
1.0495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	(²)
13.36–13.41.			

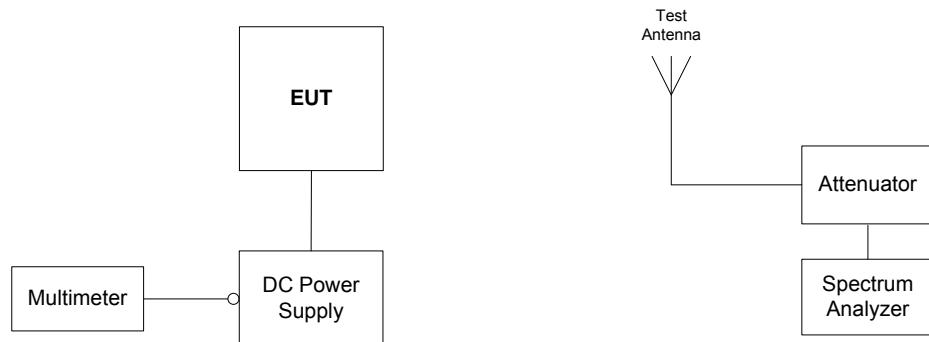
¹ Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

² Above 38.6

Section 15.209(a) - Field Strength Limits within Restricted Frequency Bands


Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2,400 / F (kHz)	300
0.490 - 1.705	24,000 / F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

5.3.2. Method of Measurements


FCC KDB 558074 D01 15.247 Meas Guidance v05 Sections 8.5, 8.6 and 8.7 / Subclauses 11.11, 11.12 and 11.13.of ANSI C63.10.

5.3.3. Test Arrangement

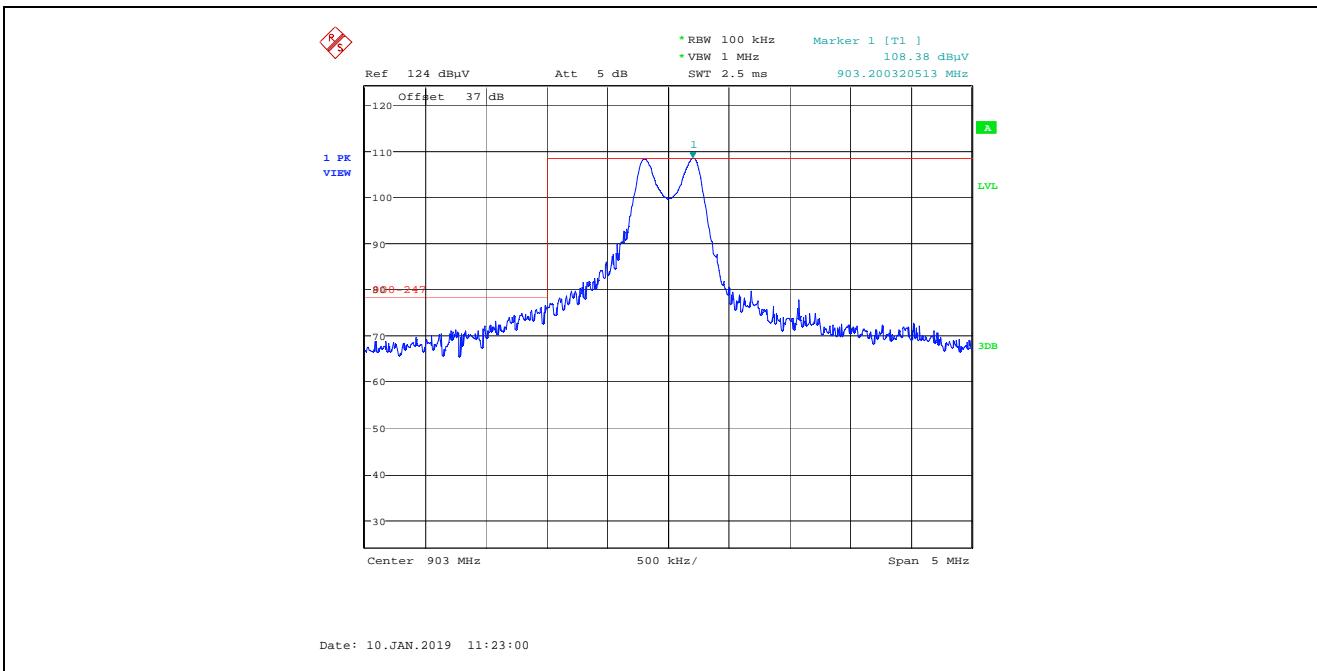
Radiated Emissions

Band-Edge Radiated Emissions

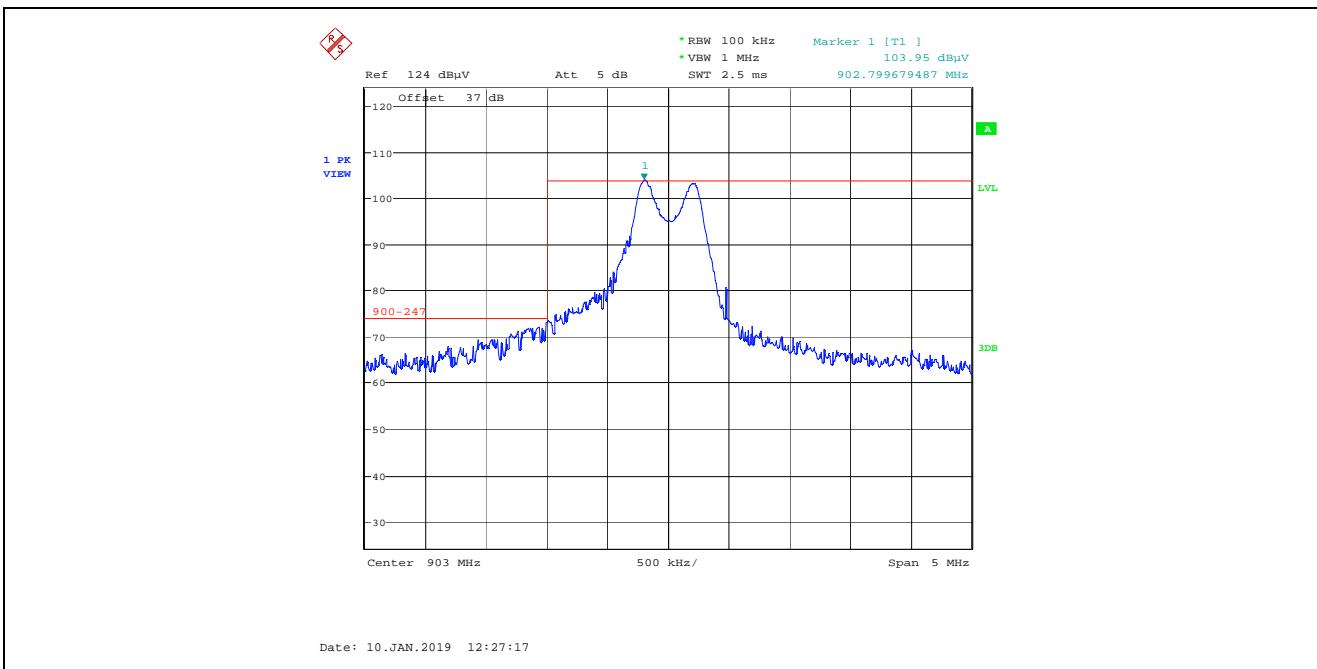
5.3.4. Test Data

5.3.4.1. Transmitter Spurious Radiated Emissions

Remark(s):


- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- Exploratory tests performed to determined worst-case test configurations, the following test results represent the worst-case.

Fundamental Frequency: 903 MHz							
Frequency Test Range: 30 MHz – 10 GHz							
Frequency (MHz)	RF Peak Level (dB μ V/m)	RF Avg Level (dB μ V/m)	Antenna Plane (H/V)	Limit 15.209 (dB μ V/m)	Limit 15.247 (dB μ V/m)	Margin (dB)	Pass/Fail
903	108.38	--	V	--	--	--	--
903	103.95	--	H	--	--	--	--
2709	59.75	44.54	V	54.0	78.4	-9.5	Pass*
2709	53.99	40.81	H	54.0	78.4	-13.2	Pass*
3612	49.58	34.95	V	54.0	78.4	-19.1	Pass*
3612	56.57	40.93	H	54.0	78.4	-13.1	Pass*
4515	53.95	38.33	H	54.0	78.4	-15.7	Pass*
5418	56.16	39.55	H	54.0	78.4	-14.5	Pass*

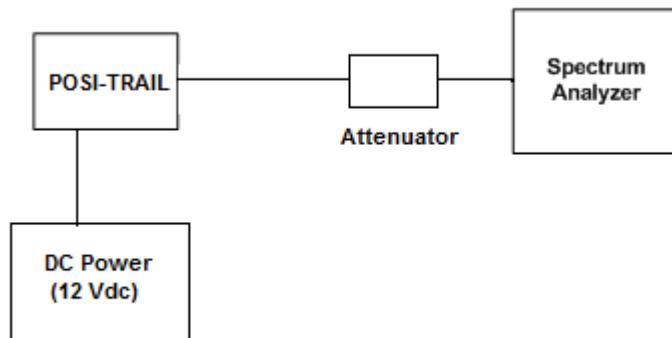

*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

5.3.4.2. Band-Edge Radiated Emissions

Plot 5.3.4.2.1. Band-Edge Radiated Emissions
Rx Antenna in Vertical Polarization, FSK Modulation, 903 MHz

Plot 5.3.4.2.2. Band-Edge Radiated Emissions
Rx Antenna in Horizontal Polarization, FSK Modulation, 903 MHz

5.4. POWER SPECTRAL DENSITY [§ 15.247(e)]

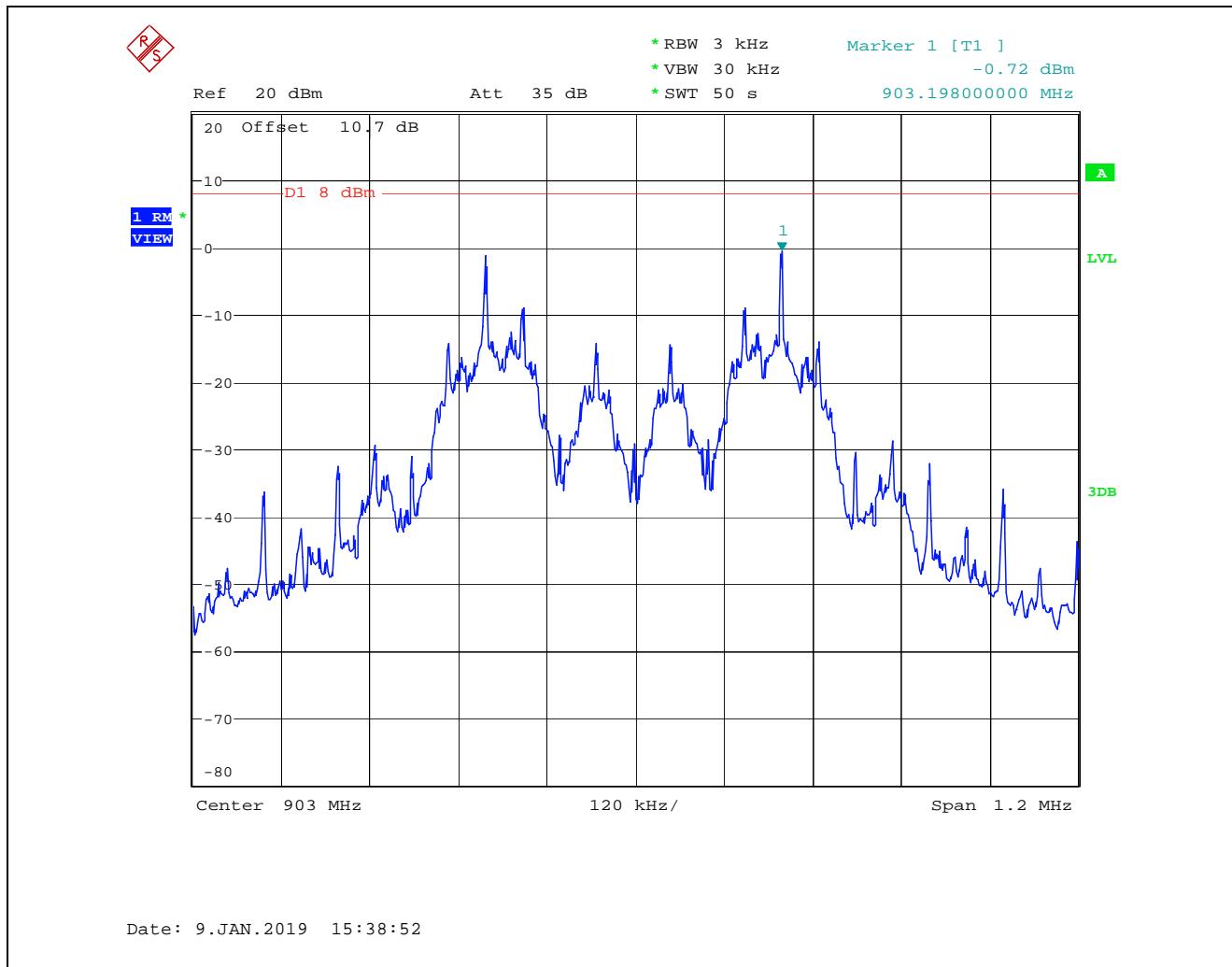

5.4.1. Limit(s)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.4.2. Method of Measurements

FCC KDB 558074 D01 15.247 Meas Guidance v05, Section 8.4 / ANSI C63.10 Subclause 11.10.6.

5.4.3. Test Arrangement



5.4.4. Test Data

Modulation	Frequency (MHz)	Measured PSD (dBm)	Duty Cycle Correction (dB)	*Average PSD (dBm)	Max. Limit (dBm)
FSK	903	-0.72	2.178	1.458	8

* Average PSD = Measured PSD + Duty Cycle Correction

Plot 5.4.4.1. Measured Power Spectral Density, 903 MHz

5.5. RF EXPOSURE REQUIREMENTS [§§ 15.247(i), 1.1310 & 2.1091]

5.5.1. Limits

§ 1.1310: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f ²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

Note 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

5.5.2. Method of Measurements

Calculation Method of Power Density/RF Safety Distance:

$$S = \frac{PG}{4\pi \cdot r^2} = \frac{EIRP}{4\pi \cdot r^2}$$

Where,

P: power input to the antenna in mW
EIRP: Equivalent (effective) isotropic radiated power.
S: power density mW/cm²
G: numeric gain of antenna relative to isotropic radiator
r: distance to centre of radiation in cm

5.5.3. RF Evaluation

Frequency (MHz)	EIRP (dBm)	EIRP (mW)	Evaluation Distance, r (cm)	Power Density, S (mW/cm ²)	MPE Limit (mW/cm ²)	Margin (mW/cm ²)
903	10.108	10.252	20	0.002	0.602	-0.600

TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSU	100398	20Hz–26.5 GHz	05 Oct 2019
Attenuator	Pasternack	PE7045-10	--	DC–12.4 GHz	See Note 1
Power Supply	Tenma	72-7295	490300297	1-40V, DC 5A	See Note 1
Multimeter	Tenma	72-6202	02080027	---	14 Dec 2019
EMI Receiver	Rohde & Schwarz	ESU40	100037	20Hz–40 GHz	04 May 2019
RF Amplifier	Com-Power	PAM-0118A	551052	0.5 – 18 GHz	26 Jul 2019
RF Amplifier	Com-Power	PAM-0118A	551016	0.5 – 18 GHz	09 Mar 2019
Biconilog	EMCO	3142C	00026873	26-3000 MHz	27 Apr 2020
Horn Antenna	EMCO	3117	00119425	1 – 18 GHz	29 Jun 2019
High Pass Filter	Microphase	FSH-5915	--	Cut off 963 MHz	See Note 1
Log periodic Antenna	ETS- Lindgren	3148	1101	200-2000MHz	26 Oct 2020
Note 1: Internal Verification/Calibration check					

EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u_c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)}$	± 1.44	± 1.8
U	Expanded uncertainty U: $U = 2u_c(y)$	± 2.89	± 3.6

6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
u_c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)}$	± 2.39	± 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	± 4.79	± 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u_c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)}$	± 2.39	± 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	± 4.78	± 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u_c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)}$	± 1.87	Under consideration
U	Expanded uncertainty U: $U = 2u_c(y)$	± 3.75	Under consideration