Report on the FCC and IC Testing of the XTRONIC GmbH Model: MBAC BM V001 In accordance with FCC 47 CFR Part 1 and ISED RSS-102

Prepared for: XTRONIC GmbH

Herrenberger Straße 56 71034 Böblingen

Germany

COMMERCIAL-IN-CONFIDENCE

FCC ID: 2ASIZ-00001 IC: 24737-00001

Date: 2022-05-24

Document Number: TR-713251542-02 (Revision 0)

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Martin Steindl	2022-05-24	Skinell Martin SIGN-ID 651425
Authorised Signatory	Matthias Stumpe	2022-05-24	Junp SIGN-1D 654768

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules. **Engineering Statement:**

This measurement shown in this report were made in accordance with the procedures described on test pages.

All reporded testing was carried out on a sample equipment to demonstrate limited compliance with with FCC 47 CFR Part 15 C and ISED RSS-247 and RSS-GEN.

The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE		SIGNATURE	
Testing	Martin Steindl		2022-05-24		Skinell	Martin
					SIGN-ID	653829
Laboratory Accreditation		Laboratory recognition		Industry	Canada test site re	egistration
DAkkS Reg. No. D-PL-11321-11-02		Registration No. BNetzA-CAB	-16/21-15	3050A-2		
DAkkS Reg. No. D-PL-113	321-11-03					

Executive Statement:

A sample of this product was tested and found to be compliant with FCC 47 CFR Parts 1:2021 and ISED RSS-102:2021

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service.

Trade Register Munich HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuev-sued.com/imprint Managing Directors: Walter Reitmeier (Sprecher / CEO) Dr. Jens Butenandt Patrick van Welij

Phone: +49 (0) 9421 55 22-0 Fax: +49 (0) 9421 55 22-99 www.tuev-sued.de TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45 94315 Straubing Germany

Content

1	Rep	ort Summary	. 2
	1.1	Modification Report	. 2
	1.2	Modification Report	. 2
	1.3	Brief Summary of Results	. 3
	1.4	Product Information	. 4
	1.5	Test Configuration	. 5
	1.6	Deviations from Standard	. 5
	1.7	EUT Modifications Record	. 5
	1.8	Test Location	. 5
2	Test	Details	. 6
	2.1	RF Exposure	. 6
		·	
3	Mea	surement Uncertainty	11

T TOUGUET OCT VI

1 Report Summary

1.1 Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Rev	Description of changes	Date of Issue
0	First Issue	2022-05-24

Table 1: Report of Modifications

1.2 Introduction

Applicant XTRONIC GmbH

Herrenberger Straße 56

71034 Böblingen

Manufacturer XTRONIC GmbH Model Number(s) MBAC BM V001 Serial Number(s) XD11500107

Hardware Version(s)

Software Version(s)

SW-GW: A910 902 54 00

SW-IO: A910 902 43 00

SW-PC: A910 902 55 00

Number of Samples Tested 1

Test Specification(s) / 47 CFR Part 1: 2021

Issue / Date ISED RSS-102:2015, Amd. 1: February 2021

Test Plan/Issue/Date DO403-05_PRJ592_Funkzulassung_BLE_Anleitung_20191121

 Order Number
 BE-2022-0042

 Date
 2022-02-02

 Date of Receipt of EUT
 2022-03-15

 Start of Test
 2022-03-21

 Finish of Test
 2022-03-21

 Name of Engineer(s)
 M. Steindl

Related Document(s) ANSI C63.10:2013

47 CFR Part 15: 2021

ISED RSS-247, Issue 2: March 2017

ISED RSS-GEN, Issue 5, Amd. 1, Amd. 2: February 2021

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Parts 1 and 15, ISED RSS-102 is shown below.

Section	Specification Clause	Test Description	Result
2.1		RF Exposure	Pass

Table 2: Results according to FCC 47 CFR Parts 1 and 15

Section	Specification	Test Description	Result
	Clause		
2.1	3.4	RF Exposure	Pass

Table 3: Results according to RSS-Gen

	Section	Specification Clause	Test Description	Result
I	2.1	2.5	RF Exposure	Pass

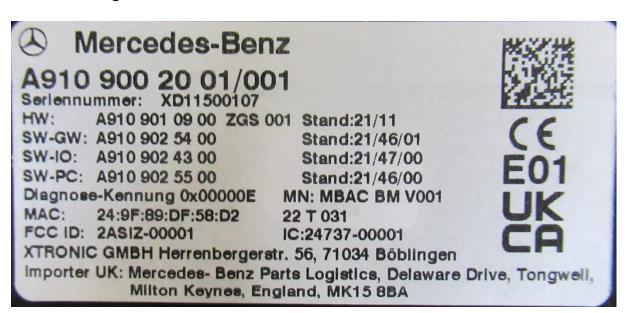
Table 4: Results according to RSS-102

1.4 Product Information

1.4.1 Technical Description

Frequency Band: 2400.0 MHz – 2483.5 MHz

Supply Voltage: DC 12 V Supply Frequency: 0 Hz Highest clock frequency 2480 MHz


(radio part):

Highest clock frequency

(non-radio part):

16 MHz

1.4.2 Marking Plate

1.5 Test Configuration

The applicant provided a test mode for continuously transmission on lowest channel.

1.6 Deviations from Standard

none

1.7 EUT Modifications Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer	Not Applicable	Not Applicable

Table 5

1.8 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)
RF Exposure	M. Steindl

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany COMMERCIAL-IN-CONFIDENCE

2 Test Details

2.1 RF Exposure

2.1.1 Specification Reference

47 CFR, Part 1, § 1.1307(b)(3)(B) 47 CFR Part 15 C, Clause 15.247(i) ISED RSS-Gen, Clause 3.4 ISED RSS-102, Clauses 2.5 and 4

2.1.2 Equipment under Test and Modification State

MBAC BM V001; S/N XD11500107; Modification State 0

2.1.3 Date of Test

2022-03-21

2.1.4 Environmental Conditions

Ambient Temperature 18 °C Relative Humidity 29 %

2.1.5 Specification Limits

CFR 47, Part 1, § 1.1307(b)(3)

- (i) For single RF sources (i.e. any single fixed RF source, mobile device, or portable device, as defined in paragraph(b)(2) of this section): A single RF source is exempt if:
 - (A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);
 - (B) Or the available maximum time-averaged power or effective radiate power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall be only be used at separation distances (cm) from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHzu (inclusive). P_{th} is given by

$$P_{th}(\text{mW}) = \begin{cases} ERP_{20\text{cm}} & \left(\frac{d}{20\text{ cm}}\right), & d \le 20\text{ cm}; \\ ERP_{20\text{cm}}, & 20\text{ cm} < d \le 40\text{ cm} \end{cases}$$

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20\text{cm}}\sqrt{f}}\right)$$
; f in GHz

and

$$ERP_{20cm}(mW) = \begin{cases} 2040 \ f, & 0.3 \ GHz \le f < 1.5 \ GHz \\ 3060, & 1.5 \ GHz \le f \le 1.5 \ GHz \end{cases}$$

d = the test separation distance (cm);

(C) Or using the table below and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value described for that frequency. For the exemption in the table to apply, R must be at least $\lambda/2\pi$ where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF source frequency (MHz)	Threshold ERP (Watts)		
0.3 – 1.34	1920 <i>R</i> ²		
1.34 – 30	3450 R ² / f ²		
30 – 300	3.83 R ²		
300 – 1500	0.0128 <i>R</i> ² f ²		
1500 – 100000	19.2 <i>R</i> ²		

- (ii) For multiple RF sources: Multiple RF sources are exempt if:
 - (A) The available maximum time-averaged power of each source is no more than 1 mW and there is a separation distance of 2 cm between any portion of a radiating structure operating and the nearest portion of any other radiating structure in the same device, except if the sum of multiple sources is less than 1 mW during the time-averaging period, in which case they may be treated as a single source (separation is not required). This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(i)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(i)(A).
 - (B) In case of fixed RF sources operating in the same time-averaging period, or of multiple or portable RF sources within a device in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{ExposureLimit_k} \le 1$$

ISED RSS-102, Clause 2.5.1

Product Service

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in the table.

For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in the table, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation .:

Frequency	Exemption limits (mW) ¹ at separation distance of									
(MHz)	ww 5≥	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥50 mm
≤300 ²	71	101	132	162	193	223	254	284	315	345
450	52	70	88	106	123	141	159	177	195	213
835	17	30	42	55	67	80	92	105	117	130
1900	7	10	18	34	60	99	153	225	316	431
2450	4	7	15	30	52	83	123	173	235	309
3500	2	6	16	32	55	86	124	170	225	290
5800	1	6	15	27	41	56	71	85	97	106

ISED RSS-102, Clause 2.5.1, Table 1

¹ The excemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separaton distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

² Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in IC RSS-102, issue 5, section 4.

ISED RSS-102, Clause 4

Table 3:

Body Region	Average SAR (W/kg)	Averaging Time (min)	Mass Average (g)
Whole Body	0.08	6	Whole Body
Localized Head, Neck	1.6	6	1
and Trunk			
Localized Limbs	4	6	10

Table 4:

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m²)	(min)
0.003 – 10	83	90		Instantaneous
0.1 – 10		0.73 / f		6
1.1 – 10	87 / f ^{0.5}			6
10 – 20	27.46	0.0728	2	6
20 – 48	58.07 / f ^{0.25}	0.1540 / f ^{0.25}	8.944 / f ^{0.5}	6
48 – 300	22.06	0.05852	1.291	6
300 – 6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6
6000 - 15000	61.4	0.163	10	6
15000 – 150000	61.4	0.163	10	616000 f ^{1.2}
150000 – 300000	0.158 f ^{0.5}	4.21 × 10 ⁻⁴ f ^{0.5}	6.67 × 10 ⁻⁵ f	616000 f ^{1.2}

2.1.6 Test Results

Output power was calculated using equation (22) in ANSI C63.10, clause 9.5:

 $EIRP = E_{Meas} + 20 \log(d_{Meas}) - 104.7 dB$

EIRP is the equivalent isotropically radiated power, in dBm

 E_{Meas} is the field strength of the emission at the measurement distance, in dBµV/m

 d_{Meas} is the measurement distance, in m

Frequency	3 m Fieldstrength	EIRP
2401.75	94.71 dBμV/m	-0.45 dBm

Table 6: Output Power

Minimum test separation distance was defined as 20 cm by the applicant.

47 CFR Part 1, § 1.1307(b)(3)(i)(A)

f (MHz)	P (mW)	Limit (mW)	Rating
2401.75	0.9	1.0	Exempt from standard evaluation

ISED RSS-102. Clause 2.5.1

IOLD NOO-102, Clause	Z.J. I		
f (MHz)	P (mW)	Exemtion LImit	Rating
		(mW)	
2401.75	0.9	321.8	Exempt from standard evaluation
Exemption Limits were	calculated with line	ar interpolated using va	alues from ISED RSS-102, Clause
2.5.1, table 1 as seen a	bove		

2.1.7 Test Location and Test Equipment

The test was carried out in semi anechoic room, No. 11

Instrument	Manufacturer	Type No	TE No	Calibra- tion Pe- riod (months)	Calibration Due
EMI test receiver	Rohde & Schwarz	ESW44	39897	12	2022-04-30
Double ridged horn antenna	Rohde & Schwarz	HF907	40089	24	2023-02-28
EMC measurement software	Rohde & Schwarz	EMC32 Emission K11 – V10.60.20	42986		
Semi anechoic room	Frankonia	Cabin No. 11	42961		

Table 7

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to CISPR16-4-2: 2011 + A1 + A2 + Cor1 (U_{CISPR}). This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

Test Name	kp	Expanded Uncertainty
Conducted Voltage Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
100 kHz to 200 MHz (50Ω/5μH AMN)	2	± 3.6 dB
Discontinuous Conducted Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
Conducted Current Emission		
9 kHz to 200 MHz	2	± 3.5 dB
Magnetic Fieldstrength		
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB
Radiated Emission		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 5.0 dB
1 GHz to 6 GHz	2	± 4.6 dB
Test distance 10 m		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 4.9 dB

The expanded uncertainty reported according to to CISPR16-4-2: 2011 + A1 + A2 + Cor1 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

Table 8 Measurement uncertainty based on CISPR 16-4-2

Test Name	kp	Expanded Uncertainty
Occupied Bandwdith	2	± 5 %
Conducted Power		
9 kHz ≤ f < 30 MHz	2	± 1.0 dB
30 MHz ≤ f < 1 GHz	2	± 1.5 dB
1 GHz ≤ f ≤ 40 GHz	2	± 2.5 dB
1 MS/s power sensor (TS8997)	2	± 1.5 dB
Occupied Bandwidth	2	±5%
Power Spectral Density	2	± 3.0 dB
Radiated Power		
9 kHz ≤ f < 26.5 GHz	2	± 6.5 dB
26.5 GHz ≤ f < 60 GHz	2	± 8.0 dB
60 GHz ≤ f < 325 GHz	2	± 10 dB
Conducted Spurious Emissions	2	± 3.0 dB
Radiated Spurious Emissions	2	± 6.0 dB
Voltage		
DC	2	± 1.0 %
AC	2	± 2.0 %
Time (automatic)	2	±5%
Frequency	2	± 10 ⁻⁷

The expanded uncertainty reported according to to ETSI TR 100 028:2001 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

Table 9 Measurement uncertainty based on ETSI TR 100 028