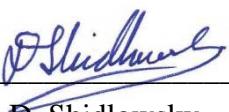




**DATE: 16 March 2020**

**I.T.L. (PRODUCT TESTING) LTD.**  
**FCC Radio Test Report**  
**For**

**A.R.I. Flow Control  
Accessories LTD**


**Equipment under test:**

**ARISense Smart Air Valve System**

**Master Unit; External Box Unit\***

\*See customer declaration on page 6

Tested by:   
M. Zohar

Approved by:   
D. Shidowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.



# Measurement/Technical Report for A.R.I. Flow Control Accessories LTD

## ARISSense Smart Air Valve System Master Unit

**FCC ID: 2ASHC-ARISENSE-M19**

This report concerns:                      Original Grant: X  
                                                    Class II change:  
                                                    Class I change:  
  
Equipment Class:                            TNB – Licensed Non-Broadcast Station Transmitter  
  
Limits used:                                47CFR Parts 2; 90  
  
Measurement procedure used is ANSI C63.26-2015.

Substitution Method used as in ANSI TIA-603-E (2016)

|                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application for Certification<br>prepared by:<br>R. Pinchuck<br>ITL (Product Testing) Ltd.<br>1 Bat Sheva St.<br>Lod 7120101<br>Israel<br>E-mail: <a href="mailto:rpinchuck@itl.co.il">rpinchuck@itl.co.il</a> | Applicant for this device:<br>(different from "prepared by")<br>Amir Chapnick, R&D Engineer<br>A.R.I. Flow Control Accessories LTD<br>Kfar Haruv<br>Golan Heights, 1293200, Israel<br>Tel: +972 4-676-1786<br>Email: <a href="mailto:chapnik@ari.co.il">chapnik@ari.co.il</a> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# TABLE OF CONTENTS

|                                                               |           |
|---------------------------------------------------------------|-----------|
| <b>1. GENERAL INFORMATION -----</b>                           | <b>5</b>  |
| 1.1 Administrative Information.....                           | 5         |
| 1.2 List of Accreditations .....                              | 7         |
| 1.3 Test Methodology .....                                    | 8         |
| 1.4 Product Description .....                                 | 8         |
| <b>2. SYSTEM TEST CONFIGURATION-----</b>                      | <b>9</b>  |
| 2.1 Justification.....                                        | 9         |
| 2.2 EUT Exercise Software .....                               | 9         |
| 2.3 Special Accessories .....                                 | 9         |
| 2.4 Equipment Modifications .....                             | 9         |
| 2.5 Configuration of Tested System .....                      | 10        |
| <b>3. TEST SET-UP PHOTOS-----</b>                             | <b>11</b> |
| <b>4. RF POWER OUTPUT -----</b>                               | <b>15</b> |
| 4.1 Test Specification .....                                  | 15        |
| 4.2 Test Procedure .....                                      | 15        |
| 4.3 Test Limit.....                                           | 15        |
| 4.4 Test Results.....                                         | 15        |
| 4.5 Test Equipment Used; RF Power Output.....                 | 17        |
| <b>5. OCCUPIED BANDWIDTH -----</b>                            | <b>18</b> |
| 5.1 Test Specification .....                                  | 18        |
| 5.2 Test Procedure .....                                      | 18        |
| 5.3 Test Limit.....                                           | 18        |
| 5.4 Test Results.....                                         | 18        |
| 5.5 Test Equipment Used; Occupied Bandwidth.....              | 19        |
| <b>6. EMISSION MASK -----</b>                                 | <b>20</b> |
| 6.1 Test Specification .....                                  | 20        |
| 6.2 Test Procedure .....                                      | 20        |
| 6.3 Test Limit.....                                           | 20        |
| 6.4 Test Results.....                                         | 20        |
| 6.5 Test Equipment Used; Emission Mask .....                  | 22        |
| <b>7. SPURIOUS RADIATED EMISSION -----</b>                    | <b>23</b> |
| 7.1 Test Specification .....                                  | 23        |
| 7.2 Test Procedure .....                                      | 23        |
| 7.3 Test Limit.....                                           | 24        |
| 7.4 Test Results.....                                         | 24        |
| 7.5 Test Instrumentation Used; Radiated Measurements.....     | 25        |
| <b>8. TRANSMITTER FREQUENCY STABILITY -----</b>               | <b>26</b> |
| 8.1 Test Specification .....                                  | 26        |
| 8.2 Test Procedure .....                                      | 26        |
| 8.3 Test Limit.....                                           | 26        |
| 8.4 Test Results.....                                         | 26        |
| 8.5 Test Equipment Used; Transmitter Frequency Stability..... | 27        |
| <b>9. TRANSIENT FREQUENCY BEHAVIOR -----</b>                  | <b>28</b> |
| 9.1 Test specification.....                                   | 28        |
| 9.2 Test Procedure .....                                      | 28        |
| 9.3 Test Limit.....                                           | 28        |
| 9.4 Test Results.....                                         | 28        |
| 9.5 Test Equipment Used; Transient Frequency Behavior .....   | 30        |
| <b>10. ANTENNA TYPE/INFORMATION -----</b>                     | <b>31</b> |
| <b>11. RF EXPOSURE/SAFETY -----</b>                           | <b>32</b> |



**12. APPENDIX A - CORRECTION FACTORS -----33**

|      |                                                                     |    |
|------|---------------------------------------------------------------------|----|
| 12.1 | Correction factors for RF OATS Cable 35m ITL #1911 .....            | 33 |
| 12.2 | Correction factor for RF cable for Anechoic Chamber ITL #1840 ..... | 34 |
| 12.3 | Correction factors for Active Loop Antenna .....                    | 35 |
| 12.4 | Correction factors for biconical antenna ITL #1356 .....            | 36 |
| 12.5 | Correction factors for log periodic antenna ITL # 1349 .....        | 37 |
| 12.6 | Correction factors for Double -Ridged Waveguide Horn ANTENNA.....   | 38 |



## 1. General Information

### 1.1 Administrative Information

Manufacturer: A.R.I. Flow Control Accessories LTD

Manufacturer's Address: Kfar Haruv, Golan Heights  
1293200, Israel  
Tel: +972 4-676-1786

Manufacturer's Representative: Amir Chapnik

Equipment Under Test (E.U.T): ARISense Smart Air Valve System

Equipment Model No.: Master Unit; External Box Unit\* (\*see customer declaration on following page)

Equipment Serial No.: Not designated

Date of Receipt of E.U.T: January 21, 2019

Start of Test: January 21, 2019

End of Test: January 5, 2020

Test Laboratory Location: I.T.L (Product Testing) Ltd.  
1 Batsheva St,  
Lod,  
Israel 7120101

Test Specifications FCC Part 2, 90



August 28, 2019

# DECLARATION

I hereby declare the following regarding the below models:

| # | Product Name/Model |
|---|--------------------|
| 1 | Master unit        |
| 2 | External box unit  |

All of the above models use the same PCB.

These models are identical except for the following:

1. Master unit is assembled on an air valve versus the external box unit which is an independent unit.
2. The outer plastic casing is different between the models.

Please relate to them (from a Radio point of view) as the same product.

Thank you,

Signature:   
Printed Name: Ami Chapnik  
Title: R&D Eng.



A.R.I. FLOW CONTROL ACCESSORIES Ltd. Kibbutz Kfar Charuv 1293200 Israel Tel. 972-4-6761800  
Research & Develop Dept. rnd@ari.co.il www.arivalves.com





## 1.2 *List of Accreditations*

The EMC laboratory of I.T.L. is accredited by/registered with the following bodies:

1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation Number is IL1005.
3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
4. Department of Innovation, Science and Economic Development (ISED) Canada, CAB identifier: IL1002

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.



### **1.3    *Test Methodology***

Radiated and conducted testing was performed according to the procedures in ANSI C63.26: 2015 and ANSI/TIA-603-E: 2016, Section 2.2.12.

### **1.4    *Product Description***

A.R.I.'s ARISENSE is a Data Transmitting System that collects and transmits Air Valves' status and accessories data to a central web server.

The system provides a comprehensive view of the air valves installed at the water system pipelines.

It detects abnormal issues before they occur, notifies needs for service, significantly reduces maintenance costs and prevents fines caused by leakage, spillage, clogging, tilting, vandalism, high pressure and flooding.

ARISENSE employs a combination of sensors integrated within the air valve's housing that continuously monitor the valve's functioning and performance, and transmit the data to the web server.

## 2. System Test Configuration

### 2.1 Justification

- 2.1.1. The E.U.T contain 2 transceivers: A Telit approved cellular 3G cellular module certified under FCC ID: RI7UL865NA and UHF 450-460MHz band for which certification is sought. The 2 transmitters do not transmit simultaneously.
- 2.1.2. Radiated emission evaluation was performed in typical installation orientation as declared by the customer.
- 2.1.3. The E.U.T has 2 types of enclosures (Master Unit and External Box Unit). Based on exploratory testing that was performed Master Unit was the “worst case”.

| Unit Enclosure Type | Fundamental | 2 <sup>nd</sup> Harmonic |
|---------------------|-------------|--------------------------|
|                     | (dBuV/m)    | (dBuV/m)                 |
| Master Unit         | 132.1       | 92.3                     |
| External Box Unit   | 118.3       | 92.0                     |

Figure 1. Screening Results

- 2.1.4. The E.U.T also has 4 optional valve types. Based on exploratory testing that was performed, the “worst case” valve was the CAT No. valve: D-040.

| CAT No. Valve | Fundamental<br>(dBuV/m) | 2 <sup>nd</sup> Harmonic<br>(dBuV/m) |
|---------------|-------------------------|--------------------------------------|
| D-020         | 130.0                   | 90.0                                 |
| D-025L        | 128.8                   | 90.8                                 |
| D-025         | 128.4                   | 81.8                                 |
| D-040         | 132.1                   | 92.3                                 |

Figure 2. Screening Results – Valve Type

- 2.1.5. Only for testing purposes, the E.U.T was powered from an AC/DC power supply. In operational mode, the E.U.T is only battery operated.

### 2.2 EUT Exercise Software

I-VE Tool via USB

### 2.3 Special Accessories

AC/DC adapter:

Manufacturer: Active energie

Part number: ACT 3.65-1.5

Serial number: N/A

### 2.4 Equipment Modifications

Initially, the E.U.T didn't meet the spurious emission requirements (-20dBm). The manufacturer took the following corrective action:

The output buffer level at the frequencies of 450.006 & 460MHz was changed to “55” buffer level.

## 2.5 Configuration of Tested System

|                           |                                   |
|---------------------------|-----------------------------------|
| Product Name              | ARISSense Smart Air Valve System  |
| Model Name                | Master Unit                       |
| Working voltage           | 3.6VDC battery operated (Lithium) |
| Mode of operation         | Transceiver                       |
| Modulations               | GFSK                              |
| Assigned Frequency Range  | 450-470MHz                        |
| Operation Frequency Range | 450.006- 460.000MHz               |
| Transmit power(conducted) | ~ 0dBm                            |
| Antenna Gain              | 1 dBi                             |
| DATA rate                 | N/A                               |
| Modulation BW             | 12.5kHz                           |

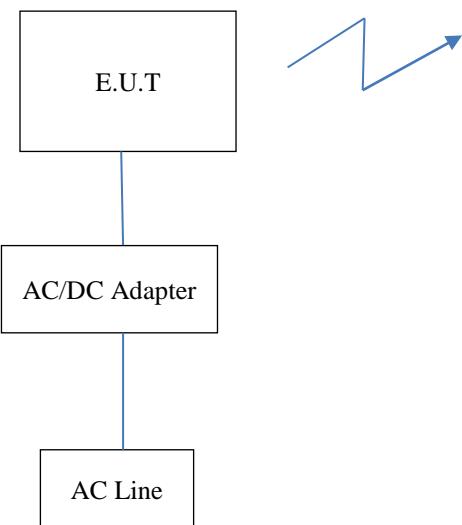



Figure 3. Radiated Test Set-Up

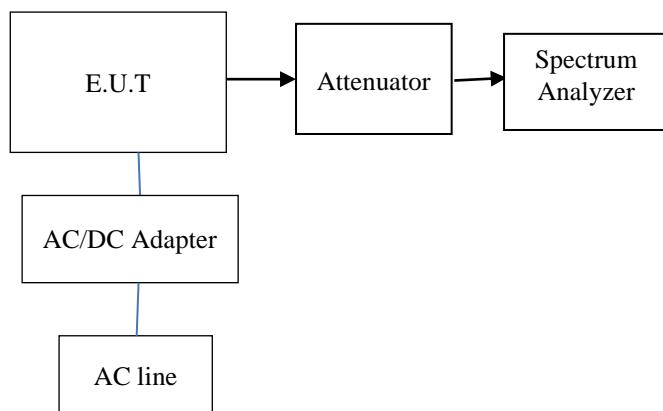
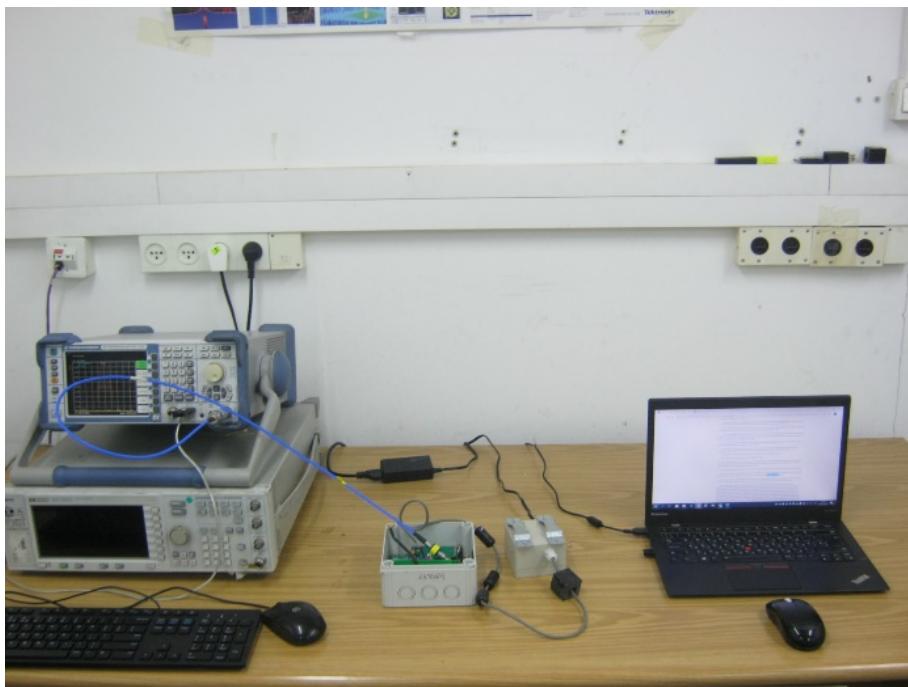




Figure 4. Conducted Test Set-Up

### 3. Test Set-Up Photos

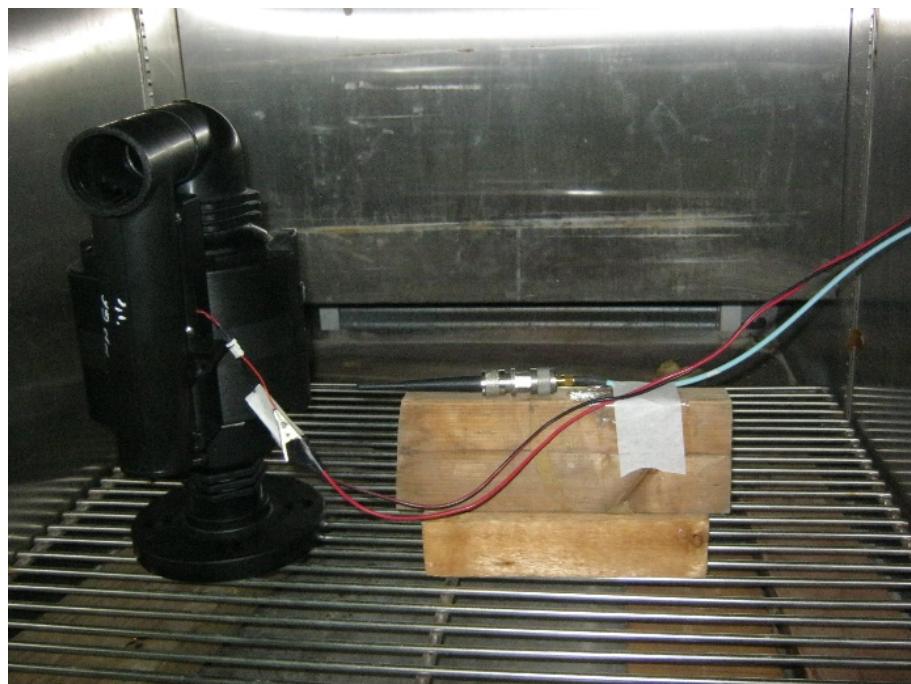


**Figure 5. Mask Emission Test**



**Figure 6. Radiated Emission Test, 0.009-30MHz**




**Figure 7. Radiated Emission Test, 30-200MHz**



**Figure 8. Radiated Emission Test, 200-1000MHz**



**Figure 9. Radiated Emission Test, 1000-5000MHz**



**Figure 10. Frequency Stability Test**



**Figure 11. Frequency Behavior Test**

## 4. RF Power Output

### 4.1 Test Specification

FCC, Part 90, Section 205(h)

### 4.2 Test Procedure

(Temperature (22°C)/ Humidity (52%RH))

Test method used: ANSI C63.26 (2015), Section 5.2.3.3

The E.U.T was placed on a remote-controlled turntable in the OATS.

The E.U.T was placed on a non-metallic table, 0.8 meters above the ground, at a distance of 3 meters. The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)} \quad [W]$$

E - Field Strength (V/m)

d – Distance from transmitter (m)

G – Antenna gain

P – Peak power (W)

ERP(dBm)= EIRP(dBm)- 2.15

### 4.3 Test Limit

Maximum ERP 2W (33dBm).

### 4.4 Test Results

| Carrier Channel (MHz) | Antenna Pol. (V/H) | Maximum Peak Level (dB $\mu$ V/m) | Effective Radiated Power Level (dBm) | Limit (dBm) | Margin (dB) |
|-----------------------|--------------------|-----------------------------------|--------------------------------------|-------------|-------------|
| 450.006               | V                  | 122.6                             | 25.3                                 | 33.0        | -7.7        |
|                       | H                  | 112.2                             | 14.9                                 | 33.0        | -18.1       |
| 460.000               | V                  | 123.5                             | 26.2                                 | 33.0        | -6.8        |
|                       | H                  | 117.6                             | 20.3                                 | 33.0        | -12.7       |

Figure 12 RF Power Output

JUDGEMENT: Passed

See additional information in *Figure 13* to *Figure 16*.

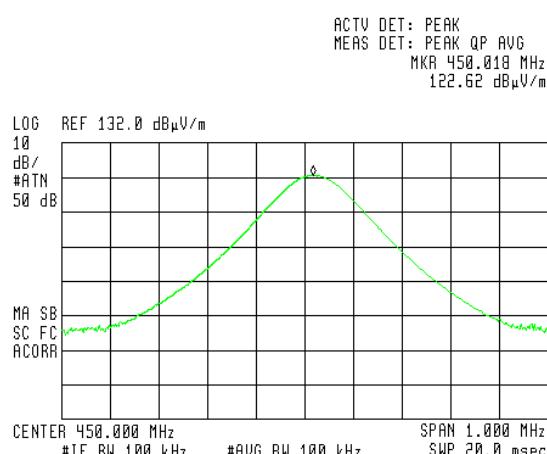




Figure 13. 450.006MHz, Vertical

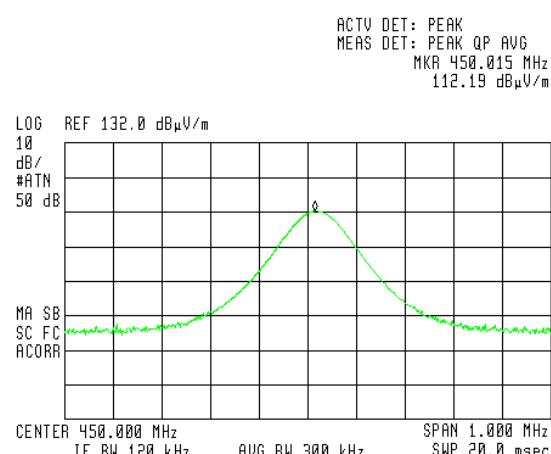




Figure 14. 450.006MHz, Horizontal

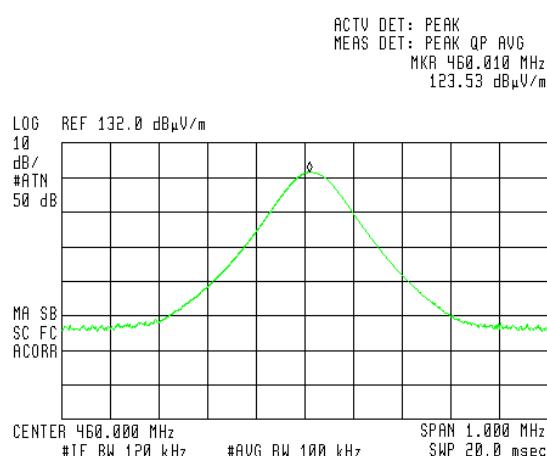




Figure 15. 460.000MHz, Vertical

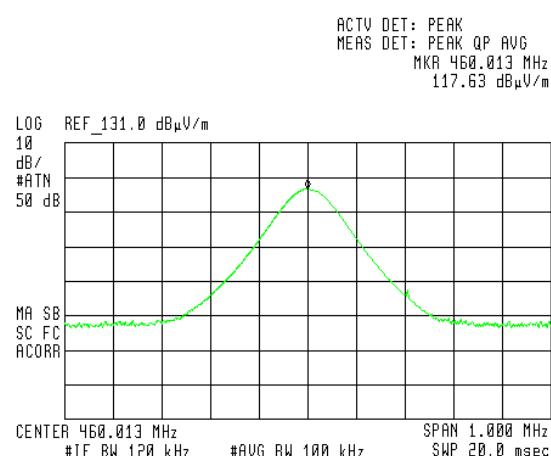




Figure 16. 460.000MHz, Horizontal



#### 4.5 Test Equipment Used; RF Power Output\*

| Instrument                 | Manufacturer       | Model                    | Serial Number | Calibration           |                      |
|----------------------------|--------------------|--------------------------|---------------|-----------------------|----------------------|
|                            |                    |                          |               | Last Calibration Date | Next Calibration Due |
| EMI Receiver               | HP                 | 8542E                    | 3906A00276    | February 28, 2019     | February 28, 2020    |
| RF Filter Section          | HP                 | 85420E                   | 3705A00248    | February 28, 2019     | February 28, 2020    |
| 35m Coaxial Cable for Oats | EIM (Huber Suhner) | RG214-11N(X2)<br>RG214/U | -             | May 26, 2019          | May 31, 2020         |
| Antenna Log Periodic       | EMCO               | 3146                     | 9505-4081     | May 31, 2018          | May 31, 2020         |
| Antenna Mast               | ETS                | 2070-2                   | -             | NCR                   | NCR                  |
| Turntable                  | ETS                | 2087                     | -             | NCR                   | NCR                  |
| Mast & Table Controller    | ETS/EMCO           | 2090                     | 9608-1456     | NCR                   | NCR                  |

\*Testing performed June 24, 2019.

**Figure 17 Test Equipment Used**



## 5. Occupied Bandwidth

### 5.1 ***Test Specification***

FCC, Part 90, Sub Part I, Section 209(b)(5)

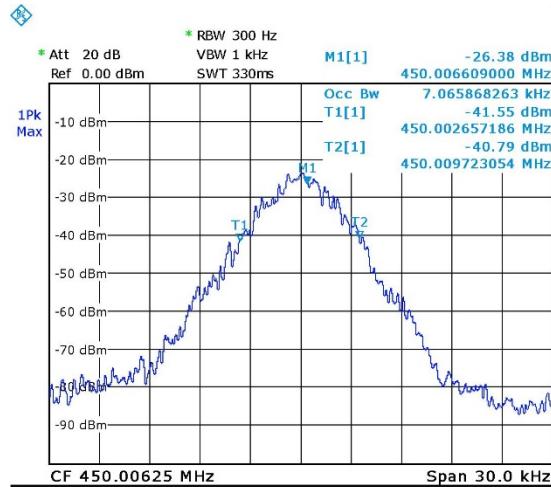
### 5.2 ***Test Procedure***

(Temperature (22°C)/ Humidity (62%RH))

Test method used: ANSI C63.26 (2015), Section 5.4.4

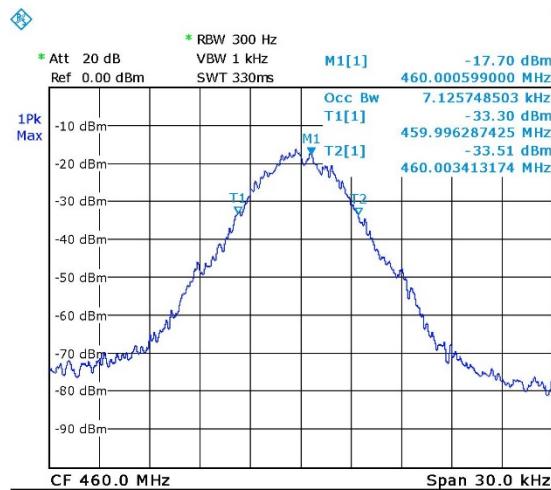
The E.U.T.'s antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable. Special attention was taken to prevent Spectrum Analyzer RF input overload.

RBW set to value between 1% to 5% from the OBW.


### 5.3 ***Test Limit***

Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be authorized at 11.25 kHz bandwidth.

### 5.4 ***Test Results***


JUDGEMENT: Passed

See additional information in *Figure 18* and *Figure 19*.



Date: 21.JAN.2019 15:56:36

Figure 18. 450.006MHz



Date: 21.JAN.2019 15:53:02

Figure 19. 460.000MHz

### 5.5 Test Equipment Used; Occupied Bandwidth\*

| Instrument        | Manufacturer | Model         | Serial Number | Calibration           |                      |
|-------------------|--------------|---------------|---------------|-----------------------|----------------------|
|                   |              |               |               | Last Calibration Date | Next Calibration Due |
| Spectrum Analyzer | R&S          | FSL6          | 100194        | February 19, 2018     | February 28, 2019    |
| RF Cable          | EIM          | 705A009301EIM | -             | December 24, 2018     | December 31, 2019    |
| 30db Attenuator   | MCL          | BW-S30W5      | 533           | December 24, 2018     | December 31, 2019    |

\*Testing performed January 21, 2019

Figure 20 Test Equipment Used



## 6. Emission Mask

### 6.1 **Test Specification**

FCC, Part 90, Sub Part I, Section 210

### 6.2 **Test Procedure**

(Temperature (20°C)/ Humidity (62%RH))

Test method used: ANSI C63.26 (2015), Section 5.7

The E.U.T.'s antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (loss=30.5dB).

Special attention was taken to prevent Spectrum Analyzer RF input overload.  
For Mask D measurements, RBW of 100Hz was used.

### 6.3 **Test Limit**

Mask D

### 6.4 **Test Results**

JUDGEMENT: Passed

See additional information in *Figure 21* and *Figure 22*.

## Emission Mask

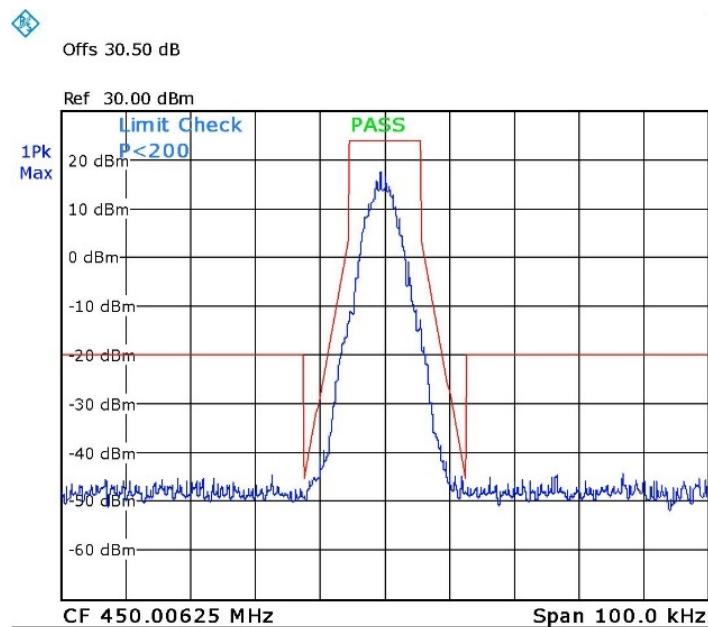



Figure 21. 450.006MHz

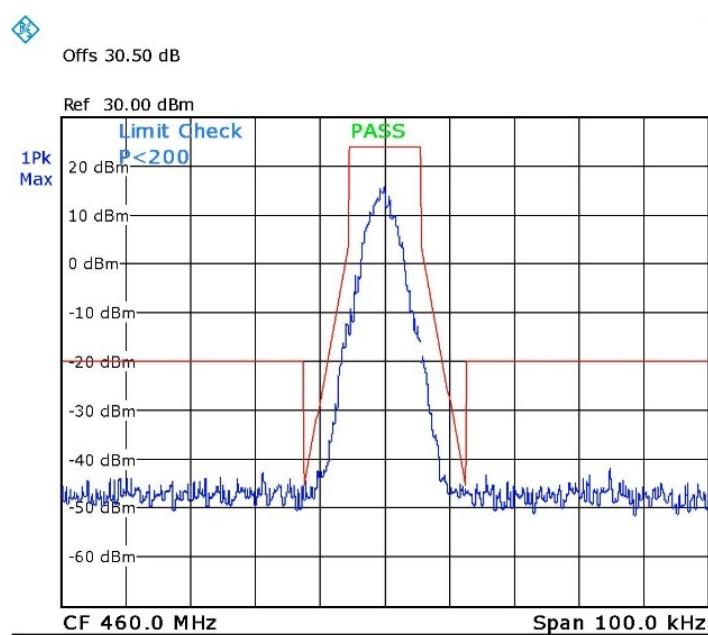



Figure 22. 460.000MHz



### 6.5 Test Equipment Used; Emission Mask\*

| Instrument        | Manufacturer | Model             | Serial Number | Calibration           |                      |
|-------------------|--------------|-------------------|---------------|-----------------------|----------------------|
|                   |              |                   |               | Last Calibration Date | Next Calibration Due |
| Spectrum Analyzer | R&S          | FSL6              | 100194        | March 24, 2019        | March 31, 2020       |
| RF Cable          | EIM          | 705A009301<br>EIM | -             | December 24, 2018     | December 31, 2019    |
| 30db Attenuator   | MCL          | BW-S30W5          | 533           | December 24, 2018     | December 31, 2019    |

\*Testing performed June 24, 2019

**Figure 23 Test Equipment Used**

## 7. Spurious Radiated Emission

### 7.1 Test Specification

FCC, Part 90, Sub Part I, Section 210

### 7.2 Test Procedure

(Temperature (28°C)/ Humidity (50%RH))

Test method used: ANSI C63.26 (2015), Section 5.5.3

#### **For measurements between 0.009MHz-30.0MHz:**

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 0.8 meters above the ground. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

The frequency range 0.009MHz-30MHz was scanned.

#### **For measurements between 30.0MHz-1.0GHz:**

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground, at a distance of 3 meters. The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

The frequency range 30.0MHz -1.0GHz was scanned and the list of the highest emissions was verified and updated accordingly.

#### **For measurements between 1.0GHz-5.0GHz:**

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 1.5 meters above the ground. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

The frequency range 1.0GHz -5.0GHz was scanned.

The E.U.T. was replaced by a substitution antenna driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver

The signals observed were converted to radiated power using:

$$P_d(\text{dBm}) = P_g(\text{dBm}) - \text{Cable Loss (dB)} + \text{Substitution Antenna Gain (dBd)}$$

$P_d$  = Dipole equivalent power (result).

$P_g$  = Signal generator output level.

A Peak detector was using for this test.

The table below describe only results with the highest radiation.



### 7.3 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $50 + 10 \log (P)$  dB, yielding  $-20$  dBm.

### 7.4 Test Results

| Carrier Channel<br>(MHz) | Freq.<br>(MHz) | Antenna Pol.<br>(V/H) | Maximum Peak Level<br>(dB $\mu$ V/m) | Signal Generator RF Output<br>(dBm) | Cable Loss<br>(dB) | Antenna Gain<br>(dBd) | Effective Radiated Power Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|--------------------------|----------------|-----------------------|--------------------------------------|-------------------------------------|--------------------|-----------------------|-----------------------------------------|----------------|----------------|
| 450.006                  | 900.0          | V                     | 72.5                                 | -28.9                               | 0.5                | 5.0                   | -24.4                                   | -20.0          | -4.4           |
|                          | 900.0          | H                     | 76.0                                 | -25.0                               | 0.5                | 5.0                   | -20.5                                   | -20.0          | -0.5           |
|                          | 1350.0         | V                     | 55.5                                 | -44.4                               | 0.5                | 7.0                   | -37.9                                   | -20.0          | -17.9          |
|                          | 1350.0         | H                     | 56.6                                 | -42.4                               | 0.5                | 7.0                   | -35.9                                   | -20.0          | -15.9          |
|                          | 1800.0         | V                     | 58.7                                 | -43.6                               | 0.5                | 7.0                   | -37.1                                   | -20.0          | -17.1          |
|                          | 1800.0         | H                     | 59.3                                 | -42.8                               | 0.5                | 7.0                   | -36.3                                   | -20.0          | -16.3          |
| 460.000                  | 920.0          | V                     | 66.0                                 | -35.4                               | 0.5                | 5.0                   | -30.9                                   | -20.0          | -10.9          |
|                          | 920.0          | H                     | 75.8                                 | -25.1                               | 0.5                | 5.0                   | -20.6                                   | -20.0          | -0.6           |
|                          | 1380.0         | V                     | 58.7                                 | -40.7                               | 0.5                | 7.0                   | -34.2                                   | -20.0          | -14.2          |
|                          | 1380.0         | H                     | 58.2                                 | -41.0                               | 0.5                | 7.0                   | -34.5                                   | -20.0          | -14.5          |
|                          | 1840.0         | V                     | 63.3                                 | -39.3                               | 0.5                | 7.0                   | -32.8                                   | -20.0          | -12.8          |
|                          | 1840.0         | H                     | 58.8                                 | -43.8                               | 0.5                | 7.0                   | -37.3                                   | -20.0          | -17.3          |

Figure 24 Spurious Radiated Emission

JUDGEMENT:

Passed by 0.5 dB



## 7.5 Test Instrumentation Used; Radiated Measurements\*

| Instrument                  | Manufacturer    | Model            | Serial Number | Calibration           |                      |
|-----------------------------|-----------------|------------------|---------------|-----------------------|----------------------|
|                             |                 |                  |               | Last Calibration Date | Next Calibration Due |
| EMI Receiver                | HP              | 8542E            | 3906A00276    | February 28, 2019     | February 28, 2020    |
| RF Filter Section           | HP              | 85420E           | 3705A00248    | February 28, 2019     | February 28, 2020    |
| EMI Receiver                | R&S             | ESCI7            | 100724        | February 27, 2019     | February 28, 2020    |
| Spectrum Analyzer           | HP              | 8593EM           | 3536A00120ADI | February 26, 2019     | February 28, 2020    |
| Active Loop Antenna         | EMCO            | 6502             | 9506-2950     | October 19, 2017      | October 31, 2019     |
| Antenna Biconical           | EMCO            | 3110B            | 9912-3337     | May 21, 2019          | May 31, 2020         |
| Antenna Log Periodic        | EMCO            | 3146             | 9505-4081     | May 31, 2018          | May 31, 2020         |
| Horn Antenna 1G-18G         | ETS             | 3115             | 29845         | May 31, 2018          | May 31, 2021         |
| Low Noise Amplifier         | Narda           | LNA-DBS-0411N313 | 013           | December 24, 2018     | December 31, 2019    |
| Low Noise Amplifier         | Sophia Wireless | LNA 28-B         | 232           | December 24, 2018     | December 31, 2019    |
| Semi Anechoic Civil Chamber | ETS             | S81              | SL 11643      | NCR                   | NCR                  |
| Antenna Mast                | ETS             | 2070-2           | -             | NCR                   | NCR                  |
| Turntable                   | ETS             | 2087             | -             | NCR                   | NCR                  |
| Mast & Table Controller     | ETS/EMCO        | 2090             | 9608-1456     | NCR                   | NCR                  |

\*Testing performed May 26, 2019

**Figure 25 Test Equipment Used**



## 8. Transmitter Frequency Stability

### 8.1 Test Specification

FCC, Part 90, Sub Part I, Section 213; Part 2, Section 1055

### 8.2 Test Procedure

(Temperature (22°C)/ Humidity (45%RH))

Test method used: ANSI C63.26 (2015), Section 5.2.6

The E.U.T operation mode and test setup are as described in Section 2 of this report.

The E.U.T. was operated with a CW signal at 460MHz.

The E.U.T. was placed inside a temperature chamber.

The spectrum analyzer was set to 20.0 kHz span and 1.0 kHz RBW, 3.0 kHz VBW.

Counter function was set for this evaluation.

The E.U.T. was operated from external 3.6VDC at nominal temperature (+25.0°C).

The carrier frequency was measured and recorded (reference frequency reading).

The carrier frequency was measured and recorded after at least 20 minutes of exposing the E.U.T. to the temperature.

### 8.3 Test Limit

In the 421-512 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of  $\pm 1.5$  ppm (690Hz).

### 8.4 Test Results

JUDGEMENT: Passed

The details of the results are given in *Figure 26*.



## Transmitter Frequency Stability

| Temperature | Voltage    | Frequency         | Drift  | Limit |
|-------------|------------|-------------------|--------|-------|
| (°C)        | (VDC)      | (MHz)             | (Hz)   | (Hz)  |
| +20.0       | 3.06       | 459.999418        | +15.0  | 690   |
|             | <b>3.6</b> | <b>459.999403</b> | -      | 690   |
|             | 4.14       | 459.999425        | +22.0  | 690   |
| -30.0       | 3.6        | 459.999178        | -225.0 | 690   |
| -20.0       | 3.6        | 459.999269        | -134.0 | 690   |
| -10.0       | 3.6        | 459.999404        | +1.0   | 690   |
| 0.0         | 3.6        | 459.999421        | +18.0  | 690   |
| +10.0       | 3.6        | 459.999438        | +35.0  | 690   |
| +30.0       | 3.6        | 459.999473        | +70.0  | 690   |
| +40.0       | 3.6        | 459.999500        | +97.0  | 690   |
| +50.0       | 3.6        | 459.999505        | +102.0 | 690   |

Figure 26. Frequency Stability Test Results

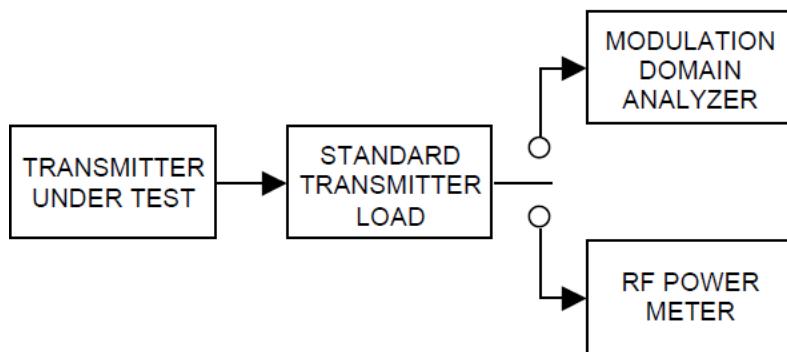
### 8.5 Test Equipment Used; Transmitter Frequency Stability\*

| Instrument        | Manufacturer | Model  | Serial No. | Last Calibration Date | Next Calibration Due |
|-------------------|--------------|--------|------------|-----------------------|----------------------|
| Spectrum Analyzer | R&S          | FSL6   | 100194     | March 24, 2019        | March 31, 2020       |
| Climatic Chamber  | Thermotron   | SM-32C | 251030     | February 27, 2019     | February 28, 2020    |

\*Testing performed May 26, 2019

Figure 27 Test Equipment Used

## 9. Transient Frequency Behavior


### 9.1 Test specification

FCC, Part 90, Section 214

### 9.2 Test Procedure

(Temperature (22°C)/ Humidity (45%RH))

Test method used: ANSI TIA 603 -E, Section 2.2.19



### 9.3 Test Limit

Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

| Time Intervals | Maximum Frequency Difference | 421 to 512 MHz |
|----------------|------------------------------|----------------|
| T1*            | $\pm 12.5\text{kHz}$         | 10msec         |
| T2             | $\pm 6.25\text{kHz}$         | 25msec         |
| T3*            | $\pm 12.5\text{kHz}$         | 10msec         |

*\*note: If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period*

### 9.4 Test Results

JUDGEMENT: Passed

The details of the results are given in *Figure 28* and *Figure 29*.

## Transient Frequency Behavior

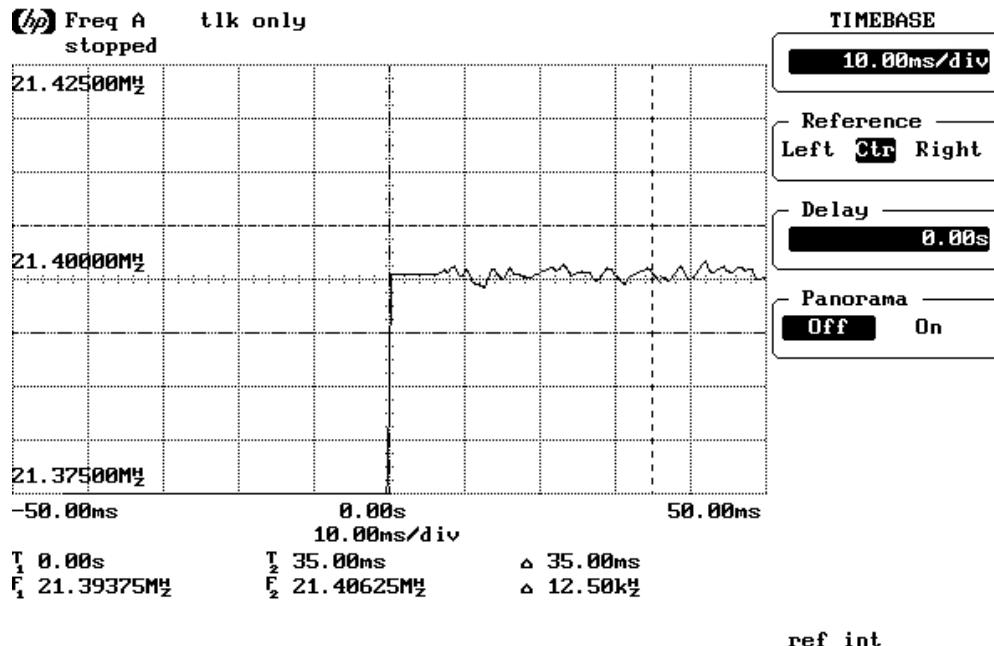



Figure 28. Transient Frequency Behavior “ON” Test Results

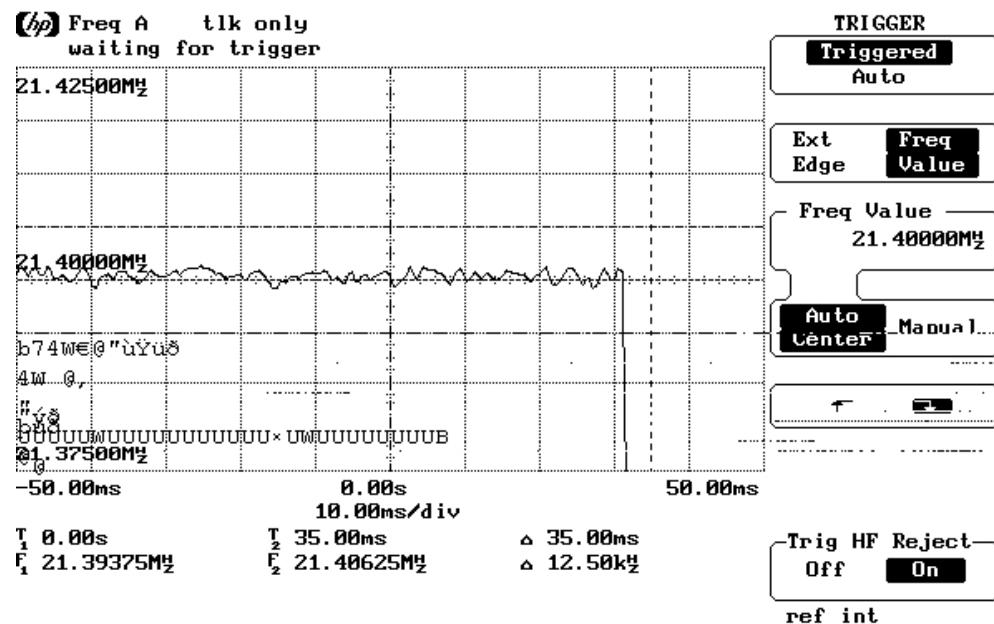



Figure 29. Transient Frequency Behavior “OFF” Test Results



## 9.5 *Test Equipment Used; Transient Frequency Behavior\**

| Instrument                 | Manufacturer | Model  | Serial No. | Last Calibration Date | Next Calibration Due |
|----------------------------|--------------|--------|------------|-----------------------|----------------------|
| Spectrum Analyzer          | HP           | 8568B  | 2732A3970  | February 27, 2019     | February 28, 2020    |
| Spectrum Analyzer Display  | HP           | 85662A | 2616A16146 | February 7, 2019      | February 28, 2020    |
| Modulation Domain Analyzer | HP           | 53310A | -          | January 3, 2019       | January 31, 2021     |

\*Testing performed January 5, 2020

**Figure 30 Test Equipment Used**



## 10. Antenna Type/Information

Dipole, printed antenna, peak gain 1.0dBi



## 11. RF Exposure/Safety

The E.U.T. is a Smart Air valve System Master Unit. Typical placement of the E.U.T. on an air valve. The typical distance between the E.U.T. and the user is at least 20cm.

### Calculation of Maximum Permissible Exposure (MPE) Based on Section 1.1310 Requirements

Using table 1 of Section 1.1310 limit for general population/uncontrolled exposures, the above level is an average over 30 minutes.

- 1) FCC limit at 460 MHz is:  $f/1500 \text{ (mW/cm}^2\text{)} = 460/1500 = 0.31 \text{ (mW/cm}^2\text{)}$
- 2) The power density produced by the E.U.T. is

$$S = \frac{P_t G_t}{4\pi R^2}$$

$P_t$ - Transmitted Power =EIRP =26.2dBm – 1dBi antenna gain = 25.2dBm

Antenna dipole, printed antenna 450-470MHz; 16.5cm; 1dBi

$G_t$ - Antenna Gain, 1 dBi gain =1.26 numeric

R- Distance from Transmitter using 20cm worst case

- 3) The peak power density is:

$$S = 25.2 \times 1.26 / 4\pi(20^2) = 0.006 \text{ W/cm}^2$$

This is below the FCC limit of 0.31 (mW/cm<sup>2</sup>)



## 12. APPENDIX A - CORRECTION FACTORS

### 12.1 *Correction factors for RF OATS Cable 35m ITL #1911*

| Frequency<br>(MHz) | loss<br>(dB) |
|--------------------|--------------|
| 30.0               | 1.3          |
| 50.0               | 1.7          |
| 100.0              | 2.6          |
| 200.0              | 3.7          |
| 300.0              | 4.7          |
| 400.0              | 5.5          |
| 500.0              | 6.3          |
| 600.0              | 7.0          |
| 700.0              | 7.6          |
| 800.0              | 8.4          |
| 900.0              | 9.0          |
| 1000.0             | 9.6          |



**12.2 Correction factor for RF cable for Anechoic Chamber ITL  
#1840**

| FREQ<br>(MHz) | LOSS<br>(dB) |
|---------------|--------------|
| 1000.0        | 1.5          |
| 2000.0        | 2.1          |
| 3000.0        | 2.7          |
| 4000.0        | 3.1          |
| 5000.0        | 3.5          |
| 6000.0        | 4.1          |
| 7000.0        | 4.6          |
| 8000.0        | 4.9          |
| 9000.0        | 5.7          |
| 10000.0       | 5.7          |
| 11000.0       | 6.1          |
| 12000.0       | 6.1          |
| 13000.0       | 6.2          |
| 14000.0       | 6.7          |
| 15000.0       | 7.4          |
| 16000.0       | 7.5          |
| 17000.0       | 7.9          |
| 18000.0       | 8.1          |
| 19000.0       | 8.8          |
| 20000.0       | 9.1          |

*NOTES:*

1. The cable is manufactured by Commscope
2. The cable type is 0623 WBC-400, serial # G020132 and 10m long



### 12.3 Correction factors for Active Loop Antenna

**ITL # 1075**

| F(MHz) | AF(dB/m) |
|--------|----------|
| 0.01   | 18.4     |
| 0.02   | 14.3     |
| 0.03   | 13.3     |
| 0.05   | 11.7     |
| 0.1    | 11.4     |
| 0.2    | 11.2     |
| 0.3    | 11.2     |
| 0.5    | 11.2     |
| 0.7    | 11.2     |
| 1      | 11.4     |
| 2      | 11.5     |
| 3      | 11.5     |
| 4      | 11.4     |
| 5      | 11.3     |
| 6      | 11.1     |
| 7      | 11.1     |
| 8      | 11.1     |
| 9      | 11       |
| 10     | 11       |
| 20     | 10       |
| 30     | 8        |



#### 12.4 Correction factors for biconical antenna ITL #1356

| Frequency<br>[MHz] | AF<br>[dB/m] |
|--------------------|--------------|
| 30                 | 13.00        |
| 35                 | 10.89        |
| 40                 | 10.59        |
| 45                 | 10.63        |
| 50                 | 10.12        |
| 60                 | 9.26         |
| 70                 | 7.74         |
| 80                 | 6.63         |
| 90                 | 8.23         |
| 100                | 11.12        |
| 120                | 13.16        |
| 140                | 13.07        |
| 160                | 14.80        |
| 180                | 16.95        |
| 200                | 17.17        |



## 12.5 Correction factors for log periodic antenna ITL # 1349

| Frequency<br>[MHz] | AF<br>[dB/m] |
|--------------------|--------------|
| 200                | 11.58        |
| 250                | 12.04        |
| 300                | 14.76        |
| 400                | 15.55        |
| 500                | 17.85        |
| 600                | 18.66        |
| 700                | 20.87        |
| 800                | 21.15        |
| 900                | 22.32        |
| 1000               | 24.22        |

**12.6 Correction factors for Double -Ridged Waveguide Horn ANTENNA**  
**3 meter range; ITL # 1352**

| FREQUENCY<br>(GHz) | AFE<br>(dB/m) | FREQUENCY<br>(GHz) | AFE<br>(dB/m) |
|--------------------|---------------|--------------------|---------------|
| 0.75               | 25.0          | 9.5                | 38.0          |
| 1.0                | 23.5          | 10.0               | 38.5          |
| 1.5                | 26.0          | 10.5               | 38.5          |
| 2.0                | 29.0          | 11.0               | 38.5          |
| 2.5                | 27.5          | 11.5               | 38.5          |
| 3.0                | 30.0          | 12.0               | 38.0          |
| 3.5                | 31.5          | 12.5               | 38.5          |
| 4.0                | 32.5          | 13.0               | 40.0          |
| 4.5                | 32.5          | 13.5               | 41.0          |
| 5.0                | 33.0          | 14.0               | 40.0          |
| 5.5                | 35.0          | 14.5               | 39.0          |
| 6.0                | 36.5          | 15.0               | 38.0          |
| 6.5                | 36.5          | 15.5               | 37.5          |
| 7.0                | 37.5          | 16.0               | 37.5          |
| 7.5                | 37.5          | 16.5               | 39.0          |
| 8.0                | 37.5          | 17.0               | 40.0          |
| 8.5                | 38.0          | 17.5               | 42.0          |
| 9.0                | 37.5          | 18.0               | 42.5          |