

SonicSensory, Inc.

Jonah

FCC 15.247:2019
Bluetooth (FHSS) TI CC2564C Radio

Report # DROP0009.2

NVLAP LAB CODE: 200676-0

CERTIFICATE OF TEST

Last Date of Test: June 10, 2019 SonicSensory, Inc. Model: Jonah

Radio Equipment Testing

Standards

Specification	Method	
FCC 15.207:2019	ANSI C63.10:2013	
FCC 15.247:2019	ANSI C03.10.2013	

Results

Method				
Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	
7.8.2	Carrier Frequency Separation	Yes	Pass	
7.8.3	Number of Hopping Frequencies	Yes	Pass	
7.8.4	Dwell Time	Yes	Pass	
7.8.5	Output Power	Yes	Pass	
7.8.5	Equivalent Isotropic Radiated Power	Yes	Pass	
7.8.6	Band Edge Compliance	Yes	Pass	
7.8.6	Band Edge Compliance - Hopping Mode	Yes	Pass	
7.8.7	Occupied Bandwidth	Yes	Pass	
7.8.8	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

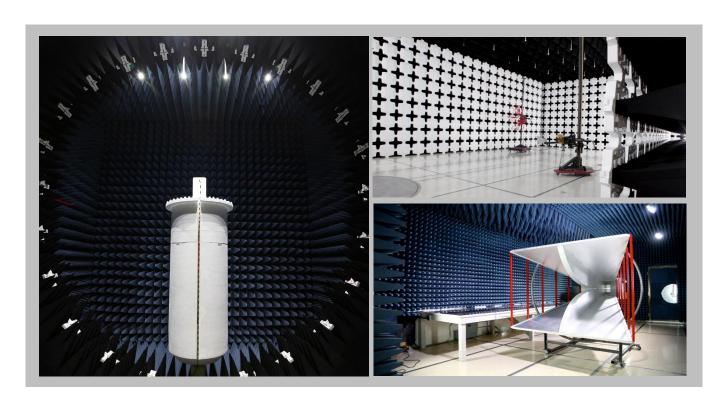
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600		
		NVLAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1		
		BSMI				
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
	VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110		
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	US0017	US0191	US0157		

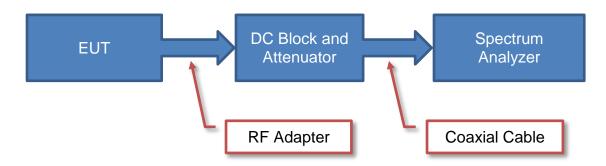
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

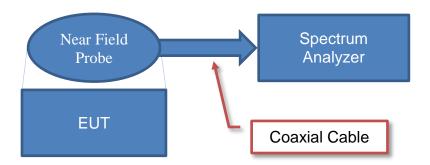
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

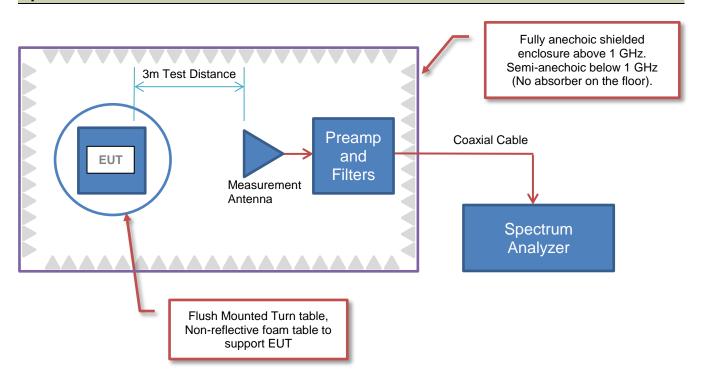
The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams



7/87


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	SonicSensory, Inc.
Address:	1163 Logan St
City, State, Zip:	Los Angeles, CA 90026
Test Requested By:	Mimi Liu
Model:	Jonah
First Date of Test:	June 5, 2019
Last Date of Test:	June 10, 2019
Receipt Date of Samples:	June 5, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Jonah is a radio enabled footwear device with audio processing devices and low frequency transducers, which transmit vibrational energy received from multimedia and environmental sources. The transducers are located under the arch area. Jonah comes with built in rechargeable Lithium-ion batteries and custom programmable options via the SonicSensory app.

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247 requirements.

CONFIGURATIONS

Configuration DROP0009-1

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Jonah	SonicSensory, Inc.	PVT- Jonah	PL1919P10041		
Jonah	SonicSensory, Inc.	PVT- Jonah	PR1919P10030		

Peripherals in test setup boundary						
Description	Description Manufacturer Model/Part Number Serial Number					
Power supply	Asian Power Devices	WB-24J12FU	S9510999000058			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC cable	Yes	1.8m	Yes	Power supply	Jonah

Configuration DROP0009- 2

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Jonah	SonicSensory, Inc.	PVT- Jonah	PL1919P10041		

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power supply	Asian Power Devices	WB-24J12FU	S9510999000058		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC cable	Yes	1.8m	Yes	Power supply	Jonah

CONFIGURATIONS

Configuration DROP0009-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Jonah	SonicSensory, Inc.	PVT- Jonah	PL191910034

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power supply	Asian Power Devices	WB-24J12FU	S9510999000058		

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Laptop	HP	XPS159560	25058299006			
USB-SPI Converter	CSR	1324	398772			

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
DC cable	Yes	1.8m	Yes	Power supply	Jonah			
Ethernet	No	1.5m	No	Laptop	USB-SPI			
Ethernet	Yes	1m	No	USB-SPI	Ribbon			
Ribbon	No	0.05m	No	Ethernet	Jonah			

Report No. DROP0009.2 10/87

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
пош	Date	Spurious	Tested as	No EMI suppression	EUT remained at
1	2019-06-05	Radiated	delivered to	devices were added or	Element following the
'	2019-00-03	Emissions	Test Station.	modified during this test.	test.
		Carrier	Tested as	No EMI suppression	EUT remained at
2	2019-06-06		delivered to	devices were added or	
2	2019-00-00	Frequency			Element following the
		Separation	Test Station.	modified during this test.	test. EUT remained at
•	0040 00 00	Number of	Tested as	No EMI suppression	
3	2019-06-06	Hopping	delivered to	devices were added or	Element following the
		Channels	Test Station.	modified during this test.	test.
			Tested as	No EMI suppression	EUT remained at
4	2019-06-06	Dwell Time	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
			Tested as	No EMI suppression	EUT remained at
5	2019-06-06	Output Power	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Equivalent	Tested as	No EMI suppression	EUT remained at
6	2019-06-06	Isotropic Radiated	delivered to	devices were added or	Element following the
O			Test Station.	modified during this test.	test.
		Power	Test Station.	modified duffing this test.	iesi.
		Pand Edga	Tested as	No EMI suppression	EUT remained at
7	2019-06-06	Band Edge	delivered to	devices were added or	Element following the
		Compliance	Test Station.	modified during this test.	test.
-		Band Edge	Tastadas	No EMI compression	FUT remained at
0	0040 00 40	Compliance -	Tested as	No EMI suppression	EUT remained at
8	2019-06-10	Hopping	delivered to	devices were added or	Element following the
		Mode	Test Station.	modified during this test.	test.
		0	Tested as	No EMI suppression	EUT remained at
9	2019-06-06	Occupied	delivered to	devices were added or	Element following the
		Bandwidth	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	EUT remained at
10	2019-06-06	Conducted	delivered to	devices were added or	Element following the
10 2019-06-0		Emissions	Test Station.	modified during this test.	test.
		Powerline	Tested as	No EMI suppression	
11	2019-06-10	Conducted	delivered to	devices were added or	Scheduled testing
		Emissions	Test Station.	modified during this test.	was completed.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARG	2018-07-05	2019-07-05
Cable - Conducted Cable Assembly	Northwest EMC	OCP, HFP, AWC	OCPA	2018-10-05	2019-10-05
LISN	Solar Electronics	9252-50-24-BNC	LIA	2019-01-08	2020-01-08

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

DROP0009-3

MODES INVESTIGATED

TI Radio: Mid Channel 2440 MHz, 1MHz DH5

EUT:	Jonah	Work Order:	DROP0009
Serial Number:	PL1919P10034	Date:	2019-06-10
Customer:	SonicSensory, Inc.	Temperature:	26.6°C
Attendees:	Daniel Quiros	Relative Humidity:	43%
Customer Project:	None	Bar. Pressure:	1015 mb
Tested By:	Mark Baytan	Job Site:	OC06
Power:	110VAC/60Hz	Configuration:	DROP0009-3

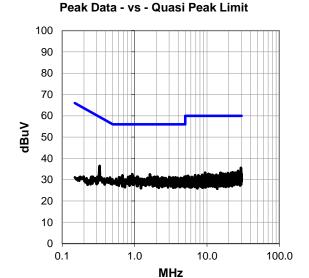
TEST SPECIFICATIONS

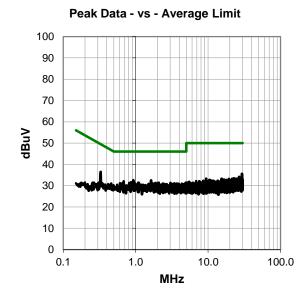
Specification:	Method:
FCC 15.247:2019	ANSI C63.10:2013

TEST PARAMETERS

_						
Run #:	9	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS


None


EUT OPERATING MODES

TI Radio: Mid Channel 2440 MHz, 1MHz DH5

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #9

Peak Data - vs - Quasi Peak Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
0.329	16.4	20.1	36.5	59.5	-23.0			
0.930	12.6	20.0	32.6	56.0	-23.4			
1.631	12.4	20.1	32.5	56.0	-23.5			
0.684	12.1	20.0	32.1	56.0	-23.9			
0.870	11.7	20.0	31.7	56.0	-24.3			
0.956	11.5	20.0	31.5	56.0	-24.5			
1.090	11.5	20.0	31.5	56.0	-24.5			
29.403	13.4	22.1	35.5	60.0	-24.5			
2.068	11.3	20.1	31.4	56.0	-24.6			
4.914	11.1	20.3	31.4	56.0	-24.6			
0.661	11.3	20.0	31.3	56.0	-24.7			
0.814	11.3	20.0	31.3	56.0	-24.7			
1.113	11.3	20.0	31.3	56.0	-24.7			
1.896	11.2	20.1	31.3	56.0	-24.7			
3.019	11.0	20.3	31.3	56.0	-24.7			
1.709	11.0	20.1	31.1	56.0	-24.9			
1.840	11.0	20.1	31.1	56.0	-24.9			
4.881	10.8	20.3	31.1	56.0	-24.9			
2.385	10.8	20.2	31.0	56.0	-25.0			
3.422	10.7	20.3	31.0	56.0	-25.0			
3.679	10.7	20.3	31.0	56.0	-25.0			
1.053	10.9	20.0	30.9	56.0	-25.1			
1.515	10.8	20.1	30.9	56.0	-25.1			
3.153	10.6	20.3	30.9	56.0	-25.1			
3.926	10.6	20.3	30.9	56.0	-25.1			
4.336	10.6	20.3	30.9	56.0	-25.1			

Peak Data - vs - Average Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.329	16.4	20.1	36.5	49.5	-13.0		
0.930	12.6	20.0	32.6	46.0	-13.4		
1.631	12.4	20.1	32.5	46.0	-13.5		
0.684	12.1	20.0	32.1	46.0	-13.9		
0.870	11.7	20.0	31.7	46.0	-14.3		
0.956	11.5	20.0	31.5	46.0	-14.5		
1.090	11.5	20.0	31.5	46.0	-14.5		
29.403	13.4	22.1	35.5	50.0	-14.5		
2.068	11.3	20.1	31.4	46.0	-14.6		
4.914	11.1	20.3	31.4	46.0	-14.6		
0.661	11.3	20.0	31.3	46.0	-14.7		
0.814	11.3	20.0	31.3	46.0	-14.7		
1.113	11.3	20.0	31.3	46.0	-14.7		
1.896	11.2	20.1	31.3	46.0	-14.7		
3.019	11.0	20.3	31.3	46.0	-14.7		
1.709	11.0	20.1	31.1	46.0	-14.9		
1.840	11.0	20.1	31.1	46.0	-14.9		
4.881	10.8	20.3	31.1	46.0	-14.9		
2.385	10.8	20.2	31.0	46.0	-15.0		
3.422	10.7	20.3	31.0	46.0	-15.0		
3.679	10.7	20.3	31.0	46.0	-15.0		
1.053	10.9	20.0	30.9	46.0	-15.1		
1.515	10.8	20.1	30.9	46.0	-15.1		
3.153	10.6	20.3	30.9	46.0	-15.1		
3.926	10.6	20.3	30.9	46.0	-15.1		
4.336	10.6	20.3	30.9	46.0	-15.1		

CONCLUSION

Pass

Tested By

EUT:	Jonah	Work Order:	DROP0009
Serial Number:	PL1919P10034	Date:	2019-06-10
Customer:	SonicSensory, Inc.	Temperature:	26.6°C
Attendees:	Daniel Quiros	Relative Humidity:	43%
Customer Project:	None	Bar. Pressure:	1015 mb
Tested By:	Mark Baytan	Job Site:	OC06
Power:	110VAC/60Hz	Configuration:	DROP0009-3

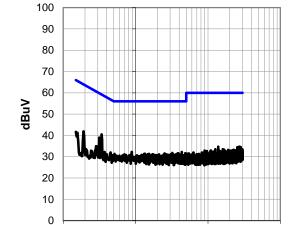
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

Run #:	10	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS


None

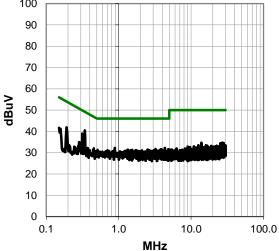
EUT OPERATING MODES

TI Radio: Mid Channel 2440 MHz, 1MHz DH5

DEVIATIONS FROM TEST STANDARD

None

1.0


MHz

10.0

100.0

Peak Data - vs - Quasi Peak Limit

0.1

RESULTS - Run #10

	Peak Da	ta - vs - C	∖uasi Peal	< Limit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.340	20.4	20.1	40.5	59.2	-18.7
0.314	18.9	20.1	39.0	59.9	-20.9
0.329	17.6	20.1	37.7	59.5	-21.8
0.191	21.7	20.2	41.9	64.0	-22.1
0.885	12.2	20.0	32.2	56.0	-23.8
4.351	11.9	20.3	32.2	56.0	-23.8
3.224	11.5	20.3	31.8	56.0	-24.2
0.150	21.4	20.3	41.7	66.0	-24.3
3.855	11.3	20.3	31.6	56.0	-24.4
3.903	11.3	20.3	31.6	56.0	-24.4
4.881	11.3	20.3	31.6	56.0	-24.4
2.523	11.3	20.2	31.5	56.0	-24.5
1.348	11.4	20.0	31.4	56.0	-24.6
0.512	11.3	20.0	31.3	56.0	-24.7
1.318	11.3	20.0	31.3	56.0	-24.7
1.534	11.2	20.1	31.3	56.0	-24.7
3.769	11.0	20.3	31.3	56.0	-24.7
0.452	12.0	20.0	32.0	56.8	-24.8
1.474	11.1	20.1	31.2	56.0	-24.8
1.743	11.1	20.1	31.2	56.0	-24.8
3.679	10.9	20.3	31.2	56.0	-24.8
0.698	11.1	20.0	31.1	56.0	-24.9
2.105	11.0	20.1	31.1	56.0	-24.9
2.463	10.9	20.2	31.1	56.0	-24.9
2.478	10.9	20.2	31.1	56.0	-24.9
3.071	10.8	20.3	31.1	56.0	-24.9

Peak Data - vs - Average Limit											
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)						
0.340	20.4	20.1	40.5	49.2	-8.7						
0.314	18.9	20.1	39.0	49.9	-10.9						
0.329	17.6	20.1	37.7	49.5	-11.8						
0.191	21.7	20.2	41.9	54.0	-12.1						
0.885	12.2	20.0	32.2	46.0	-13.8						
4.351	11.9	20.3	32.2	46.0	-13.8						
3.224	11.5	20.3	31.8	46.0	-14.2						
0.150	21.4	20.3	41.7	56.0	-14.3						
3.855	11.3	20.3	31.6	46.0	-14.4						
3.903	11.3	20.3	31.6	46.0	-14.4						
4.881	11.3	20.3	31.6	46.0	-14.4						
2.523	11.3	20.2	31.5	46.0	-14.5						
1.348	11.4	20.0	31.4	46.0	-14.6						
0.512	11.3	20.0	31.3	46.0	-14.7						
1.318	11.3	20.0	31.3	46.0	-14.7						
1.534	11.2	20.1	31.3	46.0	-14.7						
3.769	11.0	20.3	31.3	46.0	-14.7						
0.452	12.0	20.0	32.0	46.8	-14.8						
1.474	11.1	20.1	31.2	46.0	-14.8						
1.743	11.1	20.1	31.2	46.0	-14.8						
3.679	10.9	20.3	31.2	46.0	-14.8						
0.698	11.1	20.0	31.1	46.0	-14.9						
2.105	11.0	20.1	31.1	46.0	-14.9						
2.463	10.9	20.2	31.1	46.0	-14.9						
2.478	10.9	20.2	31.1	46.0	-14.9						
3.071	10.8	20.3	31.1	46.0	-14.9						

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Low CH. 2402 MHz, Mid Ch. 2440 MHz, High Ch. 2480 MHz. Data Rates - DH5, 2DH5, 3DH5

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

DROP0009 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 24 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Fairview Microwave	SA18H-20	TKQ	NCR	0 mo
Cable	Northwest EMC	8-18GHz RE Cables	oco	10-Jan-2019	12 mo
Cable	Northwest EMC	18-26GHz RE Cables	OCK	19-Dec-2018	12 mo
Cable	Northwest EMC	1-8GHz RE Cables	OCJ	10-Jan-2019	12 mo
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	20-Sep-2018	12 mo
Cable	ESM Cable Corp.	KMKM-72	OC1	19-Dec-2018	12 mo
Filter - High Pass	Micro-Tronics	HPM50111	HHX	16-Jul-2018	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	7-Nov-2017	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	10-Jul-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	10-Jan-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	19-Dec-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	10-Jan-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	10-Jan-2019	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AHT	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHR	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AHN	NCR	0 mo
Antenna - Double Ridge	EMCO	3115	AHB	28-Mar-2018	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	18-Dec-2018	12 mo

Report No. DROP0009.2 17/87

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

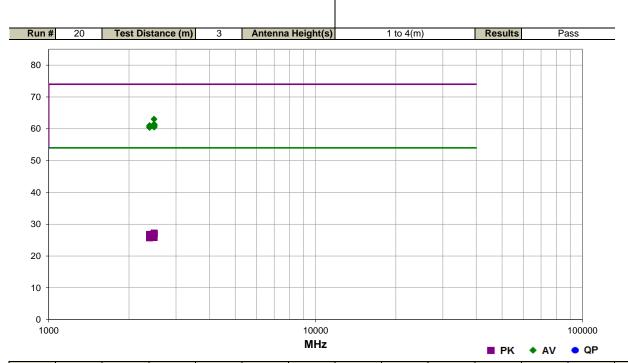
SPURIOUS RADIATED EMISSIONS

								EmiR5 2018.09.26	PSA-ESCI 2019.05.					
Work O		DROP0009		Date:	5-Jun-									
Pro	oject:	None	Ten	nperature:	22.6		Let	5						
	Site:	OC10		Humidity:	49.3%	RH	(
Serial Nun		PL1919P10041	Barome	tric Pres.:	1016 ı	mbar	Tested by:	Sal Solorzano						
	EUT:													
Configura	tion:	2												
Custo	mer:	SonicSensory, Inc.												
Attend	dees:	Daniel Quiros												
EUT Po	ower:	110VAC/60Hz												
0		Transmitting Bluetooth	n: Low Char	nnel 2402 MH	lz, Mid Ch	annel 2440 MHz, Hid	h Channel 2	2480 MHz,						
Operating N	loae:	Data Rates: DH5, 2DI	ata Rates: DH5, 2DH5, 3DH5											
D		None												
Deviat	ions:		· ··											
		2nd Jonah SN: PR191	19P10030. E	Band Edge										
	,	Worst Case Duty Cyc												
Comm	ents:	DCCF = pi/4-DQPSK	Tx relaxation	on of -21.3 dB										
		From Dwell Time: DC	CF= 20*1 O	G (Pulse Wid	th 2 8ms*	3(nulses) / 100ms) –	-21 3dB							
		TOTAL DWOIL TIME. DO	J 20 LO	C (1 GISE WIG			_ 1.00D							
st Specificat						Test Method								
15.247:201	19				1	ANSI C63.10:2013								
Run # 1	2	Test Distance (m)	3	Antenna F	leight(s)	1 to 4(m)		Results	Pass					
		` '				· /		•						
00														
80														
								+						
60														
				_										
						_								
= 40														
40						_								
40				2										
40				*		•								
40				•		•								
20				•										
				*										
			•	•										
			•	•										
20 -			•	•										
			•	•										
20			•	•										
20 -			•	*										
20			•											
0				*										
20					10000				100000					

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7320.040	46.2	18.4	1.1	233.0	0.0	0.0	Vert	PK	0.0	64.6	74.0	-9.4	Mid Ch, EUT Horz, 3DH5
7319.510	45.8	18.4	1.0	232.0	0.0	0.0	Vert	PK	0.0	64.2	74.0	-9.8	Mid Ch, EUT Horz, 2DH5
7319.600	44.2	18.4	1.1	231.0	0.0	0.0	Vert	PK	0.0	62.6	74.0	-11.4	Mld Ch, EUT Horz
7319.620	42.3	18.4	1.6	245.0	0.0	0.0	Horz	PK	0.0	60.7	74.0	-13.3	Mid Ch, EUT Vert
7439.700	42.1	18.5	1.0	241.0	0.0	0.0	Vert	PK	0.0	60.6	74.0	-13.4	High Ch, EUT Horz
7320.545	41.7	18.4	1.2	344.0	0.0	0.0	Horz	PK	0.0	60.1	74.0	-13.9	Mld Ch, EUT on side
7320.090	41.6	18.4	1.2	43.0	0.0	0.0	Horz	PK	0.0	60.0	74.0	-14.0	Mid Ch, EUT Horz
7319.555	41.6	18.4	3.7	113.0	0.0	0.0	Vert	PK	0.0	60.0	74.0	-14.0	Mid Ch, EUT on side
7440.305	41.5	18.5	1.6	274.0	0.0	0.0	Horz	PK	0.0	60.0	74.0	-14.0	High Ch, EUT Vert
7320.365	40.1	18.4	1.2	185.0	0.0	0.0	Vert	PK	0.0	58.5	74.0	-15.5	Mid Ch, EUT Vert
7320.000	37.8	18.4	1.0	232.0	-21.3	0.0	Vert	AV	0.0	34.9	54.0	-19.1	Mid Ch, EUT Horz, 2DH5
7320.025	37.7	18.4	1.1	233.0	-21.3	0.0	Vert	AV	0.0	34.8	54.0	-19.2	Mid Ch, EUT Horz, 3DH5
7320.020	37.2	18.4	1.1	231.0	-21.3	0.0	Vert	AV	0.0	34.3	54.0	-19.7	Mid Ch, EUT Horz
4960.915	38.8	13.5	1.0	54.0	0.0	0.0	Vert	PK	0.0	52.3	74.0	-21.7	High Ch, EUT Horz
4879.730	38.9	13.3	1.0	31.0	0.0	0.0	Horz	PK	0.0	52.2	74.0	-21.8	Mid Ch, EUT Vert
7320.005	34.7	18.4	1.6	245.0	-21.3	0.0	Horz	AV	0.0	31.8	54.0	-22.2	Mid Ch, EUT Vert
4958.805	38.0	13.5	2.0	196.0	0.0	0.0	Horz	PK	0.0	51.5	74.0	-22.5	High Ch, EUT Vert

■ PK ◆ AV

QP


MHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4879.520	38.1	13.3	2.4	338.0	0.0	0.0	Vert	PK	0.0	51.4	74.0	-22.6	Mid Ch, EUT Horz
7440.010	33.9	18.5	1.0	241.0	-21.3	0.0	Vert	AV	0.0	31.1	54.0	-22.9	High Ch, EUT Horz
7320.030	33.8	18.4	1.2	344.0	-21.3	0.0	Horz	AV	0.0	30.9	54.0	-23.1	Mid Ch, EUT on side
7440.035	33.2	18.5	1.6	274.0	-21.3	0.0	Horz	AV	0.0	30.4	54.0	-23.6	High Ch, EUT Vert
4805.095	37.6	12.7	1.5	44.0	0.0	0.0	Horz	PK	0.0	50.3	74.0	-23.7	Low Ch, EUT Vert
4803.870	37.4	12.7	1.0	351.0	0.0	0.0	Vert	PK	0.0	50.1	74.0	-23.9	Low Ch, EUT Horz
7320.005	32.7	18.4	3.7	113.0	-21.3	0.0	Vert	AV	0.0	29.8	54.0	-24.2	Mid Ch, EUT on side
7320.025	32.4	18.4	1.2	43.0	-21.3	0.0	Horz	AV	0.0	29.5	54.0	-24.5	Mld Ch, EUT Horz
7320.025	30.3	18.4	1.2	185.0	-21.3	0.0	Vert	AV	0.0	27.4	54.0	-26.6	Mid Ch, EUT Vert
12399.350	47.1	-2.7	1.0	254.0	0.0	0.0	Horz	PK	0.0	44.4	74.0	-29.6	High Ch, EUT Vert
12399.210	46.4	-2.7	1.0	237.0	0.0	0.0	Vert	PK	0.0	43.7	74.0	-30.3	High Ch, EUT Horz
12199.300	45.4	-2.5	1.0	234.0	0.0	0.0	Vert	PK	0.0	42.9	74.0	-31.1	Mid Ch, EUT Horz
12009.280	46.2	-3.7	1.0	117.0	0.0	0.0	Vert	PK	0.0	42.5	74.0	-31.5	Low Ch, EUT Horz
12199.040	44.6	-2.5	1.0	250.0	0.0	0.0	Horz	PK	0.0	42.1	74.0	-31.9	Mid Ch, EUT Vert
12009.240	44.9	-3.7	1.0	249.0	0.0	0.0	Horz	PK	0.0	41.2	74.0	-32.8	Low Ch, EUT Vert
4958.610	25.8	13.5	1.0	54.0	-21.3	0.0	Vert	AV	0.0	18.0	54.0	-36.0	High Ch, EUT Horz
4958.525	25.8	13.5	2.0	196.0	-21.3	0.0	Horz	AV	0.0	18.0	54.0	-36.0	High Ch, EUT Vert
4879.970	25.7	13.3	1.0	31.0	-21.3	0.0	Horz	AV	0.0	17.7	54.0	-36.3	Mid Ch, EUT Vert
4879.985	25.6	13.3	2.4	338.0	-21.3	0.0	Vert	AV	0.0	17.6	54.0	-36.4	Mid Ch, EUT Horz
4805.485	25.3	12.7	1.5	44.0	-21.3	0.0	Horz	AV	0.0	16.7	54.0	-37.3	Low Ch, EUT Vert
4803.920	25.3	12.7	1.0	351.0	-21.3	0.0	Vert	AV	0.0	16.7	54.0	-37.3	Low Ch, EUT Horz
19214.810	39.1	-4.6	1.5	306.0	0.0	0.0	Horz	PK	0.0	34.5	74.0	-39.5	Low Ch, EUT Vert
19215.030	37.9	-4.6	1.5	50.0	0.0	0.0	Vert	PK	0.0	33.3	74.0	-40.7	Low Ch, EUT Vert
12399.390	37.2	-2.7	1.0	254.0	-21.3	0.0	Horz	AV	0.0	13.2	54.0	-40.8	High Ch, EUT Vert
12399.390	36.8	-2.7	1.0	237.0	-21.3	0.0	Vert	AV	0.0	12.8	54.0	-41.2	High Ch, EUT Horz
12199.410	35.3	-2.5	1.0	234.0	-21.3	0.0	Vert	AV	0.0	11.5	54.0	-42.5	Mid Ch, EUT Horz
12199.410	34.4	-2.5	1.0	250.0	-21.3	0.0	Horz	AV	0.0	10.6	54.0	-43.4	Mid Ch, EUT Vert
12009.370	34.1	-3.7	1.0	117.0	-21.3	0.0	Vert	AV	0.0	9.1	54.0	-44.9	Low Ch, EUT Horz
12009.380	34.0	-3.7	1.0	249.0	-21.3	0.0	Horz	AV	0.0	9.0	54.0	-45.0	Low Ch, EUT Vert
19216.440	24.8	-4.6	1.5	306.0	-21.3	0.0	Horz	AV	0.0	-1.1	54.0	-55.1	Low Ch, EUT Vert
19218.490	24.8	-4.6	1.5	50.0	-21.3	0.0	Vert	AV	0.0	-1.1	54.0	-55.1	Low Ch, EUT Vert

SPURIOUS RADIATED EMISSIONS

				EmiR5 2018.09.26 PSA-ESCI 2019.05.10								
Work Order:	DROP0009	Date:	5-Jun-2019									
Project:	None	Temperature:	24.6 °C	the State of the s								
Job Site:	OC10	Humidity:	46.1% RH									
Serial Number:	PL1919P10041	Barometric Pres.:	1016 mbar	Tested by: Sal Solorzano								
EUT:	Jonah											
Configuration:	2											
Customer:	SonicSensory, Inc.											
Attendees:	Daniel Quiros											
EUT Power:	10VAC/60Hz											
Operating Mode:	Transmitting Bluetooth	n: Low Channel 2402 M	Hz and High Channe	el 2480 MHz, Date Rates: DH5, 2DH5, 3DH5								
Deviations:	None											
	Worst Case Duty Cyc DCCF = pi/4-DQPSK	19P10030, Band Edge le: pi/4-DQPSK = 8.64% Tx relaxation of -21.3 d CF= 20*LOG (Pulse Wi	В	/ 100ms) = -21.3dB								
Test Specifications			Test Metl	nod								
FCC 15.247:2019			ANSI C63	3.10:2013								

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.637	39.6	3.4	1.0	319.0	0.0	20.0	Horz	PK	0.0	63.0	74.0	-11.0	High Ch, EUT Vert, DH5
2484.013	38.0	3.4	1.7	293.0	0.0	20.0	Horz	PK	0.0	61.4	74.0	-12.6	High Ch, EUT Vert, 2DH5
2484.153	37.9	3.4	1.0	69.0	0.0	20.0	Vert	PK	0.0	61.3	74.0	-12.7	High Ch, EUT Horz, DH5
2484.823	37.7	3.4	1.0	0.0	0.0	20.0	Horz	PK	0.0	61.1	74.0	-12.9	High Ch, EUT Vert, 3DH5
2483.947	37.6	3.4	1.0	35.0	0.0	20.0	Vert	PK	0.0	61.0	74.0	-13.0	High Ch, EUT Vert, DH5
2485.140	37.6	3.4	2.6	255.0	0.0	20.0	Horz	PK	0.0	61.0	74.0	-13.0	High Ch, EUT on Side, DH5
2389.943	37.8	3.2	1.0	327.0	0.0	20.0	Horz	PK	0.0	61.0	74.0	-13.0	Low Ch, EUT Vert, DH5
2484.540	37.3	3.4	1.0	176.0	0.0	20.0	Horz	PK	0.0	60.7	74.0	-13.3	High Ch, EUT Horz, DH5
2388.927	37.4	3.2	1.4	160.0	0.0	20.0	Horz	PK	0.0	60.6	74.0	-13.4	Low Ch, EUT Vert, 2DH5
2485.080	37.1	3.4	1.0	199.0	0.0	20.0	Vert	PK	0.0	60.5	74.0	-13.5	High Ch, EUT on Side, DH5
2389.167	37.2	3.2	1.5	123.0	0.0	20.0	Horz	PK	0.0	60.4	74.0	-13.6	Low Ch, EUT Vert, 3DH5
2484.100	25.1	3.4	1.0	319.0	-21.3	20.0	Horz	AV	0.0	27.2	54.0	-26.8	High Ch, EUT Vert, DH5
2484.033	24.9	3.4	1.0	35.0	-21.3	20.0	Vert	AV	0.0	27.0	54.0	-27.0	High Ch, EUT Vert, DH5
2483.807	24.9	3.4	1.0	176.0	-21.3	20.0	Horz	AV	0.0	27.0	54.0	-27.0	High Ch, EUT Horz, DH5
2483.680	24.9	3.4	1.0	69.0	-21.3	20.0	Vert	AV	0.0	27.0	54.0	-27.0	High Ch, EUT Horz, DH5
2484.073	24.9	3.4	2.6	255.0	-21.3	20.0	Horz	AV	0.0	27.0	54.0	-27.0	High Ch, EUT on Side, DH5
2483.543	24.9	3.4	1.0	199.0	-21.3	20.0	Vert	AV	0.0	27.0	54.0	-27.0	High Ch, EUT on Side, DH5
2388.457	24.9	3.2	1.0	327.0	-21.3	20.0	Horz	AV	0.0	26.8	54.0	-27.2	Low Ch, EUT Vert, DH5
2483.613	24.9	3.4	1.7	293.0	-21.3	20.0	Horz	AV	0.0	26.2	54.0	-27.8	High Ch, EUT Vert, 2DH5

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2388.347	24.9	3.2	1.4	160.0	-21.3	20.0	Horz	AV	0.0	26.0	54.0	-28.0	Low Ch, EUT Vert, 2DH5
2484.080	24.9	3.4	1.0	0.0	-21.3	20.0	Horz	AV	0.0	25.8	54.0	-28.2	High Ch, EUT Vert, 3DH5
2388.273	25.0	3.2	1.5	123.0	-21.3	20.0	Horz	AV	0.0	25.7	54.0	-28.3	Low Ch, EUT Vert, 3DH5

DUTY CYCLE

XMit 2019.05.15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

	Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
	Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	13-Jun-18	13-Jun-19
,	Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
,	Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
,	Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	13-Jun-18	13-Jun-19

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The test software provided for operation in a fixed, single channel mode allows the EUT to operate continuously at 100% Duty Cycle.

CARRIER FREQUENCY SEPARATION

XMit 2019.05.15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	13-Jun-18	13-Jun-19

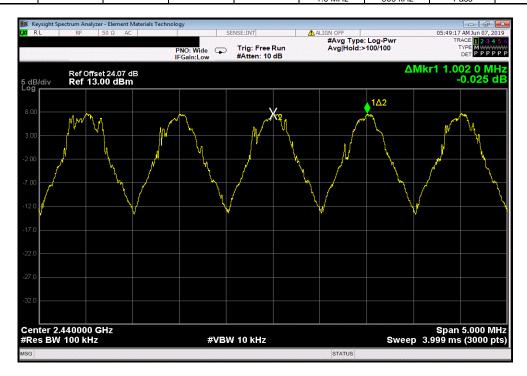
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The channel carrier frequencies in the 2400-2483.5MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Or, if the output power is less than 125 mW, the channel separation can be 25 kHz or 2/3 of the 20dB bandwidth. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

CARRIER FREQUENCY SEPARATION

						TbtTx 2018.09.13	XMit 2019.05.15
EUT:	Jonah				Work Order:	DROP0009	
Serial Number:	PL1919P10034				Date:	6-Jun-19	
Customer:	SonicSensory, Inc.				Temperature:	25 °C	
Attendees:	Daniel Quiros				Humidity:	45.3% RH	
Project:	None				Barometric Pres.:	1016 mbar	
Tested by:	Salvador Solorzano		Power:	110VAC/60Hz	Job Site:	OC13	
TEST SPECIFICATI	ONS			Test Method			
FCC 15.247:2019				ANSI C63.10:2013			
COMMENTS							
	•	atch cable = 24.07 dB Total Offset					
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	3	Signature		5-			
						Limit	
					Value	(≥)	Results
Hopping Mode (All C	channels)						
	DH5, GFSK						
	Mid Channel, 2	2440 MHz			1.0 MHz	909 kHz	Pass

CARRIER FREQUENCY SEPARATION



Hopping Mode (All Channels), DH5, GFSK, Mid Channel, 2440 MHz

Limit

Value (≥) Results

1.0 MHz 909 kHz Pass

NUMBER OF HOPPING FREQUENCIES

XMit 2019.05.15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

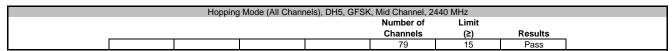
TEST EQUIPMENT

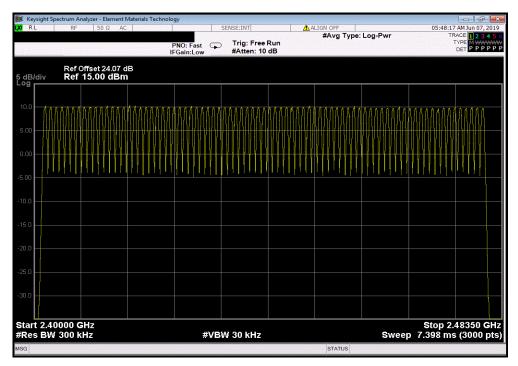
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	13-Jun-18	13-Jun-19

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The number of hopping frequencies was measured across the authorized band. The hopping function of the EUT was enabled.

NUMBER OF HOPPING FREQUENCIES




					TbtTx 2018.09.13	XMit 2019.05.15
EUT: J	onah			Work Order: D	PROP0009	
Serial Number: P	L1919P10034			Date: 6	-Jun-19	
Customer: S	ionicSensory, Inc.			Temperature: 2	.5 °C	
Attendees: D				Humidity: 4		
Project: N	lone			Barometric Pres.: 1	016 mbar	
	alvador Solorzano		Power: Battery	Job Site: 0	OC13	
TEST SPECIFICATION	NS		Test Method			
FCC 15.247:2019			ANSI C63.10:2013			
COMMENTS						
DEVIATIONS FROM 1		oatch cable = 24.07 dB Total Offset				
None	ILSI SIANDAND					
Configuration #	3	Signature	ME			
				Number of Channels	Limit (≥)	Results
Hopping Mode (All Cha	annels)					
D	H5, GFSK					
	Mid Channel,	2440 MHz		79	15	Pass

NUMBER OF HOPPING FREQUENCIES

TbtTx 2018.09.13 XMit 2019.05.15

XMit 2019.05.15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	13-Jun-18	13-Jun-19

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The hopping function of the EUT was enabled.

The dwell time limit is based on the Number of Hopping Channels * 400 mS. For Bluetooth this would be 79 Channels * 400 mS = 31.6 Sec.

On Time During 31.6 Sec = Pulse Width * Average Number of Pulses * Scale Factor

>Average Number of Pulses is based on 4 samples.

Scale Factor = 31.6 Sec / Screen Capture Sweep Time = 31.6 Sec / 6.32 Sec = 5

EUT: Jonah
Serial Number: PL1919P10034
Customer: SonicSensory, Inc.
Attendees: Daniel Quiros Work Order: DROP0009
Date: 6-Jun-19
Temperature: 24.5 °C Humidity: 47.2% RH Barometric Pres.: 1016 mbar Project: None
Tested by: Salvador Solorzano
TEST SPECIFICATIONS Power: 110VAC/60Hz Test Method Job Site: OC13 FCC 15.247:2019 COMMENTS DC Block + 20dB attenuator + Coax Cable + patch cable = 24.07 dB Total Offset DEVIATIONS FROM TEST STANDARD Configuration # 3 Signature Average No. of Pulses ulse Width Number of Pulses Scale Factor On Time (ms) During 31.6 s Hopping Mode (All Channels)
DH5, GFSK Results (ms) (ms) N/A N/A N/A N/A Mid Channel, 2440 MHz N/A N/A N/A 2.88 N/A N/A N/A N/A N/A N/A N/A 21 23 Mid Channel, 2440 MHz N/A Mid Channel, 2440 MHz N/A N/A N/A N/A Mid Channel, 2440 MHz Mid Channel, 2440 MHz 19 N/A N/A N/A N/A N/A N/A N/A 22 N/A N/A N/A N/A Mid Channel, 2440 MHz 2.88 N/A 21.25 5 306 400 Pass 2DH5, pi/4-DQPSK Mid Channel, 2440 MHz Mid Channel, 2440 MHz N/A N/A N/A N/A N/A N/A 2.883 N/A N/A N/A N/A 21 N/A N/A Mid Channel, 2440 MHz Mid Channel, 2440 MHz N/A N/A N/A 27 N/A N/A N/A N/A N/A 21 N/A N/A N/A N/A Mid Channel, 2440 MHz N/A 20 N/A N/A N/A N/A N/A Mid Channel, 2440 MHz 2.883 N/A 22.25 320.73 400 5 Pass 3DH5, 8-DPSK Mid Channel, 2440 MHz 2.883 N/A N/A N/A N/A N/A N/A Mid Channel, 2440 MHz Mid Channel, 2440 MHz N/A N/A 17 23 N/A Mid Channel, 2440 MHz Mid Channel, 2440 MHz N/A N/A 24 16 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

N/A

288.3

400

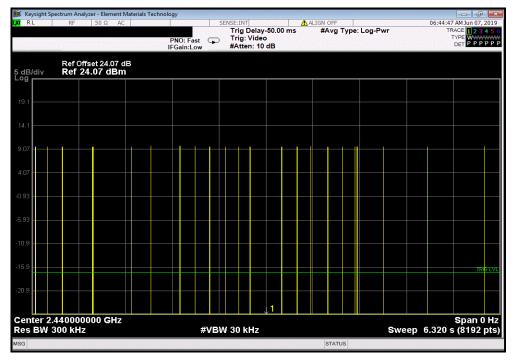
Pass

2.883

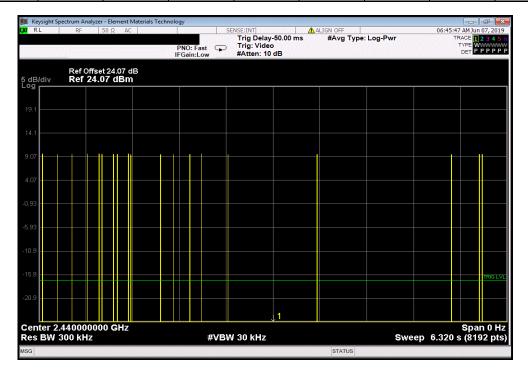
Report No. DROP0009.2

Mid Channel, 2440 MHz

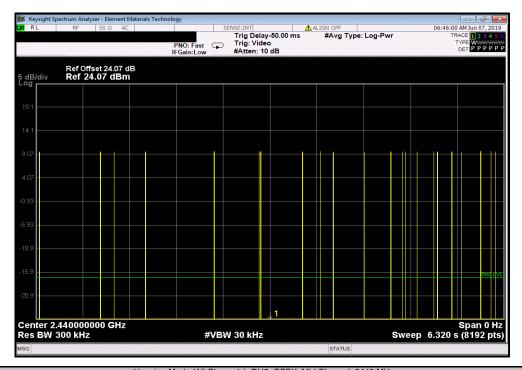
Hopping Mode (All Channels), DH5, GFSK, Mid Channel, 2440 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A N/A



Hopping Mode (All Channels), DH5, GFSK, Mid Channel, 2440 MHz									
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit				
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results			
N/A	21	N/A	N/A	N/A	N/A	N/A			



Hopping Mode (All Channels), DH5, GFSK, Mid Channel, 2440 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A

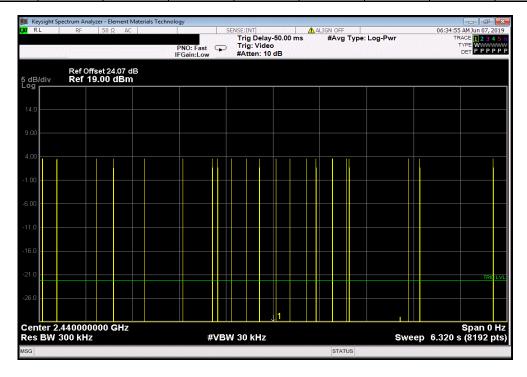

Hopping Mode (All Channels), DH5, GFSK, Mid Channel, 2440 MHz									
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit				
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results			
N/A	19	N/A	N/A	N/A	N/A	N/A			

TbtTx 2018.09.13 XMit 2019.05.15

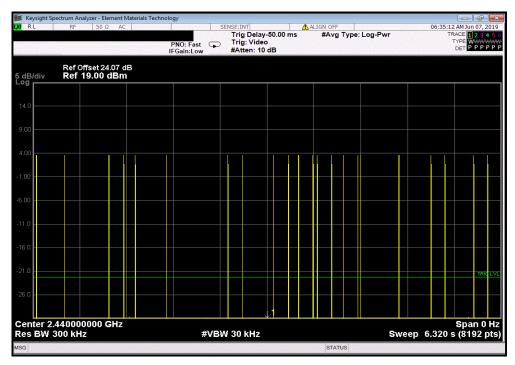
	Hopping Mode (All Channels), DH5, GFSK, Mid Channel, 2440 MHz								
Pu	Pulse Width Number of Average No. Scale On Time (ms) Limit								
	(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results		
	N/A	22	N/A	N/A	N/A	N/A	N/A		

Hopping Mode (All Channels), DH5, GFSK, Mid Channel, 2440 MHz									
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit				
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results			
2.88	N/A	21.25	5	306	400	Pass			

Calculation Only

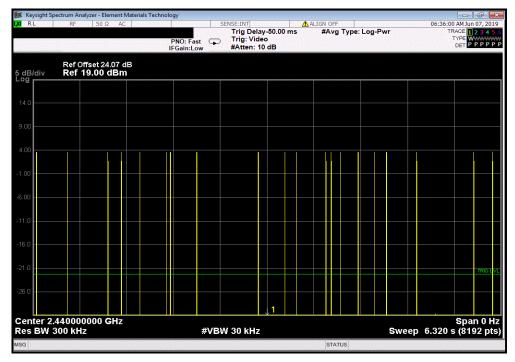

No Screen Capture Required

Hopping Mode (All Channels), 2DH5, pi/4-DQPSK, Mid Channel, 2440 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results 2.883 N/A N/A N/A N/A N/A



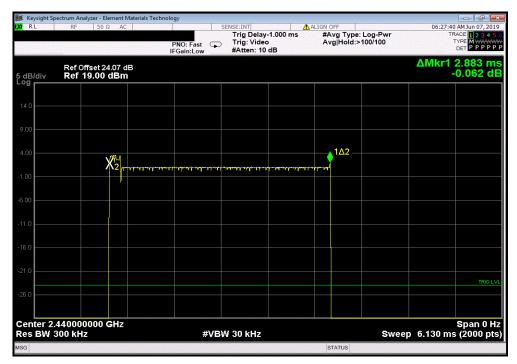
Hopping Mode (All Channels), 2DH5, pi/4-DQPSK, Mid Channel, 2440 MHz								
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit			
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results		
N/A	21	N/A	N/A	N/A	N/A	N/A		

Hopping Mode (All Channels), 2DH5, pi/4-DQPSK, Mid Channel, 2440 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A

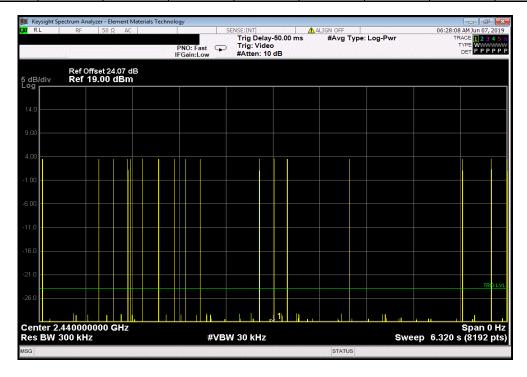


Hopping Mode (All Channels), 2DH5, pi/4-DQPSK, Mid Channel, 2440 MHz									
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit				
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results			
N/A	21	N/A	N/A	N/A	N/A	N/A			

Hopping Mode (All Channels), 2DH5, pi/4-DQPSK, Mid Channel, 2440 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A


	Hopping Mo	de (All Channels)	, 2DH5, pi/4-DQ	PSK, Mid Channe	l, 2440 MHz	
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit	
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results
2.883	N/A	22.25	5	320.73	400	Pass

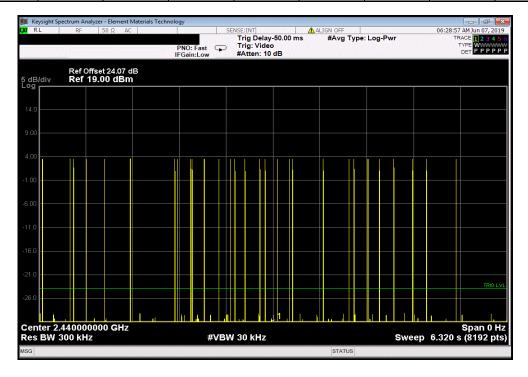
Calculation Only


No Screen Capture Required

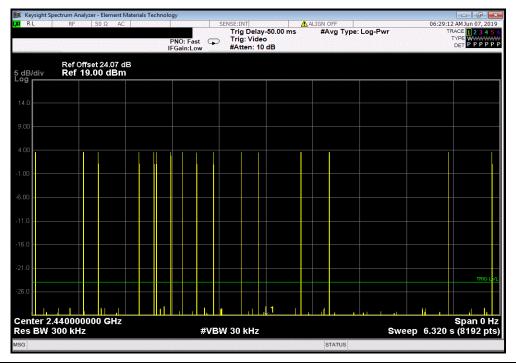
Hopping Mode (All Channels), 3DH5, 8-DPSK, Mid Channel, 2440 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results 2.883 N/A N/A N/A N/A N/A



	Hopping N	Node (All Channe	ls), 3DH5, 8-DPS	K, Mid Channel,	2440 MHz	
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit	
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results
N/A	17	N/A	N/A	N/A	N/A	N/A



Hopping Mode (All Channels), 3DH5, 8-DPSK, Mid Channel, 2440 MHz Pulse Width Number of Average No. Scale On Time (ms) Limit (ms) Pulses of Pulses Factor During 31.6 s (ms) Results N/A N/A N/A N/A



Hopping Mode (All Channels), 3DH5, 8-DPSK, Mid Channel, 2440 MHz									
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit				
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results			
N/A	24	N/A	N/A	N/A	N/A	N/A			

Hopping Mode (All Channels), 3DH5, 8-DPSK, Mid Channel, 2440 MHz Pulse Width Scale Number of Average No. On Time (ms) Limit (ms) N/A (ms) Pulses of Pulses Factor During 31.6 s Results 16 N/A N/A N/A

Hopping Mode (All Channels), 3DH5, 8-DPSK, Mid Channel, 2440 MHz									
Pulse Width	Number of	Average No.	Scale	On Time (ms)	Limit				
(ms)	Pulses	of Pulses	Factor	During 31.6 s	(ms)	Results			
2.883	N/A	20	5	288.3	400	Pass			

Calculation Only

No Screen Capture Required

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

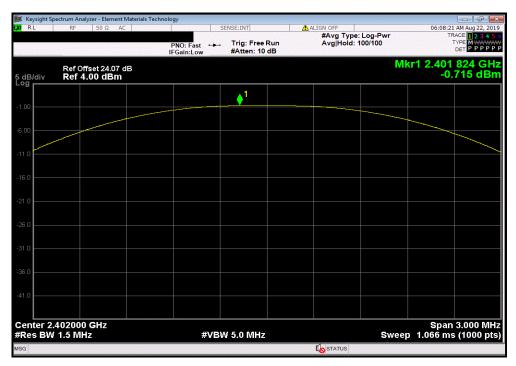
TEST EQUIPMENT

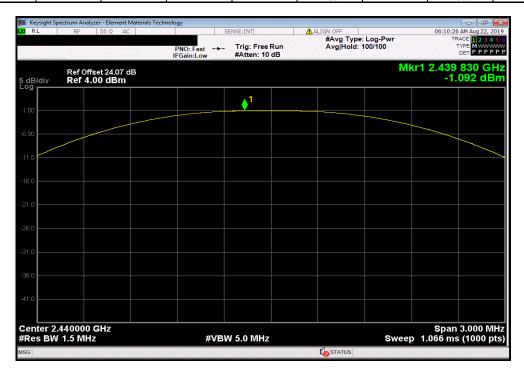
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.

The method found in ANSI C63.10:2013 Section 7.8.5 was used for a FHSS radio.

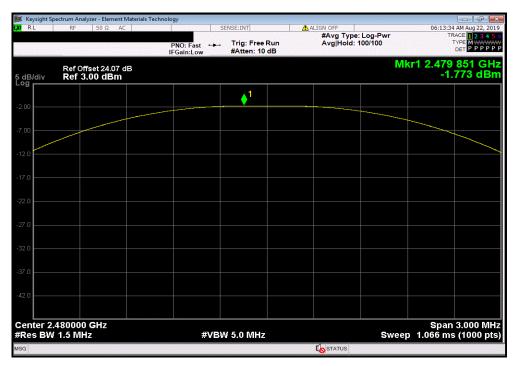

						TbtTx 2018.09.13	XMit 2019.06.
	Jonah				Work Order:		
Serial Number:	PL1919P10034					21-Aug-19	
	SonicSensory, Inc.				Temperature:		
Attendees:	Daniel Quiros					46.8% RH	,
Project:					Barometric Pres.:		
	Johnny Candelas			110VAC/60Hz	Job Site:	OC13	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.247:2019				ANSI C63.10:2013			
COMMENTS							
DC Block + 20 dB	attenuator + Coax Cable +	patch cable = 24.07 dB Total Offset					
DEVIATIONS FROM	M TEST STANDARD						
None							
Configuration #	3	Signature	fe d.	Collen			
		-			Out Pwr (dBm)	Limit (dBm)	Result
DH5, GFSK					` '		
	Low Channel	·		·	-0.715	21	Pass
	Mid Channel				-1.092	21	Pass
	High Channel				-1.773	21	Pass
2DH5, pi/4-DQPSK							
	Low Channel				5.237	21	Pass
	Mid Channel				4.569	21	Pass
	High Channel				4.602	21	Pass
3DH5, 8-DPSK							
	Low Channel				6.066	21	Pass
	Mid Channel				5.06	21	Pass
	High Channel				5.125	21	Pass

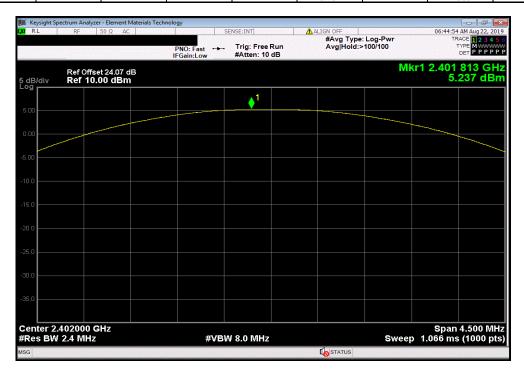

DH5, GFSK, Low Channel

Out Pwr Limit
(dBm) (dBm) Result

-0.715 21 Pass

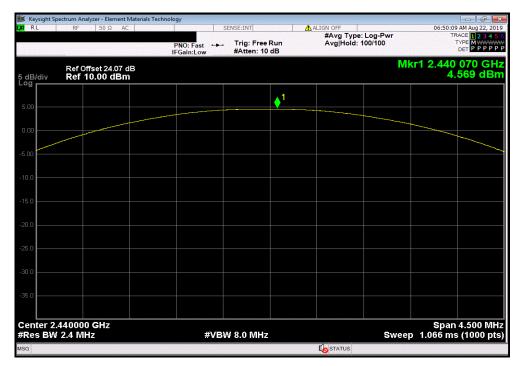
	DH5	, GFSK, Mid Cha	annel			
			Out Pwr	Limit		
			(dBm)	(dBm)	Result	
			-1.092	21	Pass	

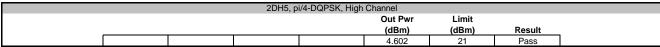


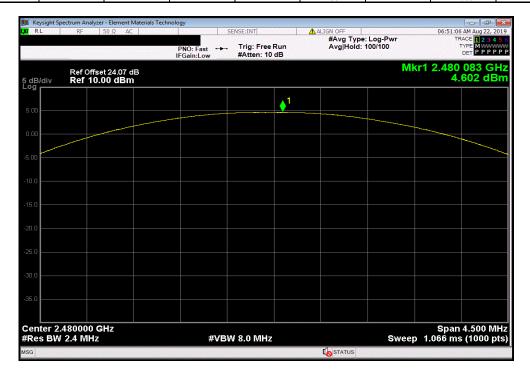

DH5, GFSK, High Channel

Out Pwr Limit
(dBm) (dBm) Result

-1.773 21 Pass

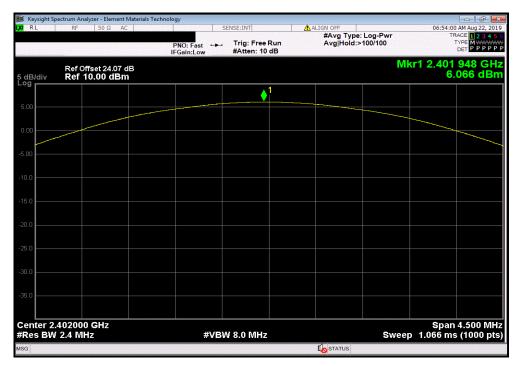


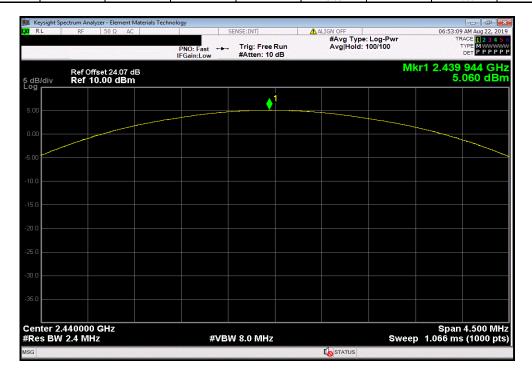



2DH5, pi/4-DQPSK, Mid Channel

Out Pwr Limit
(dBm) (dBm) Result

4.569 21 Pass

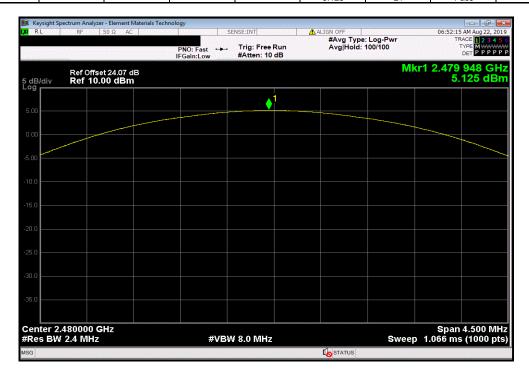



3DH5, 8-DPSK, Low Channel

Out Pwr Limit
(dBm) (dBm) Result

6.066 21 Pass

	3DH5	, 8-DPSK, Mid Cl	nannel		
			Out Pwr	Limit	
			(dBm)	(dBm)	Result
			5.06	21	Pass



3DH5, 8-DPSK, High Channel

Out Pwr Limit
(dBm) (dBm) Result

5.125 21 Pass

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. The radio was operated in the modes as shown in the following data sheets.

Prior to measuring maximum transmit power; the 99% emission bandwidth (B) and the transmission pulse duration (T) were measured. The method of measuring the emission bandwidth and the associated data are found elsewhere in this test report. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The maximum conducted output power was measured using ANSI C63.10, Method SA-1 (RMS detection with the EUT Transmitting at full power throughout each sweep). Note per ANSI C63.10 continuous transmit is defined as operation > 98% duty Cycle.

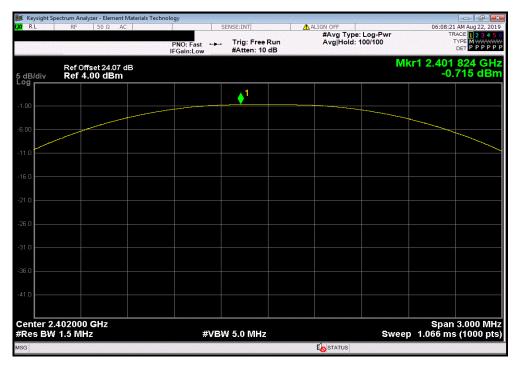
The spectrum analyzer settings were set per the guidance as well as the following specifics:

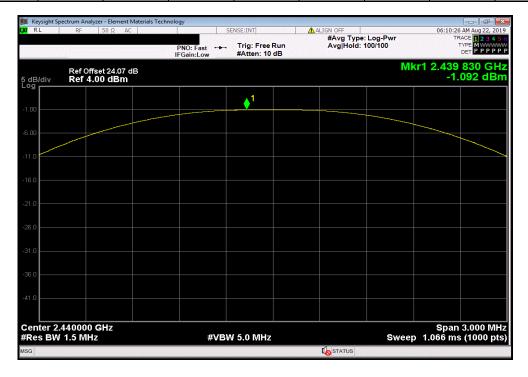
RMS Detector

Trace average 100 traces in power averaging mode.

Power was integrated across "B", by using the channel power function of the analyzer.

EIRP = Max Measured Power + Antenna gain (dBi)

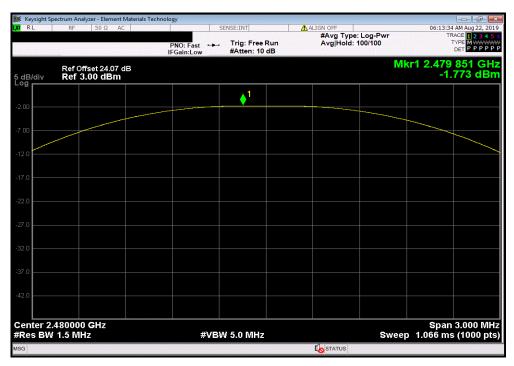

C Block + 20 dB attenuator + Coax Cable + patch cable = 24.07 dB Total Offset									TbtTx 2019.08.02	XMit 2019.06.
Customer: SonicSensory, Inc. Temperature: 23.3 °C										
Attendees: Daniel Quiros Barometric Press: 1015 mbar										
Project: None										
Tested by: Johnny Candelas Power:										
Test Method ANSI C63.10:2013 ANSI C63.10:2013 ANSI C63.10:2013										
ANSI C63.10:2013 C I I I I I I I I I	Tested by:	Johnny Candelas		Powe				Job Site:	OC13	
C Block + 20 dB attenuator + Coax Cable + patch cable = 24.07 dB Total Offset		IONS								
C Block + 20 dB attenuator + Coax Cable + patch cable = 24.07 dB Total Offset	FCC 15.247:2019				ANSI C63.10:2013					
C Block + 20 dB attenuator + Coax Cable + patch cable = 24.07 dB Total Offset										
Signature Sign	COMMENTS									
Signature Sign	DC Block + 20 dB a	attenuator + Coax Cable +	patch cable = 24.07 dB Total Offset							
Signature Sign	DEVIATIONS FROM	M TEST STANDARD								
Signature Qut Pwr (dBm) Antenna Gain (dBi) (dBm) (dBm) Result	None									
High Channel High										
Low Channel -0.715 2.9 2.185 27 Pass 1.092 2.78 1.688 27 Pass 1.092 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2.9 2.097 2	Configuration #	3		fe d	! lake					
Mid Channel -1.092 2.78 1.688 27 Pass 1.697 1.773 3.86 2.087 27 Pass 2.78 1.688 27 Pass 2.78 2.98 2.78		3		for d	letter					Result
High Channel -1.773 3.86 2.087 27 Pass OHS, pi/4-DQPSK				fe d	letter	(dBm)	Gain (dBi)	(dBm)	(dBm)	
DH5, pi/4-DQPSK	Configuration # DH5, GFSK	Low Channel		fe d	. Colher	(dBm) -0.715	Gain (dBi)	(dBm) 2.185	(dBm) 27	Pass
Low Channel 5.237 2.9 8.137 27 Pass Mid Channel 4.569 2.78 7.349 27 Pass Pass Pass Pass Pass Pass Pass Pas		Low Channel Mid Channel		fe d	l. lather	-0.715 -1.092	2.9 2.78	(dBm) 2.185 1.688	(dBm) 27 27	Pass Pass
Mid Channel 4.569 2.78 7.349 27 Pass High Channel 4.602 3.86 8.462 27 Pass DH5, 8-DPSK Low Channel 6.066 2.9 8.966 27 Pass Mid Channel 5.06 2.78 7.84 27 Pass	DH5, GFSK	Low Channel Mid Channel		fe d	lether	-0.715 -1.092	2.9 2.78	(dBm) 2.185 1.688	(dBm) 27 27	Pass Pass
High Channel 4.602 3.86 8.462 27 Pass		Low Channel Mid Channel High Channel		for d	l Sha	-0.715 -1.092 -1.773	2.9 2.78 3.86	2.185 1.688 2.087	(dBm) 27 27 27 27	Pass Pass Pass
DH5, 8-DPSK Low Channel Mid Channel 5.06 2.9 8.966 27 Pass 5.06 2.78 7.84 27 Pass	DH5, GFSK	Low Channel Mid Channel High Channel Low Channel		for d	l. l. Mar	-0.715 -1.092 -1.773	2.9 2.78 3.86	2.185 1.688 2.087	(dBm) 27 27 27 27	Pass Pass Pass
Low Channel 6.066 2.9 8.966 27 Pass Mid Channel 5.06 2.78 7.84 27 Pass	DH5, GFSK	Low Channel Mid Channel High Channel Low Channel Mid Channel		for d	le l	-0.715 -1.092 -1.773 5.237 4.569	2.9 2.78 3.86 2.9 2.78	2.185 1.688 2.087 8.137 7.349	(dBm) 27 27 27 27 27 27	Pass Pass Pass Pass Pass
Mid Channel 5.06 2.78 7.84 27 Pass	DH5, GFSK 2DH5, pi/4-DQPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel		fe d	l Sha	-0.715 -1.092 -1.773 5.237 4.569	2.9 2.78 3.86 2.9 2.78	2.185 1.688 2.087 8.137 7.349	(dBm) 27 27 27 27 27 27	Pass Pass Pass Pass Pass
	DH5, GFSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel		fe d	l Sha	-0.715 -1.092 -1.773 5.237 4.569 4.602	2.9 2.78 3.86 2.9 2.78 3.86	2.185 1.688 2.087 8.137 7.349 8.462	27 27 27 27 27 27 27	Pass Pass Pass Pass Pass Pass Pass
High Channel 5.125 3.86 8.985 27 Pass	DH5, GFSK 2DH5, pi/4-DQPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel		fe d	L. Caller	(dBm) -0.715 -1.092 -1.773 5.237 4.569 4.602 6.066	2.9 2.78 3.86 2.9 2.78 3.86	2.185 1.688 2.087 8.137 7.349 8.462 8.966	27 27 27 27 27 27 27 27	Pass Pass Pass Pass Pass Pass Pass Pass
	DH5, GFSK 2DH5, pi/4-DQPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel Mid Channel		fe d	l l dha	(dBm) -0.715 -1.092 -1.773 5.237 4.569 4.602 6.066 5.06	2.9 2.78 3.86 2.9 2.78 3.86 2.9 2.78 3.86	2.185 1.688 2.087 8.137 7.349 8.462 8.966 7.84	27 27 27 27 27 27 27 27 27 27	Pass Pass Pass Pass Pass Pass Pass Pass


DH5, GFSK, Low Channel

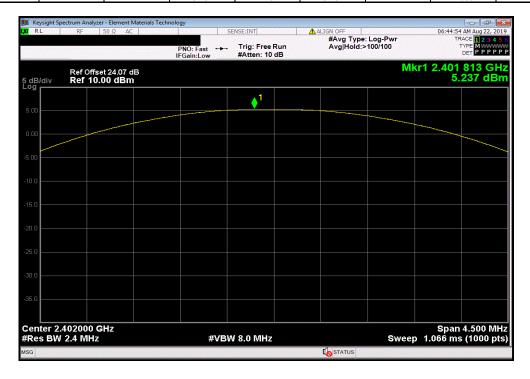
Out Pwr Antenna EIRP EIRP Limit
(dBm) Gain (dBi) (dBm) (dBm) Result

-0.715 2.9 2.185 27 Pass

	DH5	i, GFSK, Mid Cha	nnel		
	Out Pwr	Antenna	EIRP	EIRP Limit	
	(dBm)	Gain (dBi)	(dBm)	(dBm)	Result
	-1.092	2.78	1.688	27	Pass



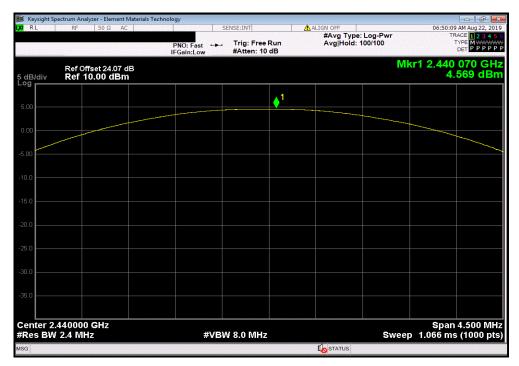
51/87


DH5, GFSK, High Channel

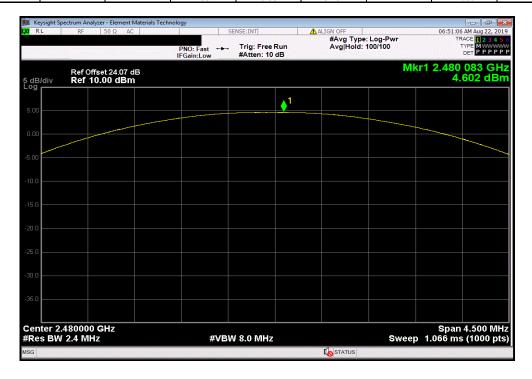
Out Pwr Antenna EIRP EIRP Limit
(dBm) Gain (dBi) (dBm) (dBm) Result

-1.773 3.86 2.087 27 Pass

	2DH5, p	i/4-DQPSK, Low	Channel		
	Out Pwr	Antenna	EIRP	EIRP Limit	
	(dBm)	Gain (dBi)	(dBm)	(dBm)	Result
	5.237	2.9	8.137	27	Pass



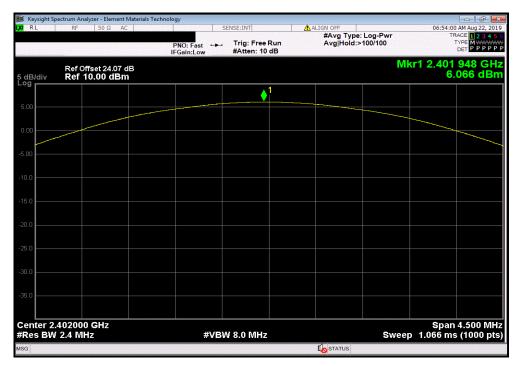
52/87

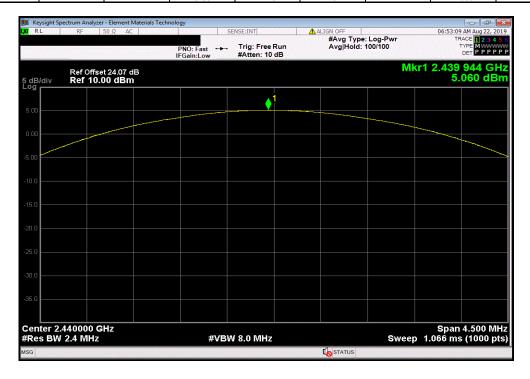

2DH5, pi/4-DQPSK, Mid Channel

Out Pwr Antenna EIRP EIRP Limit
(dBm) Gain (dBi) (dBm) (dBm) Result

4.569 2.78 7.349 27 Pass

2DH5, pi/4-DQPSK, High Channel							
			Out Pwr	Antenna	EIRP	EIRP Limit	
			(dBm)	Gain (dBi)	(dBm)	(dBm)	Result
			4.602	3.86	8.462	27	Pass

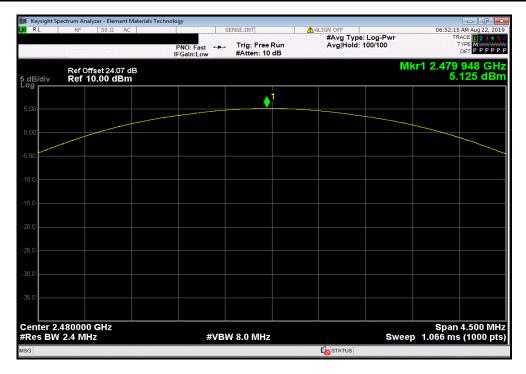



3DH5, 8-DPSK, Low Channel

Out Pwr Antenna EIRP EIRP Limit
(dBm) Gain (dBi) (dBm) (dBm) Result

6.066 2.9 8.966 27 Pass

3DH5, 8-DPSK, Mid Channel							
			Out Pwr	Antenna	EIRP	EIRP Limit	
			(dBm)	Gain (dBi)	(dBm)	(dBm)	Result
			5.06	2.78	7.84	27	Pass



3DH5, 8-DPSK, High Channel

Out Pwr Antenna EIRP EIRP Limit
(dBm) Gain (dBi) (dBm) (dBm) Result

5.125 3.86 8.985 27 Pass

XMit 2019.06.11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

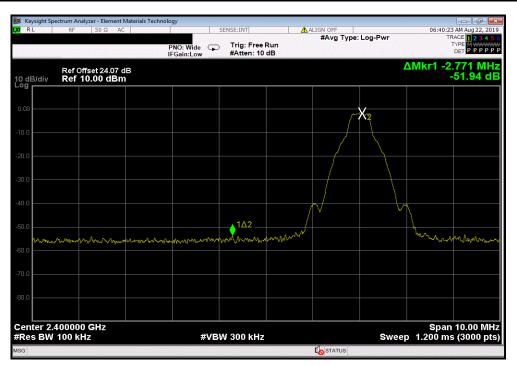
TEST EQUIPMENT

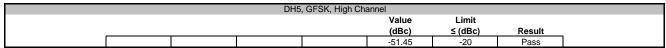
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA18H-20	TKR	20-Dec-18	20-Dec-19
Block - DC	Fairview Microwave	SD3379	AMV	3-Jan-19	3-Jan-20
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	15-Feb-18	15-Feb-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFP	2-Jul-19	2-Jul-20

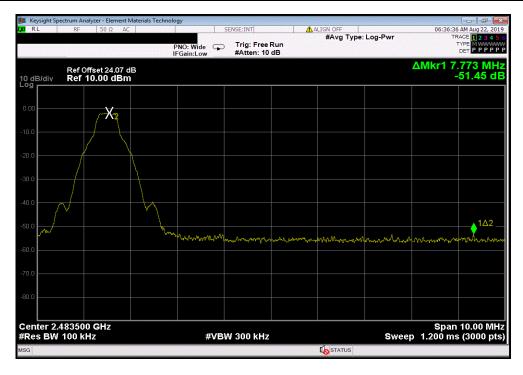
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet in a no hop mode. The channels closest to the band edges were selected.

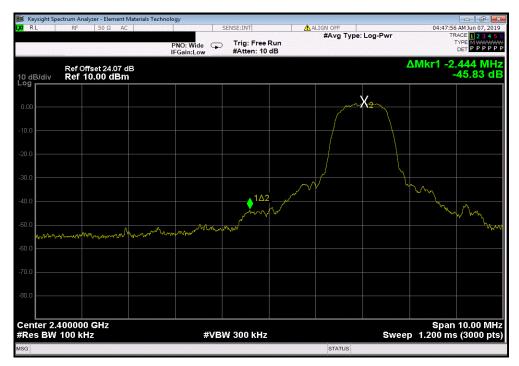
The spectrum was scanned below the lower band edge and above the higher band edge.

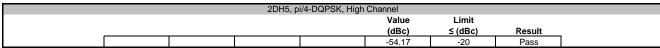


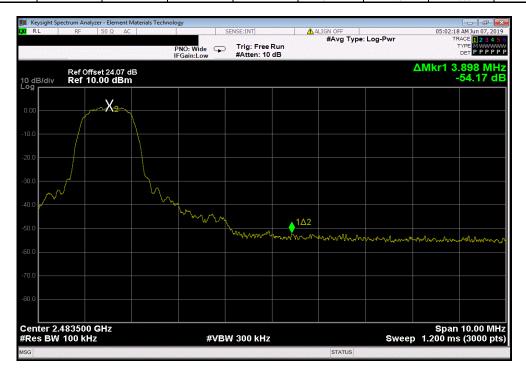

56/87


	: Jonah				Work Order:		
	: PL1919P10034					21-Aug-19	
Customer	: SonicSensory, Inc.				Temperature:	23.4 °C	
	: Daniel Quiros					45.1% RH	
Project:	: None				Barometric Pres.:	1015 mbar	
Tested by:	: Johnny Candelas		Power:	110VAC/60Hz	Job Site:	OC13	
TEST SPECIFICAT	TIONS			Test Method			
FCC 15.247:2019				ANSI C63.10:2013			
COMMENTS							
DC Block + 20 dB	attenuator + Coax Cable +	patch cable = 24.07 dB Total C	Offset				
20 2.00m . 20 u2 .	attornation i double dubie .	paren cable = 2 a2 . cta. c					
DEVIATIONS FROM	M TEST STANDARD						
	M TEST STANDARD						
	M TEST STANDARD						
None	M TEST STANDARD		fe d.	Collection			
DEVIATIONS FROM None Configuration #		Signature	fe d.	lether			
None		Signature	fu d.	lithe	Value	Limit	
None		Signature	fu d.	like	Value (dBc)	Limit ≤ (dBc)	Result
None Configuration #		Signature	fu d.	lethe			Result
None Configuration #		Signature	fe d.	lither			Result Pass
None Configuration #	3 Low Channel	Signature	Ju d.	- Collection - Col	(dBc)	≤ (dBc)	
None Configuration # DH5, GFSK	3 Low Channel High Channel	Signature	fu d.	letter	(dBc) -51.94	≤ (dBc)	Pass
None	3 Low Channel High Channel	Signature	fe d.	lither	(dBc) -51.94	≤ (dBc)	Pass
None Configuration # DH5, GFSK	Low Channel High Channel Low Channel	Signature	fu d.	l Mu	(dBc) -51.94 -51.45	≤ (dBc) -20 -20	Pass Pass
None Configuration # DH5, GFSK 2DH5, pi/4-DQPSK	Low Channel High Channel	Signature	fu d.	letter	(dBc) -51.94 -51.45 -45.83	≤ (dBc) -20 -20 -20	Pass Pass Pass
None Configuration # DH5, GFSK	Low Channel High Channel Low Channel	Signature	fu d.	lather .	(dBc) -51.94 -51.45 -45.83	≤ (dBc) -20 -20 -20	Pass Pass Pass

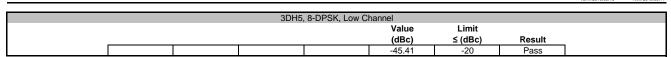
57/87

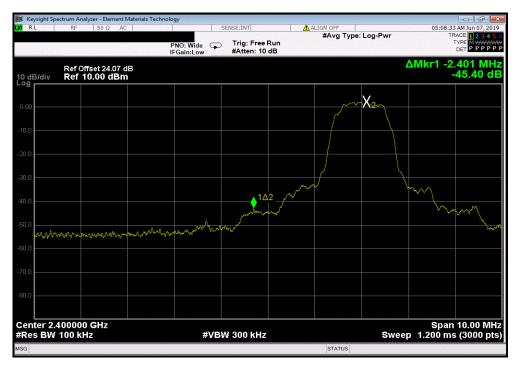





2DH5, pi/4-DQPSK, Low Channel

Value Limit
(dBc) ≤ (dBc) Result


-45.83 -20 Pass





3DH5, 8-DPSK, High Channel							
				Value	Limit		
				(dBc)	≤ (dBc)	Result	
				-53.00	-20	Pass	

