
Unboxing and quick start guide

Quick start guide

The ConDor is an automatic controller for motorized and hydraulically actuated control valves, enabling multiple applications and smart operation. This quick start guide's goal is to enbale the user to connect, cofigure and fine-tune the hydraulic system. For detailed and specific applications address to the official Dorot technician or certified dealer, and download the ConDor user manual from www.aquestia.com.

This flowchart depicts the necessary stages required for installing and operating a new ConDor:

Available ConDor models

Product Code	Description
CND001015	ConDor 3G IP68
CND001017	ConDor 3G IP65
CND001023	ConDor 4G IP65
CND001024	ConDor 4G IP68

IP68 ConDor IP68 connectors in bottom enclosure

IP65 ConDor
Holes in bottom enclosure
for PG connectors

ConDor ID Sticker:

Serial Number Lot Number BLE MAC Address IMEI

Accessory box content

Description	Applicable to model	# items	
ConDor bracket	All	1	
Bracket – wall mounting screws	All	2	Summer.
Bracket – wall mounting dowels	All	2	-340
Bracket – ConDor fastening screws	All	2	
12Volts 1,3Ah GEL battery	All	1	Lieu .
Battery pigtail cable	All	1	
Enclosure M4 screws	All	10	
ConDor ID stickers	All	2	100 000 100 000 000 000 000 000 000 000
ALLEN key Nº 4	All	1	
ALLEN key № 6	All	1	
Field connector	IP65	6	MANAMA
PG9 Cable gland	IP65	4	
IP68 10 pin cable*	IP68	2	
IP68 6 pin cable	IP68	1	
3M IP68 connectors	IP68	50	
IP68 Cable pinout stickers	IP68	1	

^{*2} cables are provided in the box, additional cables available.

The ConDor software suite

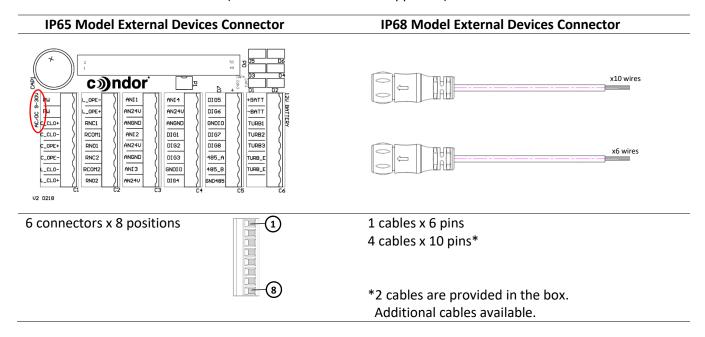
ConDor Android App	ConDor iOS App	SKYplatform WEB Site	SKYplatform Android App
Android application for and managing the ConD Bluetooth.		Web based software platform for remotely managing the ConDor/users/alarms and data.	A mobile version of the SKYplatform platform for remotely managing users/datalogger graphs.

User permission

To access the ConDor and the SKYplatform, the user should have an existing account (username and password). The ConDor system has three levels of user accounts, each with its predetermined permissions.

- Viewer get device status, view alarms.
- **Operator** viewer permissions + edit: valves, configurations, sensors, get & clear events, get configuration, open / close valve.
- **Manager** operator permissions + add and edit: devices, valves, configurations, sensors, datalogger, users, add + view & process alarms, relays, etc.

Manager username and passwords are provided by Aquestia or by an authorized Aquestia's representative.


Operator level username and password are provided by the manager level.

Please refer to the ConDor user manual for full details.

External devices connections

The following is a list of Inputs, Outputs, and Communication ports that are used to connect the ConDor to the external devices:

- 3 2 outputs 12 Volts DC continuous solenoid.
- 2 outputs 12 Volts Latch solenoid.
- 3 8 digital inputs (6 dry contact & 2 voltage sensitive)
- 4 analog inputs (4-20 mA)
- 3 2 relays (Normally Open and Normally Close contact available)
- 1 RS485 Modbus interface (Master & Partner modes supported)

IP65 & IP68 Pinout table

		IP65 model		IP68 model	
Acronym	Description	Pin	connector	Pin (color)	connector
PW	Power supply – polarity is ignored	1	C1	A (Pink)	C1
PW	Power supply – polarity is ignored	2	C1	B (Brown)	C1
C_CLO+	Closing Continuous solenoid terminal +	3	C1	C (Red)	C1
C_CLO-	Closing Continuous solenoid terminal -	4	C1	D (black)	C1
C_OPE+	Opening Continuous solenoid terminal +	5	C1	E (Grey)	C1
C_OPE-	Opening Continuous solenoid terminal -	6	C1	F (Blue)	C1
L_CLO-	Closing Latch solenoid terminal -	7	C1	G (White)	C3
L_CLO+	Closing Latch solenoid terminal +	8	C1	F (Blue)	C3
L_OPE-	Opening Latch solenoid terminal -	1	C2	E (Grey)	C3
L_OPE+	Opening Latch solenoid terminal +	2	C2	D (Black)	C3
RNC1	Alarm relay normally close contact	3	C2	J (Green)	C1
RCOM1	Alarm relay common contact	4	C2	I (Yellow)	C2
RNO1	Alarm relay normally open contact	5	C2	J (Green)	C2
RNC2	Programable relay normal close contact	6	C2	J (Green)	C4
RCOM2	Programable relay common contact	7	C2	I (Yellow)	C4
RNO2	Programable relay normally open contact	8	C2	F (Blue)	C5
ANI1	Analog input 1	1	C3	G (White)	C1
AN24V	+24 Vcc analog input 1 power-supply	2	C3	H (Purple)	C1
ANGND	Analog input 1 ground	3	C3	I (Yellow)	C1
ANI2	Analog input 2	4	C3	A (Pink)	C2
AN24V	+24 Vcc analog input 2 power-supply	5	C3	B (Brown)	C2
ANGND	Analog input 2 - 3 ground	6	C3	C (Red)	C2
ANI3	Analog input 3	7	C3	D (Black)	C2
AN24V	+24 Vcc analog input 3 power-supply	8	C3	E (Grey)	C2
ANI4	Analog input 4	1	C4	A (Pink)	C4
AN24V	+24 Vcc analog input 4 power-supply	2	C4	B (Brown)	C4
ANGND	Analog input 4 ground	3	C4	C (Red)	C4
DIG1	Digital Input 1 (dry contact)	4	C4	F (Blue)	C2
DIG2	Digital Input 2 (dry contact)	5	C4	G (White)	C2
DIG3	Digital Input 3 (dry contact)	6	C4	D (Black)	C4
GNDIO	Digital ground inputs 1-2-3	7	C4	H (Purple)	C2
DIG4	Digital Input 4 (dry contact)	8	C4	E (Grey)	C4
DIG5	Digital Input 5 (dry contact)	1	C5	F (Blue)	C4
DIG6	Digital Input 6 (dry contact)	2	C5	I (Yellow)	C3
GNDIO	Digital ground inputs 4-5-6-7-8	3	C5	H (Purple)	C3-C4
DIG7	Digital Input 7 (TTL) [3,6 to 36 Volts range]	4	C5	G (White)	C4
DIG8	Digital Input 8 (TTL) [3,6 to 36 Volts range]	5	C5	J (Green)	C3
485_A	RS485 interface A terminal (TX-/RX-/D-)	6	C5	A (Pink)	C3
485_B	RS485 interface B terminal (TX+/RX+/D+)	7	C5	B (Brown)	C3
GND485	RS485 ground terminal	8	C5	C (Red)	C3
+BATT	External battery + 12 Volts	1	C6	A (Pink)	C5
-BATT	External battery GND	2	C6	B (Brown)	C5

2.1 Flat cable connection

The ConDor contains two electronic printed circuit boards: the main board located in the lid, and the connector board, located in the base. The two boards are joined by a flat cable.

2.2 Power supply options and connection

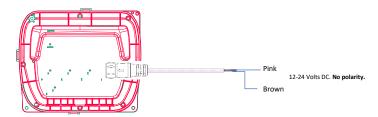
The ConDor has a 1.3Ah internal backup battery which allows continuous operation in case of a power interrupt. The internal battery can last between several hours to several days, depending on the mode of operation. In case of intensive valve regulation requirements, or when the main power supply is unstable, an additional external battery can be added to extend the backup duration.

Power supply sources:

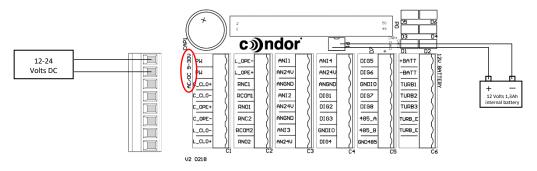
Power supply Adaptor 12-24 Volts DC (Minimum 2W)	Solar panel + Regulator + 12 Volts Battery	Water turbine	Other power source
			4

1. Power supply Adaptor 12-24 Volts DC, 3W:

i. Internal Battery: connect the internal battery to the battery plug connector (white) of the Field Electronic Board using the <u>pigtail</u> supplied with the ConDor (see <u>Accessory box content table</u>).

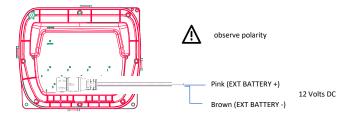

Ensure that the wire polarity is correct; the (+) and the (–) are aligned with the battery polarity. The Red wire should be connected to the (+) and the Black wire to the (–).

Operating the ConDor on its internal battery only should be done only for momentary testing\operation. The battery charging power source should always be connected, otherwise the battery may drain.



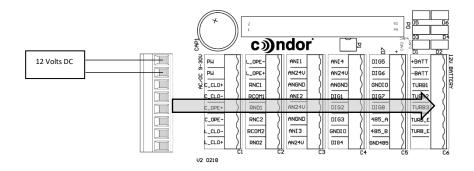
ii. Power supply - IP68 ConDor: connect the 10 pin IP68 cable to connector number 1 in the bottom of the enclosure. Connect the Pink and the Brown wires of the cable to a 12-24 Volts DC external power supply unit.

Power supply connection Scheme A


iii. Power supply - IP65 ConDor: Connect the adaptor wires to the plug connector position as depicted on the left side of the following drawing.

2. Solar panel:

Connect the 12 Volt regulator output wires to the External Battery (+) and (-). Observe battery polarity.


Power supply connection Scheme B

i. Solar panel powering:

Λ

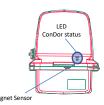
Don't connect an internal battery or external power supply.

△ A.R.I. △ DOROT △ OCV

3. Water turbine:

The ConDor accepts a water turbine power source:

- a. 12 Volts DC regulated water turbine:
 - In case the Water Turbine comes without an internal battery: Connect the turbine according to the *Power supply connection schemas A*; consider the water turbine output voltage as a 12 Volts output regulator.
 - In case the Water Turbine comes with an internal battery: Connect the turbine according to the *Power supply connection schemas B*; consider the water turbine output voltage as a 12 Volts output regulator.
- Unregulated DC output up to 30 Volts water turbine without an internal battery:
 Connect the turbine according to the *Power supply connection schemas A*; consider the water turbine output voltage as an external power supply.
- c. 3 phase AC output up to 40 Volts peaks water turbine: Contact DOROT for further information.


4. Other power source:

Consult Aquestia for connection instructions.

1. power on

Once power is connected, the ConDor's status LED lights up and turns yellow for up to 1 minute, followed by white light for few seconds.

Note: The duration of the LED lights can vary as function of the ConDor's configuration and state.

Once the internal test has ended, the ConDor is ready for Test Mode

LED Color	Green	Blue	Red	White	Yellow
State	Normal	Communications	Alarm/Error	Data	Internal test
				configuration	

△ A.R.I. △ DOROT △ OCV

2. Test mode

To assure correct wiring of the different devices and the power supply, use the ConDor's App Test features. Follow the steps below for checking the electrical signals and the output commands.

- 1. Enter the ConDor application using your credentials.
- 2. Tap on the name of the ConDor intended to be tested.

 A list of available test actions is displayed below the ConDor's name.
- 3. Activate the ConDor's BLE communication by passing the magnet over the magnet sensor; the ConDor's LED will begin blinking blue. Tap on the application's Test option. The ConDor will attempt to pair with the device. If pairing is unsuccessful, repeat the process.
- 4. Once the ConDor is paired with the App, the user can view and change several settings:

a. DIGITAL INPUTS

i. **DIG1 – DIG6**: view the state of the 6 ConDor dry contact digital inputs:

ON: DIGx and GNDIO circuit is closed.

OFF: DIGx and GNDIO circuit is open.

ii. **TTL7-TTL8**: view the state of the 2 ConDor voltage sensitive digital inputs:

ON: A TTL voltage is applied between terminals TTLx and GNDIO.

OFF: Terminals TTLx and GNDIO are open.

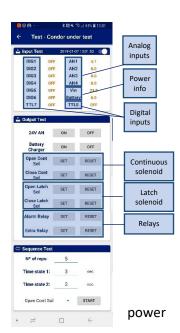
b. ANALOG INPUTS:

The 4-20 mA sensors are connected to ANx inputs.

If an analog sensor is powered by the ConDor's +24 Volts Output activate the +24 Volts output by tapping the "24V AN ON" button.

c. POWER CONNECTIONS:

- **i. External power source voltage:** The voltage of the external source (power supply) is displayed in the V_{in} parameter.
- ii. Battery level: the battery voltage is displayed in the Battery section.


Battery Charger: to see battery level, activate the internal ConDor battery charger.

d. OUTPUTS' Commands (Actuators)

- i. Continuous solenoid: use SET to energize and RESET to de-energize the opening and closing of the solenoid valve. Make sure that the correct solenoid valve is operated.
- **ii.** Latch solenoid: use SET to send a positive pulse and RESET to send a negative pulse for opening and closing the solenoid valve.
- **iii. Relays:** use SET to close the circuit and RESET to open the circuit of the Alarm and the programable relays.
- e. Sequence Test: Use the sequence test parameters to repeat an output action.

The outputs remain in the same state when the user exits the *Test mode*; check the correct state. When exiting test mode, the ConDor starts running the control function (if defined).

Make sure to check all the Inputs/Outputs using the Test Mode feature before configurating the system for automatic control function. Correct and re-check connections if required.

3. Configuration management

5.1 ConDor configuration

Following the ConDor's wiring, the next steps are modem configuration, and Modbus configuration for ConDors connected to where Modbus communication is applied.

- 1. **MODEM configuration:** if applicable, define an APN name (obtained from the Cellular provider) and advanced communication parameters.
- 2. **Modbus configuration:** Used to define the Modbus communication parameters. Refer to the user manual for further information.

5.2 hydraulic system configuration

hydraulic system configuration: A configuration is a set of folders that contains the information relating to: Sensors that the ConDor can read and manage, Valve that is controlled by the ConDor, Functions that Regulate, Open, Close, and Maintain the valve position according to the hydraulic conditions, Datalogger that logs the relevant information, Relay that interacts with external devices/actuators, and Alarms that inform the users on faults and unexpected situations.

There are three alternatives for adding a new ConDor configuration to the configuration folder. Tap on the ConDor config folder bellow the ConDor unit's tree, to:

1. Add a new Configuration: Follow this chapter for instructions on creating a new configuration.

Sensor Folder	🔀 Valve Folder	Function Folder	Datalogger Folder	Relay Folder	Alarm Folder
Select and	The ConDor can	Select an application	Define sensors	Choose the	Configure the
add/configure	manage only a	for the valve:	that their readings	behavior of	behavior of the
the appropriate	single valve via	Pressure reduction,	are logged to the	the auxiliary	ConDor in cases
transducer	solenoids or	pressure sustained,	ConDor's internal	relay as	of different
Analog Pulse Contact	actuators. In this folder	modulated by flow, level control, flow regulation, etc.	datalogger. Set the sampling rate, and the actions that	function of: Analog sensors,	alarms (critical and non-critical)
Modbus Modbus analog contact	configure the appropriate characteristics of the valve, the	and set the characteristics of the regulation (fast, slow, etc.), Setpoint,	affects the logging.	Digital sensors, or Time table	Activate the alarm relay, Modify the valve's behavior,
	actuators, and the function's	accuracy, and other such parameters.			and other such parameters.

Sensor Folder

actions related to sensors readings.

Select the appropriate sensor: Analog: used for 4-20 mA Analog Sensors Pulse: used for pulse type Flow Sensor. Contact: used for Digital ON/OFF sensor. Modbus Analog/Contact: used for Analog/Digital sensors, externally connected via

Analog 4-20 mA sensor

- Set a recognizable name for the sensor
- Select a port (AN1 to AN4) for the sensor connection
- Set the sensor's units
- Set the "Per Time Unit" to NONE.
- Configure the sensor's reading range (minimum and maximum).

Pulse

Min Flow

- Set a recognizable name for the sensor
- Select a port for the sensor connection (DIG1 -DIG6)
- Set the "Per Time Unit" and the pulse volume
- Set the Method used to detect the pulse.
- Set the maximal flow that the sensor can reach in the current application

Contact

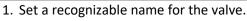
Set a recognizable name for the sensor

- Select the Digital port for sensor connection.

Modbus Analog/Contact

Set a recognizable name for the sensor

- Set the logical for the sensor. The reading appears in the logical port while physically the sensor is controlled by the Modbus comm.
- Set the "Per Time Unit" to NONE.
- Activate Data conversion when the ConDor has to transform the Modbus value to the engineering value of the sensor
- Set the maximal value for this sensor readings
- Modbus parameters: Please refer to the ConDor Modbus reference guide.


Valve Folder

Modbus

communication.

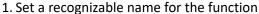
Parameters

Valve parameters description

2. Set the size of the valve. In case this ConDor has to control a Motorized valve, please refer to Dorot's representative for instructions.

- 3. Define the Solenoids used to control the valve, and the hydraulic state of the solenoids type. The ConDor can use a combination of Continuous and Latch Solenoids. At least one solenoid type should be selected to enable opening and closing of the valve.
- 4. Set the required Mode, e.g., the behavior expected from the valve: **3) Close:** The ConDor applies permanent Close command to the valve.

Size This folder 2"/50 mm **Defines the** Opening Solenoi characteristics of the valve. Closing Solenoi ✓ Contin


△ A.R.I. △ DOROT △ OCV

- **n** Open: The ConDor applies permanent Open command to the valve.
- **Meep:** The ConDor keeps the current position of the valve.
- **3** Regulate: The ConDor regulates the valve as defined.
- **Dynamic:** Control the valve in the function's values, defined:
 - By Sensor: An analog sensor modulates the valve.
 - By Contact: a digital sensor modulates the valve.
 - By Time: A time table modulates the valve.

Function Folder

Parameters

Function parameters description

- 2. Input Sensor Define the variable that the valve regulates in this function
- 3. Select the action to be performed by the valve when the sensor reading is above the setpoint, i.e., if the reference sensor is a downstream pressure sensor, and it is above the setpoint, the valve should slightly close to reach the setpoint. This is a *reduce* function. If the reference sensor is an upstream pressure sensor and it is above the setpoint, the valve should slightly open to reach the setpoint, this is a *sustain* function.
- 4. All the functions should have a Fixed Setpoint for the reference sensor. This Setpoint is the target for the ConDor to reach when it controls the valve. In case other Setpoints are set with higher priority, this function will be in lower priority status.
- 5. The selected Setpoint Mode is the one that is targeted by the ConDor's function algorithm. Select between *Fixed* (defined previously) or *Dynamic*. The Setpoint could be defined also:
 By a different analog input signal
 - By several values, set in a time table
- 6. The Mode determines if the function is enabled (start), disabled (stop) or dynamically operated; modulate by sensor values, digital sensors or time tables.

This folder defines the regulation

algorithm to be applied to the valve.

The ConDor can execute up to 5 functions simultaneously for achieving the required hydraulic operation.

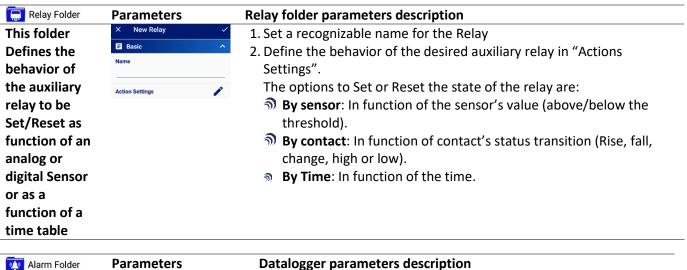
🖹 Datalogger Folder

Parameters

Datalogger parameters description

This folder
configures the
information to
be stored in the
ConDor's
internal
datalogger that
is capable of
collecting 5
channels

simultaneously.



- 1. Set a recognizable name for the Datalogger channel
- 2. Define the sensor to be logged
- 3. The "Fixed rate" parameter indicates the recording rate used by the ConDor to record each sensor sample. Each datalogger sample consists of the maximum, minimum and average values read between two records, taking into account that ConDor sampling rate is one second.
- 4. The ConDor can implement a fixed or dynamic analog sensor recording; in dynamic mode the datalogger records the analog sensor only upon changes
- 5. *time table;* the recording rate changes according to a list in a time table, or according to the reference sensor.
- 6. The datalogger operation can be enabled (start), disabled (stop) or operated dynamically. The appropriate mode should be defined. Use

△ A.R.I. △ DOROT △ OCV

dynamic mode to modulate the Datalogger function by Sensor, Contact (Digital inputs) or by Time.

This folder **Defines the** ConDor's action when an Alarm appears. There are two types of alarms:

Alarm Folder

Critical Alarm Folder

Low Battery

Input Sensor

Non-critical Alarm Folder

Sensor Failure

Out of Setpoint

Out of Range

Solenoid Not Connected

Solenoid Short Circuit

- Critical
- Non-Critical

Datalogger parameters description

There are 4 critical and 3 non-critical alarms. Each one can be configured as follow:

- Reset: automatically when the alarm cause ends, or manually when the user resets the alarm locally.
- Initiate valve's action when the alarm condition appears, the options are: No action, Open, Close, keep, or regulate). The action can be delayed by "Time in failure state to apply action" parameter.
- 3 Set: activate the alarm relay when the alarm condition appears.

Additionally, the alarm can:

- Set/Reset the programable Relay
- Start/Stop a defined function
- Start/Stop a datalogger channel
- 2. Get an existing configuration from a ConDor device: (relevant to pre-configured devices)

△ A.R.I. △ DOROT △ OCV

Tap on the "Config from ConDor" icon, activate the ConDor Bluetooth by passing the magnet near the magnet sensor, and get the configuration.

This process lasts less than a minute. The new configuration is placed with its original name in the ConDor config folder (last position).

3. Get a configuration from the Server:
Configurations uploaded to the SKYplatform server are accessible from the phone. Select the "Config from Server" option to access a list of ConDor configurations sorted by: ConDor, Control zone, project, or all available configurations for your user permissions.

You can edit the downloaded configuration and adapt it to the specific functionalities of your ConDor.

5.3 Transferring configuration to ConDor

When the configuration of the ConDor, as prepared in the phone application, is completed, it should be transferred to the ConDor.

Follow the next steps:

- 1. **Activate the ConDor Bluetooth** by passing the magnet near the ConDor's magnet sensor.
- **2.** Tap on the configuration name and select "Config to ConDor".
- 3. A progression bar appears on screen and the ConDor LED is lighted in white. Wait until the process of transferring and saving the information to the ConDor finishes. Once finished, a green screen showing the amount of information transferred appears, and the white LED switches to normal operation.

Config to Config to Edit Delete

Condor Server

Sending configuration via Bluetooth
Transfer in progress...

Transfer Completed
Data transferred: 471 bytes

OK

Transfer Configuration via Bluetooth
Saving data on Condor

LED Status: White while the transfer is progressing.

Once the configuration is set and tuned in the ConDor, it should be sent to the Server in order to synchronize the system.

△ A.R.I. △ DOROT △ OCV

4. Regulation Verification

Once the configuration is downloaded to the ConDor, it is ready to be tuned. "Monitor" and "Control mode" are the screens that allow the user to see the status of the function's regulation and to adjust its parameters. To access this mode, first activate the ConDor's Bluetooth and pair the Smartphone with the ConDor. Tap on the ConDor device name and select the required one.

Monitor mode (visualization): This screen shows the function's regulation progression, the solenoids state, and the Set Point with its current value.

Control mode: This mode allows access to the Monitor and the Control screens in order to operate the valve and change parameters in real time.

The Monitor mode allows the user to observe the status of the regulation process.

Open C/Close C: displays the Opening and Closing state of a continuous type solenoid.

Open L/Close D: displays the Opening and Closing state of a Latch solenoid.

Cycle W: displays the status of a working cycle in mS. (The time between activation of solenoids)

Pulse T: displays the current duration of the solenoid operation (energizing) the in mS.

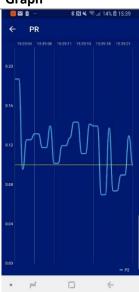
Indicates that alarms currently exist. Tap on the icon to display them.

Indicates the power source

Indicates the state of the

function and its
action on the valve.

Functions area: displays the name of the function, the assigned sensor, and the Set Point with its current value. Tap on the upper function


Monitor mode Screen

The Monitor screen has two parts:

- n Common information about the Regulation status. The first line displays the date and the ConDor model (Firmware, Hardware, Bootloader)
- Functions defined. The function displayed on top is the current working function. Tap on it for viewing the variable under control, in a real time graph.
- State and value of a defined Contact or analog inputs. In the lower part of the screen there is a window with the real-time value of the contact and the analog inputs (4 additional to the functions variable defined). Tap on this window to view the graph. This information can be shared by taping on the share icon.

Variable under control Graph

screen to see the function variable graph.

Allows access to the Monitor mode and the Control screens for tuning parameters and perform local actions:

- **Time Edit:** Set the ConDor Time
- Main Valve Override: Perform a local action on the Valve (overriding configuration) or de activate local actions.
- Minimum reaction time: Allows to change the Minimum reaction time parameter.
- **Device:** Allows reset to Factory Settings or reset Alarms.
- **Note:** Function Settings: Allows real time modification of the function's parameters. These parameters can be repeatedly sent to the ConDor to tune the function, but they won't be saved to the configuration until the user saves it expressly.

The user can move from Monitor mode to Control mode, or vice versa, in order to view and adjust the regulation, by tapping on the MONITOR - CONTROL icons.

Table of Valve's actions

Acronym	State	
LC	Local Comm	
RC	Remote Comm	
AH	Alarm Critical	
AL	Alarm Non-critical	
TTC	TTSS Continuous	
LE	High/Low digital	
	(LE Level)	
ED	Remote Analog,	
	Rise/Fall/Change (Edge)	
-	NO ACTION	

Table of Setpoint

Acronym	Set Point origin	Priority
F	Fixed Set Point	Lowest (1)
TT	Time Table	2
VT	Value Table	3
RA	Remote Analog	4
RC	Remote	5
	Communication	
LC	Local Command	Highest (6)

7. Advanced and miscellaneous features

These features enable the user to easily manage the ConDor device. Accessing any of them is done by tapping on the ConDor name.

Service Mode

This option causes the ConDor to pause all hydraulic functions (Keep mode). Tap "START" to ensure that the valve is not given any commands while it is being serviced.

Once the maintenance tasks are finished, tap "STOP" to return to normal operation mode.

Datalogger Manager

Used to manage the information logged to the ConDor device. The user can access this information via this option.

- Transfer the data logged in the ConDor to the Application (selecting the date interval).
- Share, display graph, or delete the information, by tapping on the required action.

Each block of data transferred from the ConDor to the Smartphone/tablet is saved locally to the Smartphone/tablet and is identified by the configuration name and the date interval. The user is responsible to manage the information downloaded to his smartphone/tablet.

Firmware Manager

Used to upgrade the ConDor firmware.

- Select the correct firmware version in the top of the screen. A selectable list will appear with the firmware files available (Contact with your dealer or Dorot support team to be make sure you using the correct firmware file).
- Activate the Bluetooth connection of the ConDor and tap UPDATE FIRMWARE
- A progression bar window appears, showing the upgrading process. This process can last around 45 minutes.
- After the firmware upgrade process is finished, the ConDor restarts and automatically move back to the last configuration.
- After Firmware upgrade process has finished, check the current Firmware version in MONITOR mode.

INCORRECT FIRMWARE UPGRADE CAN CAUSE PHISICAL DAMAGE TO THE CONDOR DEVICE. BE SURE THE FIRMWARE FILE YOU SELECT IS THE APROPRIATE ONE.

Dorot recommends not to operate the ConDor's valve during FIRMWARE UPGRADING.

FCC Compliance Statement

This device has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in residential installations. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio and television reception.

However, there is no guarantee that interference will not occur in a particular installation. If this device does cause such interference, which can be verified by turning the device off and on, the user is encouraged to eliminate the interference by one or more of the following measures:

- Re-orient or re-locate the receiving antenna.
- Increase the distance between the device and the receiver.
- Connect the device to an outlet on a circuit different from the one that supplies power to the receiver.
- Consult the dealer or an experienced radio/TV technician.

WARNING! Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

A distance of at least 20cm between the equipment and all persons should be maintained during the operation of the equipment.