

RF test report
180598-AU01+W01
FCC
MSR Electronics GmbH
Transmitter module
MSR385SMB64

Customer:
Schmidiger GmbH

Gutenegg 1
6125 Menzberg
Switzerland
Tel.: +41 41 494 07

EMV **TESTHAUS** GmbH

Gustav-Hertz-Straße 35
94315 Straubing
Germany
Tel.: +49 9421 56868-0
Fax: +49 9421 56868-100
Email: info@emv-testhaus.com

Accreditation:

Test Firm Type "accredited": Valid until 2021-05-30
MRA US-EU, FCC designation number: DE0010
Bnetza-CAB-02/21-02/5 Valid until 2023-11-26

Recognized on March 14th, 2019 by the
Department of Innovation, Science and Economic Development (ISED) Canada
as a wireless testing laboratory
CAB identifier: DE0011

Location of Testing:

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

The technical accuracy is guaranteed through the quality management of
EMV **TESTHAUS** GmbH.

Table of contents

1	Summary of test results	6
2	Referenced publications	7
3	Equipment under test (EUT)	8
4	Test configuration and mode of operation	9
4.1	Test configuration	9
4.2	Mode of operation	9
5	Measurement Procedures	10
5.1	20 dB bandwidth	10
5.2	Occupied bandwidth (99%)	10
5.3	Spurious radiated emissions 9 kHz to 10 th harmonic	11
5.4	Radiated emissions	11
6	Test results	15
6.1	Environmental conditions	15
6.2	Field strength of fundamental wave	16
6.3	Spurious radiated emissions 9 kHz to 10th harmonic	18
6.4	Correction for pulse operation (duty cycle)	26
6.5	20 dB bandwidth	30
6.6	Duration of transmission and silent period	32
7	Equipment calibration status	35
8	Measurement uncertainties	36
9	Revision history	37
10	Additional documents	37

List of figures

Figure 1: Setup for radiated emission test below 30 MHz	11
Figure 2: Setup for radiated emission test from 30 MHz to 1 GHz	12
Figure 3: Setup for radiated emission test above 1 GHz	13
Figure 4: Chart of spurious radiated emission test 9 kHz - 30 MHz in position Z at 3 m	21
Figure 5: Chart of spurious radiated emission test 30 MHz - 1 GHz in position Y at 3 m	22
Figure 6: Chart of spurious radiated emission final test 1 GHz to 8 GHz in position Y at 3 m	24
Figure 7: Chart of spurious radiated emission final test from 8 GHz to 10 GHz in position Y at 3 m	25
Figure 8: Test protocol correction for pulse operation (duty cycle) on 914.35 MHz in 600 ms (Trigger-offset -10 ms)	27
Figure 9: Detailed view of signal in 100 ms (Trigger-offset -10 ms)	28
Figure 10: Detailed view of the burst in 20 ms (Trigger offset -10 ms)	29
Figure 11: Chart of 20 dB bandwidth test	31
Figure 12: Test protocol of signal deactivation in 20.5 s (trigger offset -0.5 s)	33
Figure 13: Test protocol of transmission duration of one transmission (trigger offset -0.5 ms)	34

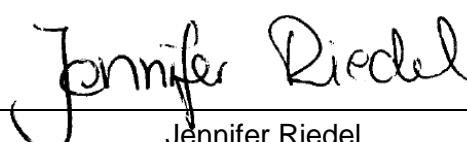

List of tables

Table 1: Devices used for testing	9
Table 2: Test result of field strength of fundamental wave	17
Table 3: Radiated emission limits according to §15.231	19
Table 4: General radiated emission limits according to §15.209	19
Table 5: Final result of spurious radiated emission test 30 MHz to 1 GHz in position Y at 3 m	23
Table 6: Final results of 20 dB bandwidth	31
Table 7: Equipment calibration status	35
Table 8: Measurement uncertainty	36

1 Summary of test results

47 CFR part and section	Test	Page	Result	Note(s)
15.207(a)	AC power line conducted emissions 150 kHz to 30 MHz	---	Not applicable	---
15.231(e)	Field strength of the fundamental wave	15	Passed	---
15.231(b)/ (e)	Spurious emissions (magnetic field) 9 kHz – 30 MHz	18	Passed	---
15.231(b)/ (e)	Spurious emissions radiated (electrical field) 30 MHz – 10 th harmonic	18	Passed	---
15.231(b)2	Correction for pulse operation (duty cycle)	26	Passed	---
15.231(c)	20 dB bandwidth	30	Passed	---
15.231(e)	Duration of transmission and silent period	32	Passed	

Straubing, June 6, 2019

Jennifer Riedel
Test engineer
EMV **TESTHAUS** GmbH

Konrad Graßl
Head of radio department
EMV **TESTHAUS** GmbH

2 Referenced publications

The tests were performed according to following standards:

<i>FCC Rules and Regulations Part 15, Subpart A – General (November, 2017)</i>	
Part 15, Subpart A, Section 15.31	Measurement Standards
Part 15, Subpart A, Section 15.33	Frequency range of radiated measurements
Part 15, Subpart A, Section 15.35	Measurement detector functions and bandwidths
<i>FCC Rules and Regulations Part 15, Subpart C – Intentional Radiators (November, 2017)</i>	
Part 15, Subpart C, Section 15.203	Antenna Requirement
Part 15, Subpart C, Section 15.204	External radio frequency power amplifiers and antenna modifications
Part 15, Subpart C, Section 15.205	Restricted bands of operation
Part 15, Subpart C, Section 15.207	Conducted limits
Part 15, Subpart C, Section 15.209	Radiated emission limits, general requirements
Part 15, Subpart C, Section 15.231	Periodic operation in the band 40.66 MHz - 40.7 MHz and above 70 MHz
ANSI C63.10: 2013	Procedures for Compliance Testing of Unlicensed Wireless Devices

3 Equipment under test (EUT)

Product type: Transmitter module
Model name: MSR385SMB64
Serial number(s): SN0791
Applicant: MSR Electronics GmbH

Manufacturer: MSR Electronics GmbH
Version: Hardware: A 43 16
Software: 07 08 19
Additional modifications: None
Short description: The EUT is a transmitter designed to record the temperature, humidity and pressure using sensors and send the data to a data logger. The EUT is used in many fields of application such as monitoring.
FCC ID: 2ASKD-MSR385SMB64
Frequency range: Above 70 MHz
Operating frequencies: 914.35 MHz
Channel spacing: not specified
Number of RF channels: 1
System type: RF Transmitter
Modulation type(s): GFSK
Antenna type(s): PCB antenna
Antenna gain(s): < 0 dBi
Power supply: Leclanché or lithium battery supply
Nominal voltage: 3.6 V
Minimum voltage: 2.8 V
Maximum voltage: 3.7 V
Temperature range: -20 °C to +125 °C
Device type: Portable Mobile Fixed

4 Test configuration and mode of operation

4.1 Test configuration

Device	Type designation	Serial or inventory no.	Manufacturer
<i>EUT</i>			
Transmitter module	MSR385SMB64	SN0791	MSR Electronics GmbH

Table 1: Devices used for testing

4.2 Mode of operation

EUT was tested in following mode(s) of operation:

Test mode/ EUT	Behavior
MSR385SMB64	Carrier wave on 914.35 MHz in transmitting interval of 100 ms

5 Measurement Procedures

5.1 20 dB bandwidth

The 20 dB bandwidth test method refers to section 6.9.2 of ANSI C63.10 and shall be as follows:

Spectrum analyzer settings:

Spectrum analyzer center frequency = nominal EUT channel center frequency

Span = between two times and five times the OBW

IF filter bandwidth (3 dB RBW) = between 1 % to 5 % of the OBW

VBW \geq 3 x RBW

Detector function = peak

Trace mode = max hold

Reference level: more than $10 \cdot \log(\text{OBW}/\text{RBW})$ dB above peak of spectral envelope

Measure the maximum width of the emission that is constrained by the frequencies associated with the two markers (upper and lower frequencies) that are at or slightly below the 20 dB down amplitude relative to the maximum level measured in the fundamental emission.

If possible, use the automatic bandwidth measurement capability of the spectrum analyzer using the X dB bandwidth mode with X set to 20 dB. Submit this plot(s).

The 20 dB bandwidth is the frequency difference between the two markers.

For test setup see clause 5.4.

5.2 Occupied bandwidth (99%)

The occupied bandwidth test method refers to section 6.9.3 of ANSI C63.10 and shall be as follows.

Spectrum analyzer settings:

Span = between 1.5 times and 5.0 times of the OBW, centered on a channel

RBW \geq in the range of 1% to 5% of the OBW

VBW \geq approximately three times the RBW

Sweep time = auto coupled

Detector function = peak

Trace mode = max hold

Reference level: more than $10 \cdot \log(\text{OBW}/\text{RBW})$ dB above peak of spectral envelope

Use the 99% power bandwidth function of the spectrum analyzer and report the measured bandwidth.

For test setup see clause 5.4.

5.3 Spurious radiated emissions 9 kHz to 10th harmonic

For test setup and test method see clause 5.4.

5.4 Radiated emissions

5.4.1 Radiated emissions below 30 MHz

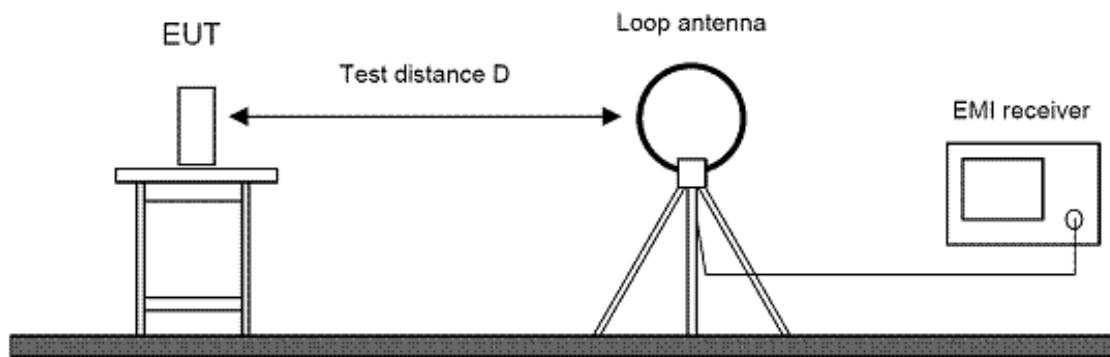


Figure 1: Setup for radiated emission test below 30 MHz

Sample calculation:

Frequency (MHz)	Reading value (dB μ V)	Antenna correction (dB/m)	Cable attenuation (dB)	Correction factor (Corr.) (dB/m)	Level (dB μ V/m)
10	20.00	19.59	0.33	19.92	39.92

Correction factor = Antenna correction + Cable attenuation

Level = Reading value + Correction factor = 20 dB μ V + 19.92 dB/m = 39.92 dB μ V/m

The test method for radiated emissions below 30 MHz refers to section 6.4 of ANSI C63.10 and shall be as follows:

1. EUT is configured according to ANSI C63.10. It is placed on the turntable 0.8 meter above ground. The receiving antenna is located 3 meters from the EUT. The test setup is placed inside a compact diagnostic chamber.
2. EUT and all peripherals are powered on.
3. The loop antenna is set in parallel with the antenna of the EUT.
4. The EMI receiver performs a scan from 9 kHz to 30 MHz with peak detector and measurement bandwidth set to 200 Hz for frequencies up to 150 kHz and 9 or 10 kHz for frequencies above.
5. The turn table is rotated to 8 different positions (360° / 8).
6. The antenna is set in line with the antenna of the EUT and steps 4 and 5 are repeated.

7. Then the test setup is placed in an OATS with 3 m distance and all peak values over the limit or with less margin than 10 dB are marked and re-measured with a quasi-peak detector except for the frequency bands 9 to 90 kHz and 110 to 490 kHz, where average detector applies.
8. The turntable is rotated by 360 degrees to determine the position of the highest radiation.
9. The highest value for each frequency is recorded.

5.4.2 Radiated emissions from 30 MHz to 1 GHz

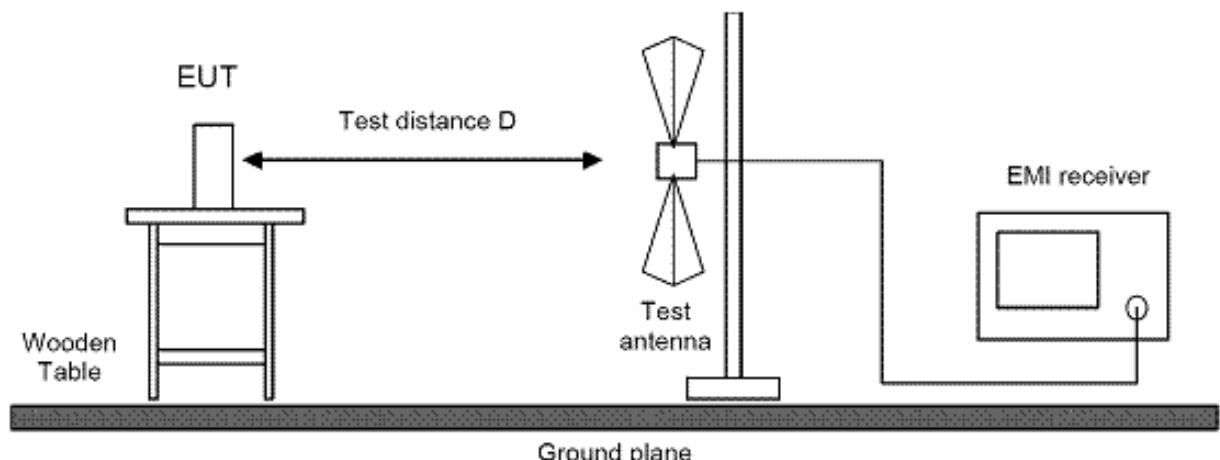


Figure 2: Setup for radiated emission test from 30 MHz to 1 GHz

Sample calculation:

Frequency (MHz)	Reading value (dB μ V)	Antenna correction (dB/m)	Cable attenuation (dB)	Correction factor (Corr.) (dB/m)	Level (dB μ V/m)
100	30.00	11.71	1.06	12.77	42.77

Correction factor = Antenna correction + Cable attenuation

Level = Reading value + Correction factor = 30 dB μ V + 12.77 dB/m = 42.77 dB μ V/m

The test method for radiated emissions from 30 MHz to 1 GHz refers to section 6.5 of ANSI C63.10 and shall be as follows:

1. EUT is configured according to ANSI C63.10. It is placed on the turntable 0.8 meter above ground. The receiving antenna is located 3 meters from the EUT. The test setup is placed inside a compact diagnostic chamber.
2. EUT and all peripherals are powered on.
3. The broadband antenna is set to vertical polarization.
4. The EMI receiver performs a scan from 30 MHz to 1000 MHz with peak detector and measurement bandwidth set to 120 kHz.
5. The turn table is rotated to 6 different positions (360° / 6).

6. The antenna polarization is changed to horizontal and steps 4 and 5 are repeated.
7. Then the test setup is placed in an OATS at 3 m distance and all peak values over the limit or with less margin than 10 dB are marked and re-measured with a quasi-peak detector.
8. The turntable is rotated by 360 degrees to determine the position of the highest radiation.
9. The height of the broadband receiving antenna is varied between 1 meter and 4 meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
10. The highest value for each frequency is recorded.

5.4.3 Radiated emissions above 1 GHz

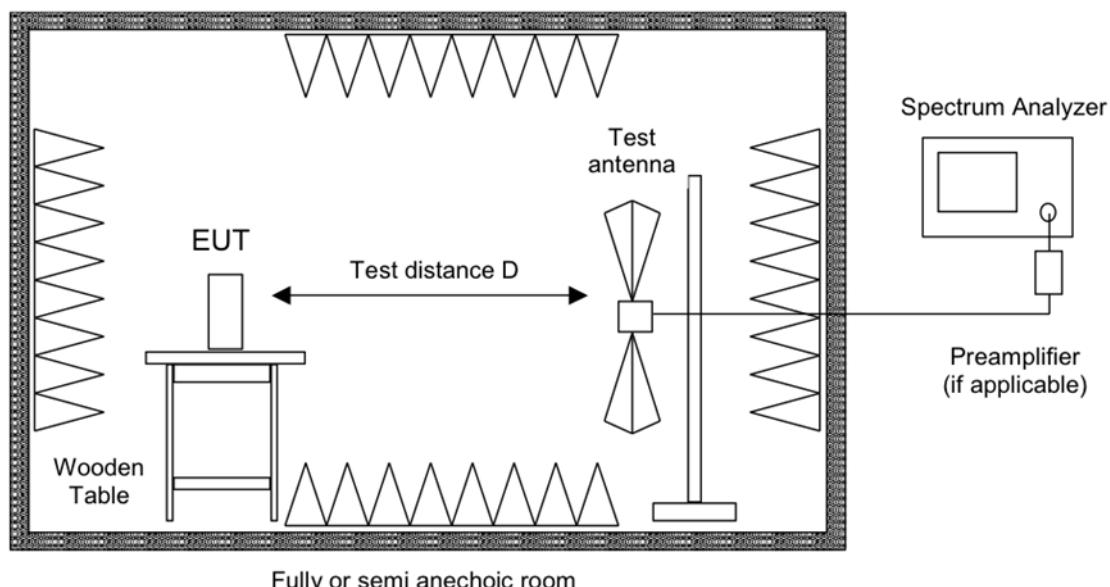


Figure 3: Setup for radiated emission test above 1 GHz

Sample calculation:

Frequency (MHz)	Reading value (dB μ V)	Antenna correction (dB/m)	Correction pre- amplifier (dB)	Cable attenuation (dB)	Correction factor (Corr.) (dB/m)	Level (dB μ V/m)
2400	50.00	27.76	-47.91	5.24	-14.92	35.08

Correction factor = Antenna correction + Correction pre-amplifier + Cable attenuation

Level = Reading value + Correction factor = 50.00 dB μ V - 14.92 dB/m = 35.08 dB μ V/m

The test method for radiated emissions above 1 GHz refers to section 6.6 of ANSI C63.10 and shall be as follows:

1. EUT is configured according to ANSI C63.10. It is placed on the turntable 1.5 meter above ground. The test setup is placed inside a semi-anechoic chamber with RF absorbers on the floor.
2. EUT and all peripherals are powered on.
3. To identify the critical frequencies, extrapolatory radiated emission tests are performed at a closer distance than 3 meters (e.g. 1 meter). The critical frequencies found are noted.
4. For pre-scan the receiving antenna is located 3 meters from the EUT.
5. The broadband horn antenna is set to vertical polarization.
6. The EMI receiver performs a scan from 1 GHz to the 10th harmonic of the fundamental frequency with peak and average detector activated simultaneously and measurement bandwidth set to 1 MHz. The trace data is recorded using the max hold function.
7. The turntable is rotated in steps of 15°.
8. After a full turn by 360° the antenna polarization is changed to horizontal and steps 4 and 5 are repeated.
9. After the scan all peak values over the limit or with less margin than 10 dB are marked. If critical frequencies recorded during extrapolatory radiated emission tests are not contained, they are added to this list.
10. Emission levels at listed frequencies are maximized by moving the turntable and varying the antenna height until maximum of emission is found.
11. The turntable is rotated by 360 degrees to determine the position of the highest radiation.
12. The height of the broadband receiving antenna is varied between 1 meter and the upper height above ground to find the maximum emission field strength of both horizontal and vertical polarization. For equipment that is tested in multiple orientations, the upper height is limited to 2.5 meters or 0.5 meters above the top of the EUT, whichever is higher. For all other equipment the upper height is 4 meters.
13. The highest value for each frequency is recorded.

6 Test results

This clause gives details about the test results as collected in the summary of test results on page 6.

6.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15 - 35 °C

Humidity: 30 - 60 %

Atmospheric pressure: 86 - 106 kPa

6.2 Field strength of fundamental wave

47 CFR part and section: 15.231(e)

Measurement procedure: See 5.3

Result

Test passed

Test not passed

6.2.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input type="checkbox"/> Open Area Test Site (OATS)	---	EMV TESTHAUS	E00354
<input checked="" type="checkbox"/> Semi Anechoic Chamber (SAC)	---	Albatross Projects	E00716
<input type="checkbox"/> Anechoic Chamber (AC)	---	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver (SAC)	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00552
<input checked="" type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Preamplifier	AMF-5D-00501800	Miteq	W00089
<input type="checkbox"/> Preamplifier	AMF-6F-16002650	Miteq	W00090
<input type="checkbox"/> Preamplifier	ALS05749	MIWEKO	W01007
<input type="checkbox"/> Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9163	Schwarzbeck	E00012
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input checked="" type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00053
<input type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input checked="" type="checkbox"/> Cable set of SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Measurement software	E10	ib comPLAN	E00443
<input checked="" type="checkbox"/> Measurement software	EMC 32	Rohde & Schwarz	E00777

6.2.2 Limit according to 15.231(e)

Frequency [MHz]	Field strength Fs [μ V/m]	Field strength [dB μ V/m]	Measurement distance d [m]
40.66 – 40.70	1000	60	3
70 – 130	500	54.0	3
130 – 174	500 to 1500*	54.0 to 63.5*	3
174 – 260	1500	63.5	3
260 – 470	1500 to 5000*	63.5 to 74.0*	3
Above 470	5000	74.0	3

*Linear interpolation

6.2.3 Test Result

Performed by:	Jennifer Riedel	Date of test:	March 15, 2019
Test distance:	<input type="checkbox"/> 1 m	<input type="checkbox"/> 1.5 m	<input checked="" type="checkbox"/> 3 m
Polarisation:	<input checked="" type="checkbox"/> horizontal	<input type="checkbox"/> vertical	<input type="checkbox"/> m
EUT Position:	<input type="checkbox"/> Position X	<input checked="" type="checkbox"/> Position Y	<input type="checkbox"/> Position Z

f [MHz]	Level PK [dB μ V/m]	Limit PK [dB μ V/m]	Margin PK [dB]	Duty cycle factor [dB]	Level AV [dB μ V/m]	Limit AV [dB μ V/m]	Margin AV [dB]
914.280	88.07	94.0	5.93	-31.3	56.77	74.0	17.23

Table 2: Test result of field strength of fundamental wave

6.3 Spurious radiated emissions 9 kHz to 10th harmonic

47 CFR part and section: 15.231(b)/ (e)

Measurement procedure: See 5.3

Result Test passed Test not passed

Remark: According to 15.231 (b) 3 the measurements are referred to the limits according 15.209.

6.3.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input checked="" type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input type="checkbox"/> Open Area Test Site (OATS)	---	EMV TESTHAUS	E00354
<input checked="" type="checkbox"/> Semi Anechoic Chamber (SAC)	---	Albatross Projects	E00716
<input type="checkbox"/> Anechoic Chamber (AC)	---	EMV TESTHAUS	E00100
<input type="checkbox"/> EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input checked="" type="checkbox"/> EMI test receiver (SAC)	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00552
<input checked="" type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input type="checkbox"/> Preamplifier	AMF-5D-00501800	Miteq	W00089
<input type="checkbox"/> Preamplifier	AMF-6F-16002650	Miteq	W00090
<input checked="" type="checkbox"/> Preamplifier	ALS05749	MIWEKO	W01007
<input checked="" type="checkbox"/> Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/> TRILOG broadband antenna (CDC)	VULB 9163	Schwarzbeck	E00012
<input type="checkbox"/> TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
<input checked="" type="checkbox"/> TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
<input checked="" type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00052
<input type="checkbox"/> Horn antenna	BBHA 9120D	Schwarzbeck	W00053
<input type="checkbox"/> Horn antenna	BBHA 9170	Schwarzbeck	W00054
<input checked="" type="checkbox"/> Cable set of SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
<input type="checkbox"/> Measurement software	E10	ib comPLAN	E00443
<input checked="" type="checkbox"/> Measurement software	EMC 32	Rohde & Schwarz	E00777

6.3.2 Limits

According to §15.231 (e):

Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

Table 3: Radiated emission limits according to §15.231

According to §15.231 (b) 3:

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Table 4: General radiated emission limits according to §15.209

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

$$d_{\text{near field}} = 47.77 / f_{\text{MHz}}, \text{ or}$$

$$f_{\text{MHz}} = 47.77 / d_{\text{near field}}$$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula for determining the recalculation factor:

$$f_{\text{MHz}}(300 \text{ m}) \approx 0.159 \text{ MHz}$$

$$f_{\text{MHz}}(30 \text{ m}) \approx 1.592 \text{ MHz}$$

$$f_{\text{MHz}}(3 \text{ m}) \approx 15.923 \text{ MHz}$$

For $9 \text{ kHz} \leq f \leq 159 \text{ kHz}$ and $490 \text{ kHz} < f \leq 1.592 \text{ MHz}$:

$$\text{Recalculation factor} = -40 \log(d_{\text{limit}} / d_{\text{measure}})$$

For $159 \text{ kHz} < f \leq 490 \text{ kHz}$ and $1.592 \text{ MHz} < f \leq 15.923 \text{ MHz}$:

$$\text{Recalculation factor} = -40 \log(d_{\text{near field}} / d_{\text{measure}}) - 20 \log(d_{\text{limit}} / d_{\text{near field}})$$

For $f > 15.923 \text{ MHz}$:

$$\text{Recalculation factor} = -20 \log(d_{\text{limit}} / d_{\text{measure}})$$

The limits in the graphics and value lists are derived from the general radiated emission limits as specified in 15.209 using the recalculation factor as described above.

6.3.3 Test results from 9 kHz to 30 MHz

Performed by:	Jennifer Riedel		Date of test:	March 15 to March 19, 2019		
Test distance:	Prescan:	<input checked="" type="checkbox"/> 3 m	Final scan:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m	<input type="checkbox"/> m
Polarisation:	<input checked="" type="checkbox"/> parallel	<input checked="" type="checkbox"/> in line	<input type="checkbox"/> angle:°			
EUT Position:	<input checked="" type="checkbox"/> Position X	<input checked="" type="checkbox"/> Position Y	<input checked="" type="checkbox"/> Position Z			

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
9 kHz – 90 kHz	100 Hz	200 Hz	PK	AV	100 ms	2 s	20 dB
90 kHz – 110 kHz	100 Hz	200 Hz	PK	QPK	100 ms	2 s	20 dB
110 kHz – 150 kHz	100 Hz	200 Hz	PK	AV	100 ms	2 s	20 dB
150 kHz – 490 kHz	4.5 kHz	9 kHz	PK	AV	100 ms	2 s	20 dB
490 kHz – 30 MHz	4.5 kHz	9 kHz	PK	QPK	100 ms	2 s	20 dB

Note: In this test report only the charts of the worst case positions are shown. These are found through premeasurements.

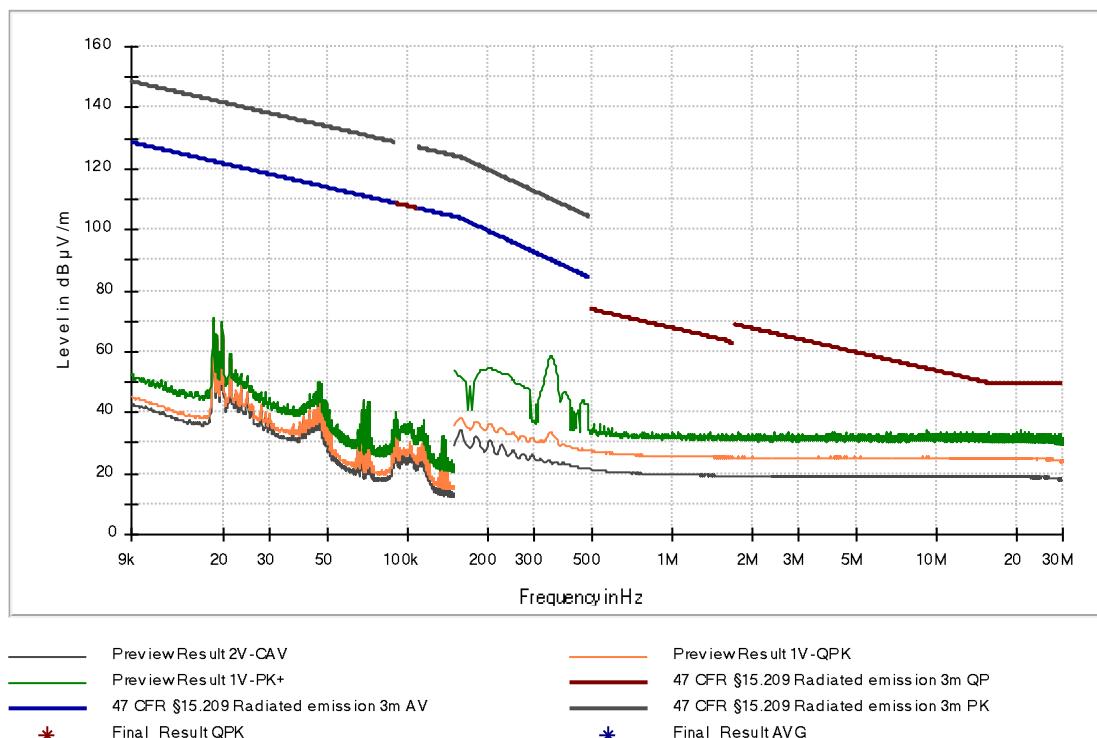


Figure 4: Chart of spurious radiated emission test 9 kHz - 30 MHz in position Z at 3 m

6.3.4 Test results from 30 MHz to 1 GHz

Performed by:	Jennifer Riedel		Date of test:	March 15 to March 19, 2019	
Test distance:	Prescan:	<input checked="" type="checkbox"/> 3 m	Final scan:	<input checked="" type="checkbox"/> 3 m	<input type="checkbox"/> 10 m <input type="checkbox"/> m
Polarisation:	<input checked="" type="checkbox"/> horizontal	<input checked="" type="checkbox"/> vertical			
EUT Position:	<input checked="" type="checkbox"/> Position X	<input checked="" type="checkbox"/> Position Y	<input checked="" type="checkbox"/> Position Z		

Frequency range	Step size	IF Band-width	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	50 kHz	120 kHz	PK	PK	Coupled	1 s	20 dB

Note: In this test report only the charts of the worst case positions are shown. These are found through premeasurements

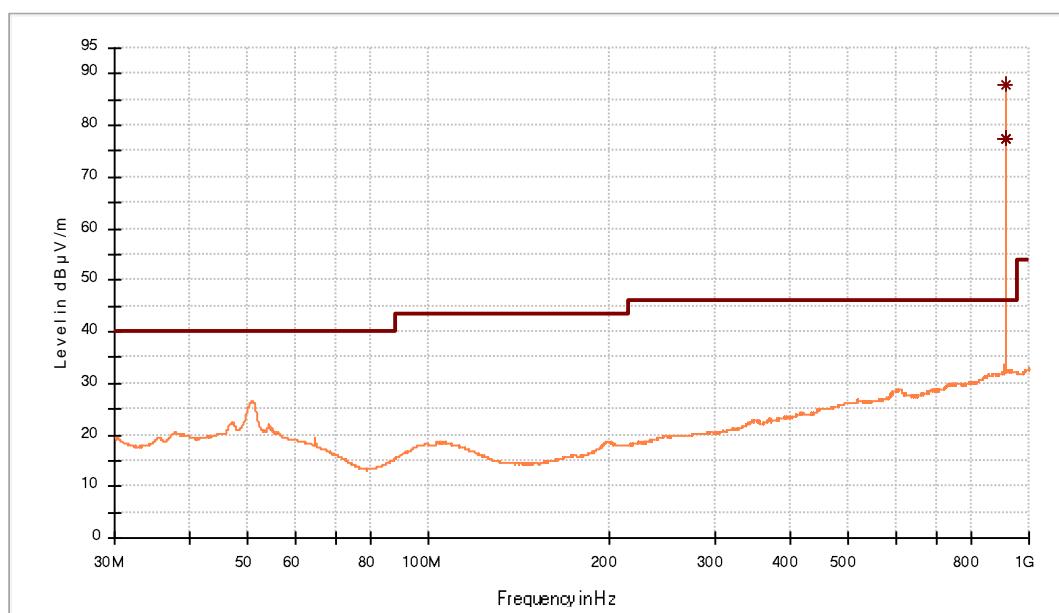


Figure 5: Chart of spurious radiated emission test 30 MHz - 1 GHz in position Y at 3 m

Note: Except of the fundamental no assessable emissions could be detected. The fundamental wave is evaluated in clause 6.2.

Frequency (MHz)	QuasiPeak (dB μ V/m)	Peak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
914.280000	77.57	---			1000.0	120.000	150.0	V	25.8
914.280000	---	88.07			1000.0	120.000	150.0	V	25.8

Table 5: Final result of spurious radiated emission test 30 MHz to 1 GHz in position Y at 3 m

6.3.5 Test results from 1 GHz to 10th harmonic

Performed by:	Jennifer Riedel	Date of test:	March 15 to March 19, 2019
Test distance:	Prescan: <input type="checkbox"/> 1 m <input checked="" type="checkbox"/> 3 m <input type="checkbox"/> m Final scan: <input checked="" type="checkbox"/> 3 m <input type="checkbox"/> 10 m <input type="checkbox"/> m		
Polarisation:	<input checked="" type="checkbox"/> horizontal <input checked="" type="checkbox"/> vertical		
EUT Position:	<input checked="" type="checkbox"/> Position X <input checked="" type="checkbox"/> Position Y <input checked="" type="checkbox"/> Position Z		

Frequency range	Step size	IF Bandwidth	Detector		Measurement Time		Preamplifier
			Prescan	Final scan	Prescan	Final scan	
1 GHz – 10 GHz	250 kHz	1 MHz	PK	PK	50 ms	1000 ms	30 dB
1 GHz – 10 GHz	250 kHz	1 MHz	AV	AV	50 ms	1000 ms	30 dB

Note 1: In this test report only the charts of the worst case positions are shown. These are found through premeasurements.

	EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany	MSR Electronics GmbH Transmitter module MSR385SMB64	
		180598-AU01+W01	Page 23 of 37

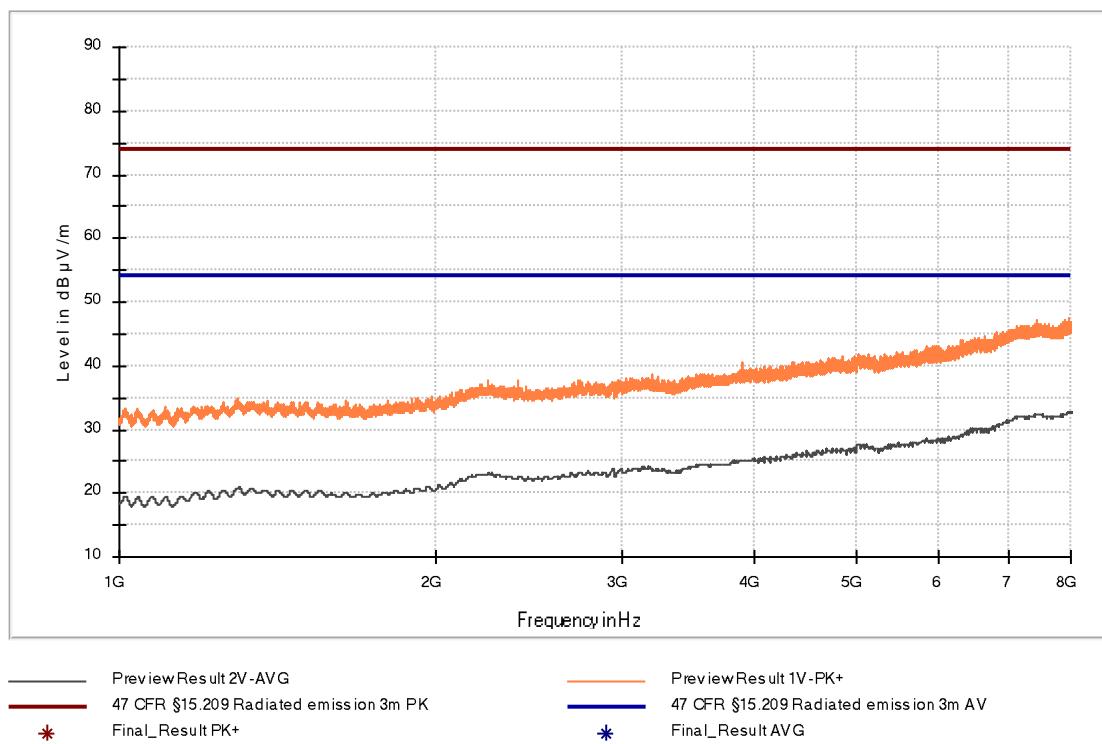


Figure 6: Chart of spurious radiated emission final test 1 GHz to 8 GHz in position Y at 3 m

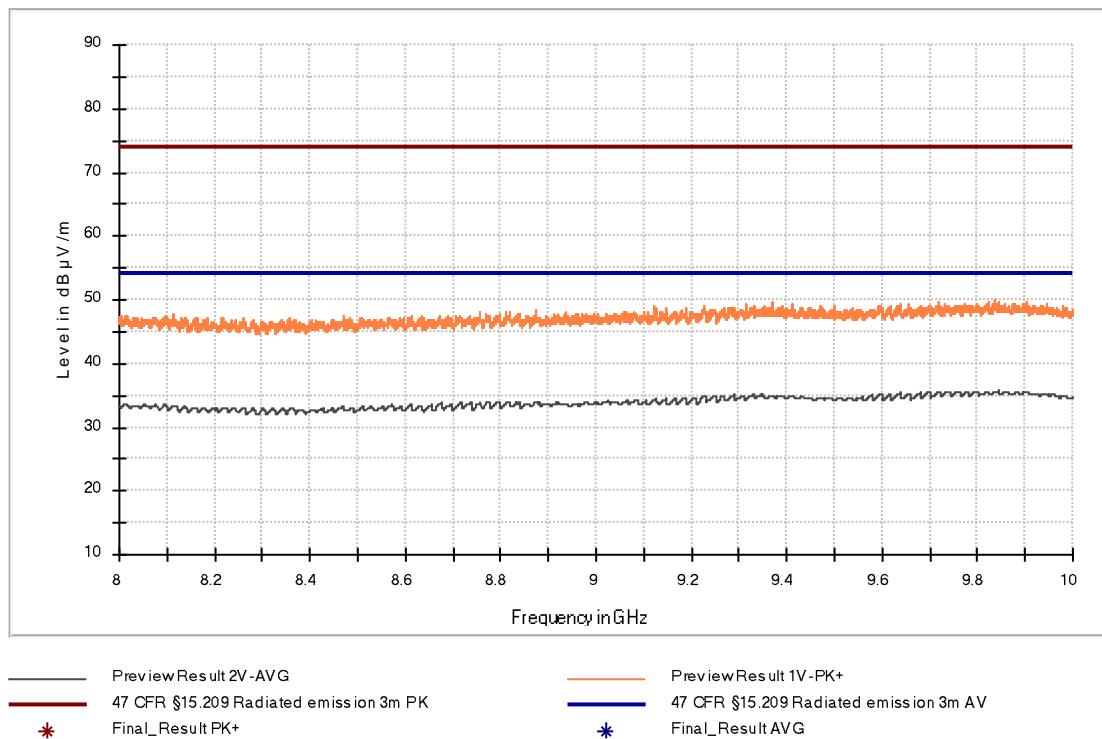


Figure 7: Chart of spurious radiated emission final test from 8 GHz to 10 GHz in position Y at 3 m

6.4 Correction for pulse operation (duty cycle)

47 CFR part and section: 15.231(b)2

Measurement procedure: See 5.2

Result

Test passed

Test not passed

6.4.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input type="checkbox"/> Laboratory environment	---	---	---
<input checked="" type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input type="checkbox"/> EMI test receiver	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input checked="" type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input checked="" type="checkbox"/> Measuring antenna set	---	---	A00088

6.4.2 Applicable standard

According to FCC Part 15C, Section 15.35(c):

The emissions from intentional radiators shall not exceed the effective field strength limits.

6.4.3 Description of measurement

The duty cycle is measured using stimulus signal from a car key as used in real application.
The duty cycle factor (dB) is calculated applying the following formula:

$$KE = 20 \lg \frac{t_{ib} * p}{T_w}$$

K_E	pulse operation correction factor	(dB)
t_{iw}	pulse duration for one complete pulse track	(ms)
t_{ib}	pulse duration for one pulse	(ms)
T_w	a period of the pulse track	(ms)
P	number of pulses in one train	(ms)

6.4.4 Test results

Performed by: Jennifer Riedel Date of test: March 13, 2019

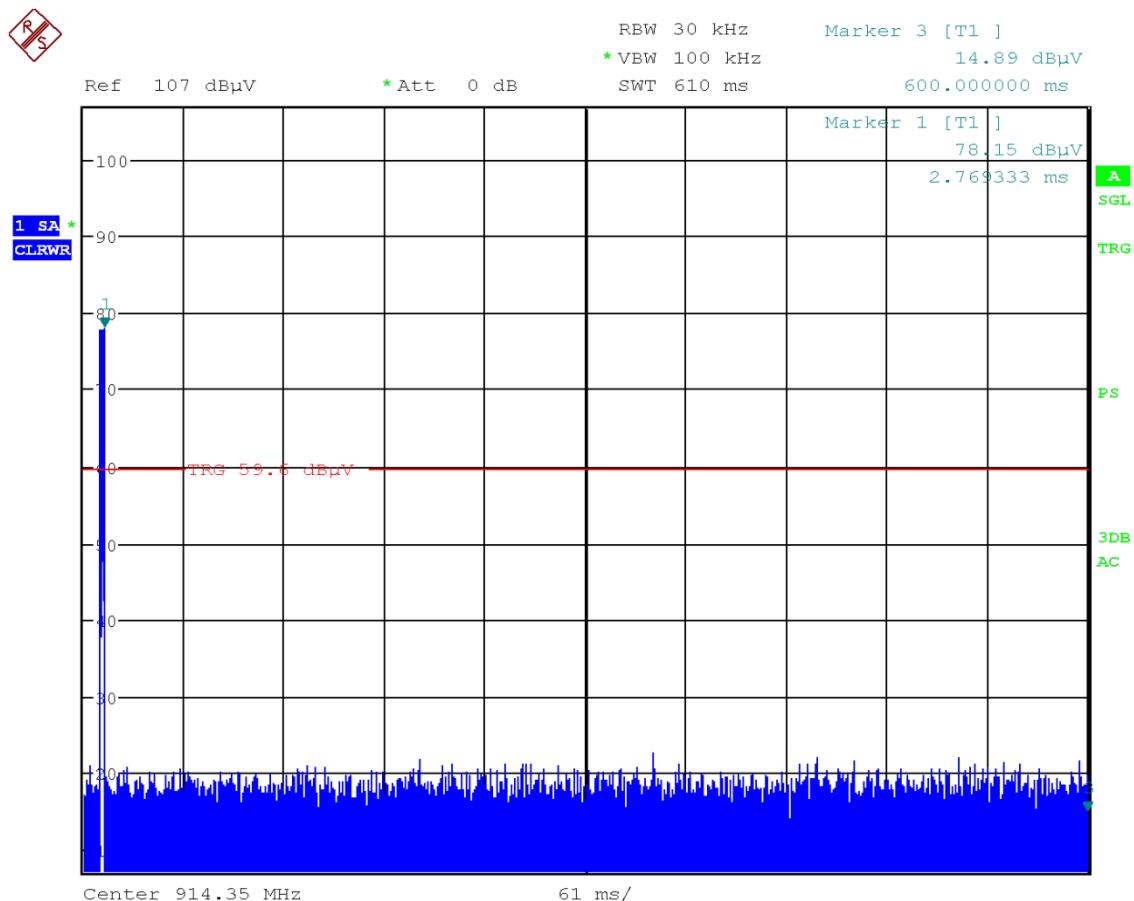


Figure 8: Test protocol correction for pulse operation (duty cycle) on 914.35 MHz in 600 ms (Trigger-offset -10 ms)

As shown in Figure 8, there is only one burst in 600 ms. To get a closer look on the burst, the sweep time was reduced to 100 ms (Figure 9).

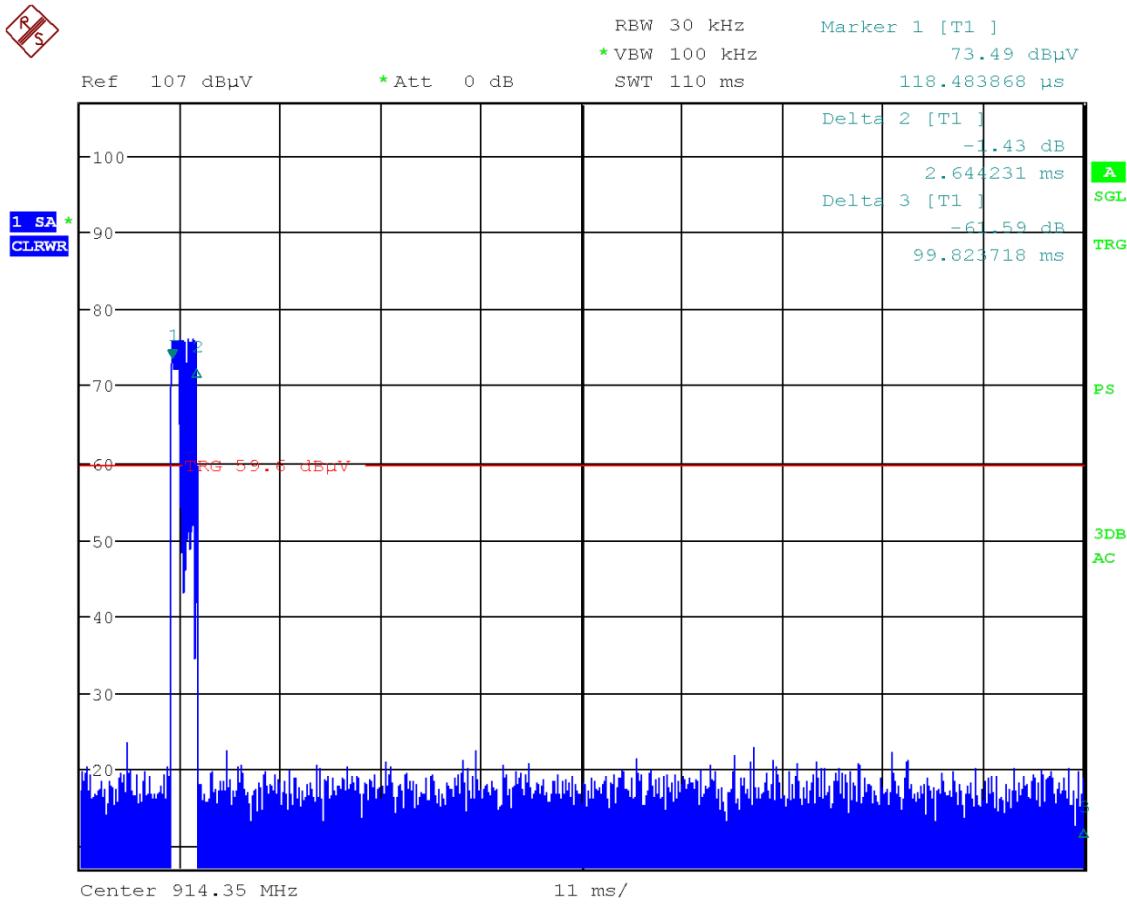


Figure 9: Detailed view of signal in 100 ms (Trigger-offset -10 ms)

For a more detailed measurement of the duration of the burst, the sweep time was reduced to 20 ms (Figure 10).

R/S

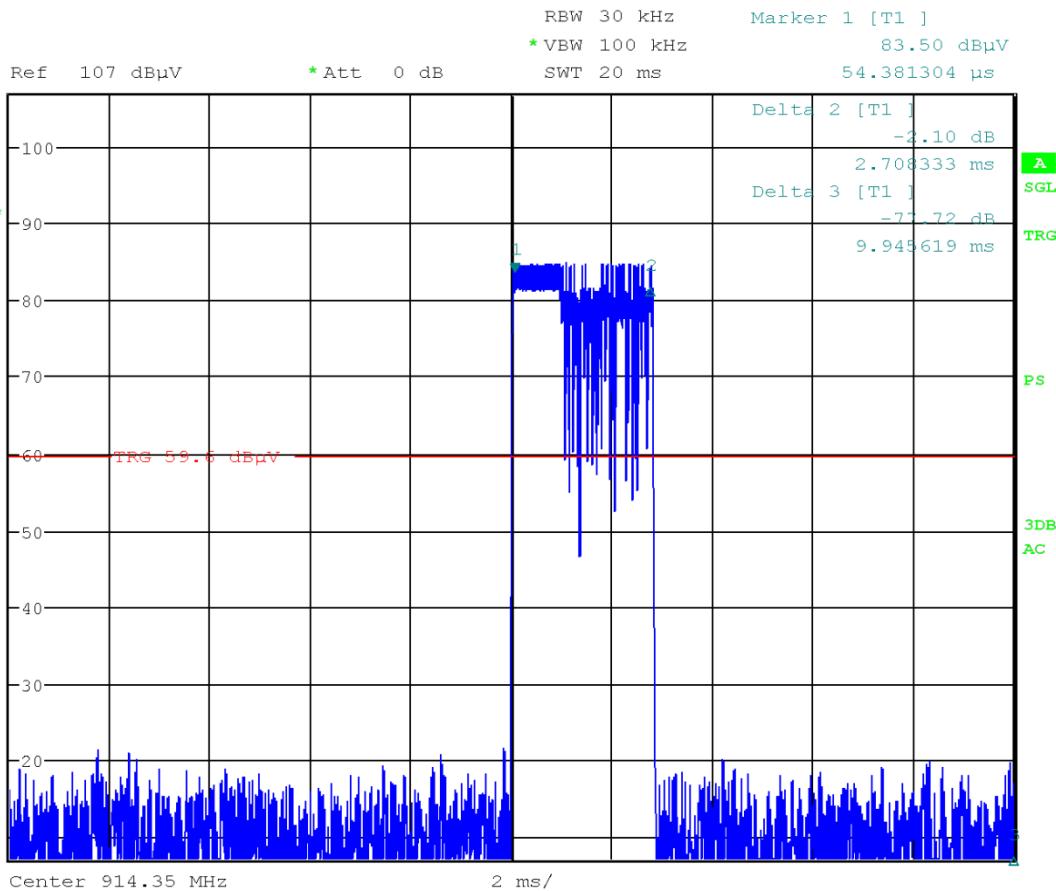


Figure 10: Detailed view of the burst in 20 ms (Trigger offset -10 ms)

The duration of the burst is 2.708 ms.

$$KE = 20 \lg \frac{2.708 \text{ ms}}{100 \text{ ms}} = -31.35 \text{ dB} \rightarrow 31.3 \text{ dB max.}$$

6.5 20 dB bandwidth

47 CFR part and section: 15.231(c)

Measurement procedure (DTS): See 5.1

Result

Test passed

Test not passed

6.5.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input type="checkbox"/> Laboratory environment	---	---	---
<input checked="" type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input checked="" type="checkbox"/> EMI test receiver	ESCI 3	Rohde & Schwarz	E00001
<input type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input checked="" type="checkbox"/> Measuring antenna set	---	---	A00088

6.5.2 Limits according to FCC Part 15C Section 15.231(c):

Frequency [MHz]	20 dB BW limit dependent of the carrier [%]
70 – 900	0.25
Above 900	0.50

6.5.3 Test results

Performed by: Jennifer Riedel Date of test: March 8, 2019

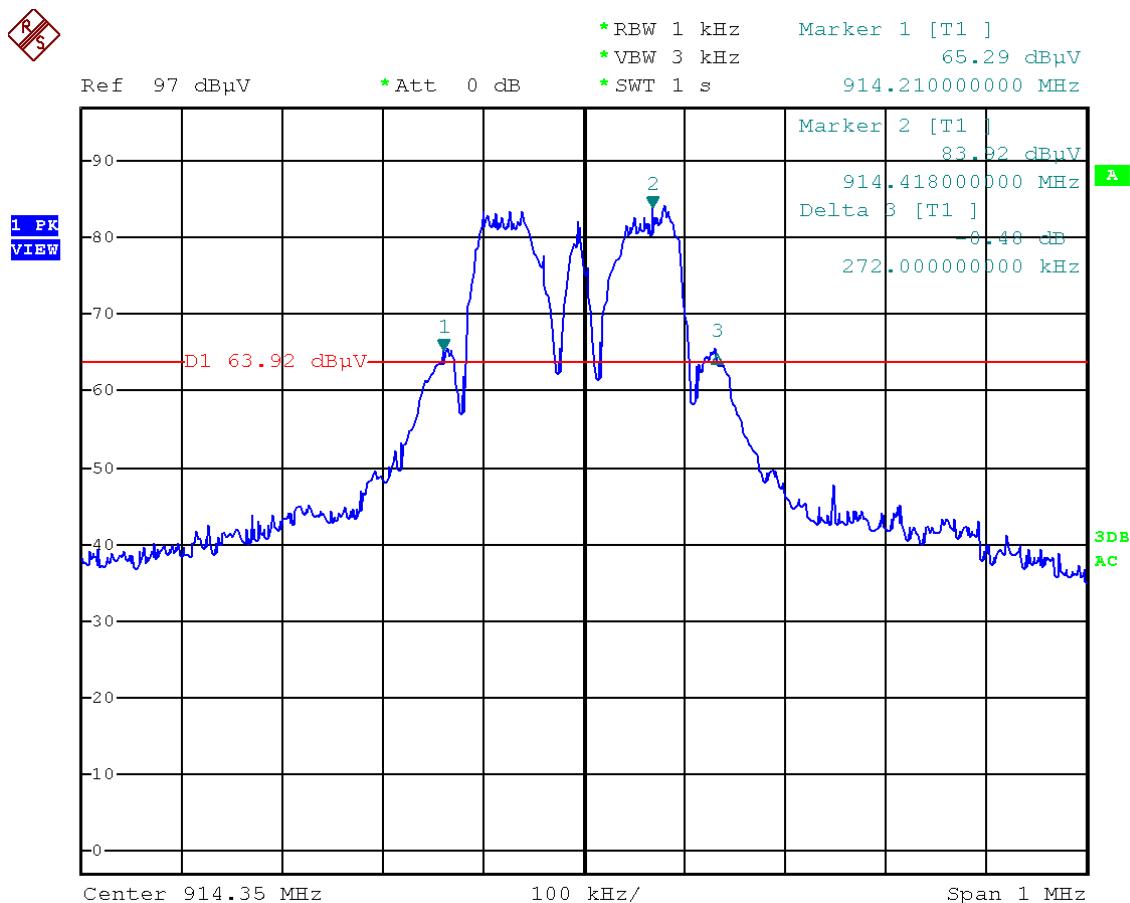


Figure 11: Chart of 20 dB bandwidth test

f [MHz]	20dB-BW [kHz]	f _{lower} [MHz]	f _{upper} [MHz]	Limit [MHz]	Result
914.418	272.00	914.210	914.482	4.57	Passed

Table 6: Final results of 20 dB bandwidth

6.6 Duration of transmission and silent period

47 CFR part and section: 15.231(e)

Measurement procedure: See 5.2

Result Test passed Test not passed

6.6.1 Test equipment

Type	Designation	Manufacturer	Inventory no.
<input type="checkbox"/> Laboratory environment	---	---	---
<input type="checkbox"/> Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
<input type="checkbox"/> EMI test receiver	ESCI 3	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/> EMI test receiver	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/> EMI test receiver	ESR 7	Rohde & Schwarz	E00739
<input type="checkbox"/> EMI test receiver	ESW 44	Rohde & Schwarz	E00895
<input checked="" type="checkbox"/> Measurement antenna 900 MHz	CV-800FE	Create Japan	A00088

6.6.2 Applicable standard

According to FCC Part 15C, Section 15.231(e):

The duration of each transmission of intentional radiators operating at a periodic rate shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

6.6.3 Description of measurement

The duration of transmission is measured with the spectrum analyzer. The signal is modulated; the marker of the analyzer is set to maximum amplitude at normal temperature and zero span. The analyzer is set to video triggered, the marker is set to the edges in order to measure the duration time and silent period and then recorded.

6.6.4 Test results

Performed by: Jennifer Riedel Date of test: May 17, 2019

Limit according to FCC Part 15C, Section 15.231(e):

The duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Remark: The EUT was activated automatically with a sending interval of 15 s, which is the shortest selectable sending interval, it is also selected for the test (worst case). Further selectable sending intervals are 60s, 15 minutes and 1 hour. The transmission duration is always the same (2.81 ms).

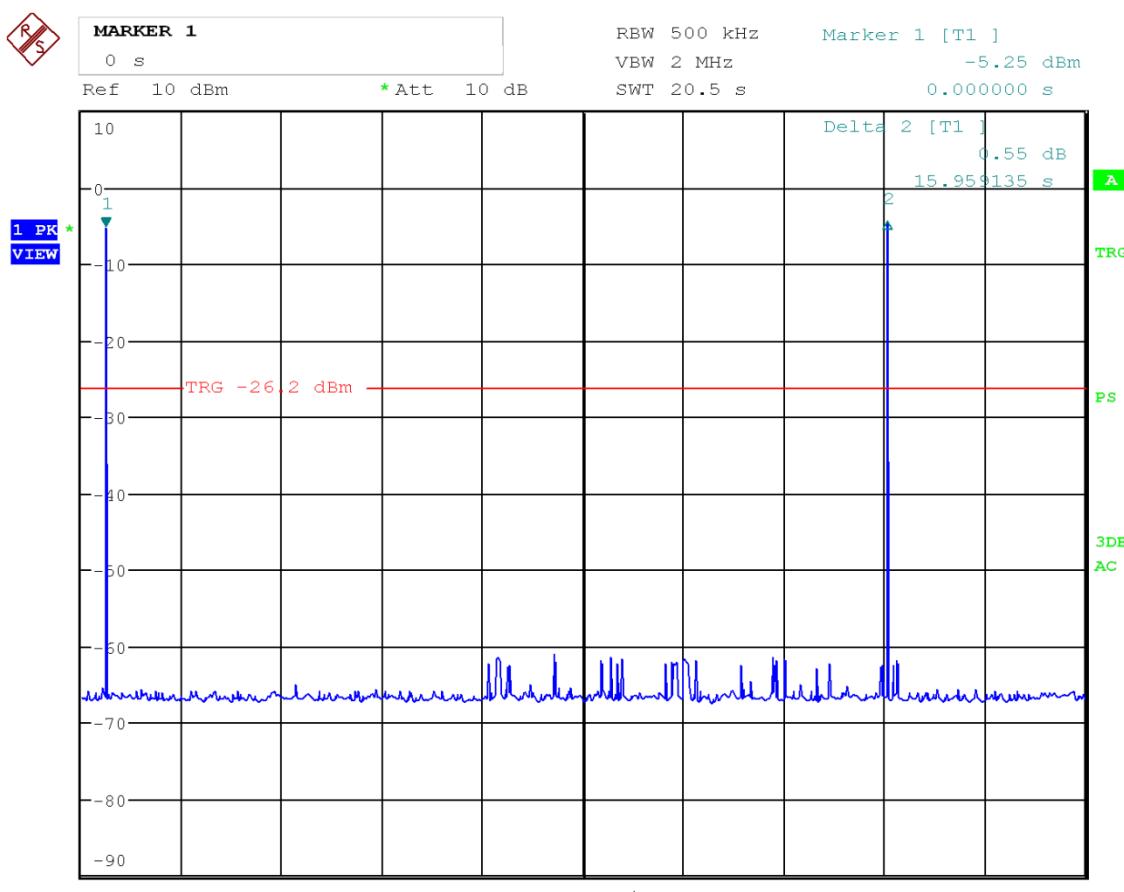


Figure 12: Test protocol of signal deactivation in 20.5 s (trigger offset -0.5 s)

There are two bursts in a sweep time of 20 s. The silent period between the two bursts is 15.956 s which is more than at least 30 times the duration of the transmission respectively more than 10 s.

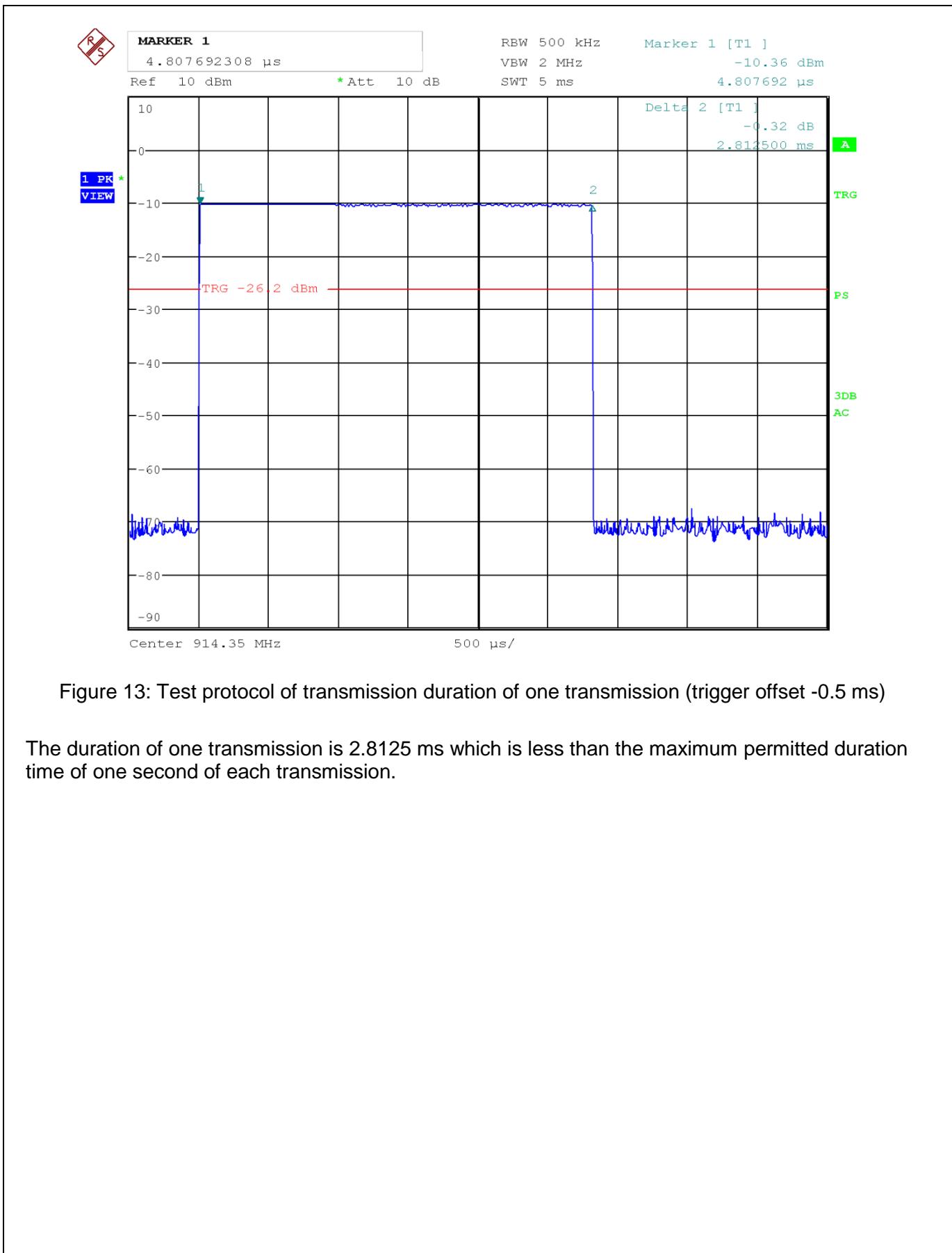


Figure 13: Test protocol of transmission duration of one transmission (trigger offset -0.5 ms)

The duration of one transmission is 2.8125 ms which is less than the maximum permitted duration time of one second of each transmission.

<p>EMV TESTHAUS</p>	<p>EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany</p> <p>MSR Electronics GmbH Transmitter module MSR385SMB64</p>
	<p>180598-AU01+W01</p>

7 Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
EMI test receiver	ESW44	101538	E00895	2018-04	2019-04
EMI test receiver	ESR7	101059	E00739	2018-05	2019-05
EMI test receiver	ESCI 3	100013	E00001	2018-05	2019-05
EMI test receiver	ESU26	100026	W00002	2018-06	2020-06
Preamplifier (1 GHz - 18 GHz)	ALS05749	001	W01007	2019-01	2020-01
Loop antenna	HFH2-Z2	871398/0050	E00060	2018-10	2020-10
TRILOG broadband antenna (SAC3)	VULB 9162	9162-041	E00643	2018-03	2021-03
Horn antenna	BBHA 9120D	9120D-592	W00052	2017-04	2020-04
Horn antenna	BBHA 9170	9170-332	W00054	2017-04	2020-04
Measuring antenna set	---	---	A00088	N/A ³	
Shielded room	P92007	B 83117 C 1109 T 211	E00107	N/A	
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502-A69-2-0006	E00026	N/A	
Semi-anechoic chamber (SAC) with floor absorbers	FS-SAC	---	E00100	2018-03	2021-03
Semi-anechoic chamber (SAC)	SAC3	C62128-A520-A643-x-0006	E00716	2018-03	2021-03
Cable set CDC	RG214/U	---	E00446	2018-04	2019-04
	LCF12-50J	---	E01215	2018-04	2019-04
	LMR400	1718020006	E00920	2019-01	2020-01
	RG214 Hiflex	171802007	E00921	2019-01	2020-01
Cable set anechoic chamber	262-0942-1500	005	E00435	2018-10	2019-10
	SF104EA/2x11PC 35-42/5m	11144/4EA	E00307	2018-12	2019-12
	262-0942-1500	003	E00433	2018-10	2019-10
Cable set of semi-anechoic chamber SAC3	SF104EA/11PC35 /11PC35/10000MM	501347/4EA	E00755	2018-12	2019-12
	SF104E/11PC35/1 1PC35/2000MM	507410/4E	E01033	2018-12	2019-12
	SF104E/11PC35/1 1PC35/2000MM	507411/4E	E01034	2018-09	2019-09

Table 7: Equipment calibration status

Note 1: Industry Canada (test sites number 3472A-1 and 3472A-2): 2019-06

Note 2: Expiration date of test firm accreditation for SAC:

FCC test firm type “accredited”: 2019-06

Note 3: Only used for relative measurements.

	EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany	MSR Electronics GmbH Transmitter module MSR385SMB64	
		180598-AU01+W01	Page 35 of 37

8 Measurement uncertainties

Description	Max. deviation	k=
Conducted emission AMN (9kHz to 30 MHz)	± 4.1 dB	2
Carrier frequency separation Number of hopping frequencies Time of occupancy (dwell time)	± 5.0 %	2
Bandwidth tests	± 2.0 %	2
Maximum conducted output power	± 1.5 dB	2
Power spectral density	± 3.0 dB	2
Spurious RF conducted emissions	± 3.0 dB	2
Radiated emission open field or semi-anechoic chamber 9 kHz to 30 MHz 30 MHz to 300 MHz 300MHz to 1 GHz	± 4.8 dB ± 5.4 dB ± 5.9 dB	2
Radiated emission anechoic chamber (> 1000 MHz)	± 4.5 dB	2

Table 8: Measurement uncertainty

The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

<p>EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany</p>	<p>MSR Electronics GmbH Transmitter module MSR385SMB64</p>
	<p>180598-AU01+W01</p>

9 Revision history

Revision	Date	Issued by	Description of modifications
0	2019-06-06	Jennifer Riedel	First edition

10 Additional documents

- Annex A: Pictures of test setup and EUT-positions
- Annex B: Pictures of EUT (external)
- Annex C: Pictures of EUT (internal)