

ROOBO Smart Audio Dev Kit 2 DDK2C7M1

User Guide

COPYRIGHT © 2019 Beijing ROOBO Technology Co., Ltd.

All rights reserved. No part of this document may be modified, transmitted, transcribed, or

translated into any language in any form or by any means without the written permission of

Beijing ROOBO Technology Co., Ltd.

TRADEMARKS

ROOBO is a trademark of Beijing ROOBO Technology Co., Ltd. All other trademarks and

registered trademarks are property of their respective companies.

DISCLAIMER

Beijing ROOBO Technology Co., Ltd. owns the right to make improvements and/or changes

in this document at any time.

ROOBO provides this product to help accelerate the development of customizable in-home

assistants, in-car assistants, smart speaker, IoT devices, or other voice-enabled devices, but

not for other purposes.

Figures, photos, schematics and other information are included in this document to show

the technical specifications and/or tools instructions. If interested in mass production,

please contact ROOBO to obtain additional documents that require an NDA. ROOBO makes

no representations or warranties with respect to the accuracy or completeness of the

contents presented in this document.

Content

1.Introduction .. 3

1.1 In the Box ... 3

1.2 Dev Kit2 Specification .. 4

1.3 Circular 7-Mic Array ... 5

1.3.1 Mic Array Specs ... 5

1.3.2 Mic Array Board Sample and layout ... 6

1.4 Core Board Sample and Layout .. 7

1.5 Audio Data Path ... 8

2. Development Environment .. 9

2.1 Install SDK ... 9

2.2 Compile environment configuration .. 9

3. Filesystem operations .. 13

4. Program guide .. 13

4.1 Mic LEDs program .. 13

4.2 Key .. 14

4.3 I2C program .. 15

4.4 GPIO program ... 15

4.5 Audio operating programming ... 15

5 SDK Multi-media function ... 16

1.Introduction

This Dev kit 2 (referred to as “DDK2” later in this document) is designed For Microsoft

Speech Services Complete, end-to-end system reference design.

This Circular 7-Mic array Dev Kit is a pre-tuned end-to-end reference design that enables the

commercial device manufacturers to efficiently build high-quality speech enabled devices

using Microsoft Speech Services. Developers can integrate the Microsoft Speech

Services into smart speakers, set-top boxes, and other IoT devices with this kit and leverage

premium Microsoft voice recognition technology. It can also be easily configured into a Star

4-Mic array by disabling 3 mics, for evaluating it as a lower cost device.

With the Microsoft Speech Devices SDK, it enables a range of advanced features such as

- Multi-mic array, beam forming, noise suppression, echo cancellation.

- Customizable Key Word Spotting.

- Integration with the world-class Microsoft Speech Services and Bot Framework, and more.

1.1 In the Box

https://azure.microsoft.com/services/cognitive-services/directory/speech/
https://azure.microsoft.com/services/cognitive-services/directory/speech/
https://azure.microsoft.com/services/cognitive-services/directory/speech/
https://docs.microsoft.com/azure/cognitive-services/speech-service/get-speech-devices-sdk
https://azure.microsoft.com/services/cognitive-services/directory/speech/
https://docs.microsoft.com/azure/bot-service/?view=azure-bot-service-3.0

•1x 6+1 digital microphone array board

•1x mainboards held by acrylic stand

•1x USB Power cable

1.2 Dev Kit2 Specification

Items Specs

CPU MTK MT8516AAAA/B Quad core A35 1.3GHz CPU

OS Linux 4.4

WIFI 802.11b/g/n

Bluetooth 4.0+HS

RAM DDR3L+NAND Flash, 1Gb(64M x 16) + 1Gb

MIC Array 7 circular array (6+1)

Audio Line out 1 x 3.5mm Line out

Data Interface 1 x Micro USB Interface

Power Interface 1 x Micro USB Interface

UART 1 x UART

I²C 1 x I²C

GPIO 3 x GPIOs

TF Card Support, up to 32GB（FAT32）

Key

5 x Keys（Reset, Mute, Volume Up, Volume Down,

play/pause）

Power Indicator Support Power Indicator

Mic Array Indicator 12xRGB LEDs

Work Temperature -4~131℉(-20~55℃)

Certification FCC ID

1.3 Circular 7-Mic Array

1.3.1 Mic Array Specs

Items Performance

Array Type 7 circular array (6+1)

Mic Quantity 7 Analog microphone

Dimension

Mics are placed horizontally and evenly in a circle and

microphone ports face upward

Array Distance 42.5mm

Wakeup Distance <10m

Listening Range <5m (Room environment)

Signal to Noise Ratio 65dBA

Sampling Rate 16K

Sensitivity -38±1 dBV @1kHz ref 1V/Pa

1.3.2 Mic Array Board Sample and layout

Items Description

Analog MEMS Microphone Pick up the audio from bottom，Sensitivity：-38dBV

ADC TDM interface, 24bit ADC

Audio output Pin pitch 0.5mm, 24 pins, Connected to core board

LED Driver Driver RGBx12 LED

RGB LED 12xRGB LED

1.4 Core Board Sample and Layout

Items Description

Antenna Terminal 2.4GHz Wi-Fi antenna terminal

Line out 3.5mm Audio interface

USB Debug Interface USB 2.0 Device

Audio input Pin pitch 0.5mm, 24 pins, Connected to mic array board

TF card socket Insert TF card

AP MT8516AAAA/B

DDR3L M15T1G1664A-DEBG2CS，ESMT

NAND Flash F59L1G81MB，ESMT

Reset key Press and hold the button for 2 Seconds for reset

Mute key Key for mute

Volume up key Key for system volume up

Volume down key Key for system volume down

Power supply Micro USB 5V 2A supply（at least 5V 1A）

User interface Io,uart,i2c,power interface

Notes：

We strongly recommend using high quality speakers for a better experience. If you have

noticed any static noise when the speaker is connected to the dev kit’s AUX interface, please

switch to a higher quality speaker or use the USB port of the computer to power the dev kit.

The static noise generally occurs when an adapter is used to power the dev kit, and the

quality of the speaker is low. If you want recommendations for speakers, please contact us

at rooboddk@roobo.com.

1.5 Audio Data Path

ADC

ADC

AP

Analog Mic1

Analog Mic4

Analog Mic5

Analog Mic7

.

.

.

.

.

.

TDM 16KHz

Codec

Ref Signal Channel

2. Development Environment

2.1 Install SDK

Execute the installation script for the installation.

$ sh oecore-x86_64-aarch64-toolchain-nodistro.0.sh

You can enter the installation path or select the default installation path

/usr/local/oecore-x86_64

Extracting SDK.....................

Setting it updone

Indicates that the compile chain was successfully installed.

2.2 Compile environment configuration

Step1- Install the USB driver

To decompress the USB driver package, double-click “DriverInstall.exe” to install it.

After installation, " android_winusb.inf " will be generated in the " C:\Program

Files\MediaTek\SP Driver\drv\Android " path.

Open“android_winusb.inf”,

add information under[MediaTek.NTx86]and [MediaTek.NTamd64] as below：

%SingleAdbInterface% = USB_Install, USB\VID_18D1&PID_D002

Please replace the " VID_18D1&PID_D002" section according to your actual device ID.

Example：

[MediaTek.NTx86]

... ...

%SingleAdbInterface% = USB_Install, USB\VID_18D1&PID_D002

[MediaTek.NTamd64]

... ...

%SingleAdbInterface% = USB_Install, USB\VID_18D1&PID_D002

After this step, if the device can be connected to the Windows PC but cannot be recognized,

please refer to the following picture to get the Device ID information.

Input the actual Device ID information into the " android_winusb.inf " file.

[MediaTek.NTx86]

... ...

%SingleAdbInterface% = USB_Install, <The ID actually identified>

[MediaTek.NTamd64]

... ...

%SingleAdbInterface% = USB_Install, < The ID actually identified >

Step2-install Python2.7.5

Decompress python2.7.5 installer and install it, add the installation path to the environment

variable after the installation is finished.

When finished, close the current CMD window, reopen a Windows console program, and

enter the following code:

python --version

Verify that version 2.7.5 is currently in use.

Step3-install pySerial

Decompress the pySerial installer and run "setup.bat" to install the pySerial tool to ensure

that no errors are reported during installation.

Step4-install ADB

Tools/Python.v2.75.rar
Tools/Python.v2.75.rar

Decompress the ADB toolkit, add the path to the system environment variable：

Add the dynamic link library for ADB running to the system environment，

The dynamic link library is stored under the adb directory：

AdbWinApi.dll, AdbWinUsbApi.dll

Place it in the following two directories：

C:\Windows\System32

C:\Windows\SysWOW64

Notes:

 You’ll need to have the adb tool installed on your computer and make sure the adb

tool is usable.

Step5-upgrade software

Please note the directory where the image is placed in the Windows system environment. Do

not include Chinese characters and Spaces, or you will get an error.

Power off the device (unplug the power cord or plug in the cable to disconnect the power

supply), insert the small port of the Debug USB cable into the Micro USB interface of the

device, and connect the other end to your PC.

On a Windows PC, open a CMD window, go to the directory where image is stored, run

python flashimage.py, and enter into the device monitoring state.

Press and hold DDK2 Volume+ button, connect the device to PC with power USB cable. After

the device is powered on, wait for the device to be recognized to automatically start the

upgrade program and release the Volume+ button.

After the upgrade is completed, a prompt message will be displayed telling you that the

upgrade is successful. After the upgrade is successful, you will see success prompt and the

platform system will be automatically restarted.

3. Filesystem operations

1, Set filesystem access authority

The device rootfs access is read-only, so if you want to pass app or lib into the file system,

you need to modify rootfs access after logging in to the device: # mount -o remount, rw /

Change the”/” directory to read-write

Push files to devices or pull files from devices

PC push files to devices: #adb push filename dev_path

PC pull files from device: #adb pull filename local_path

4. Program guide

4.1 Mic LEDs program

You can use the APIs of libfl3236.so to control the LEDs. We also offer a DLL named

libfl3236.so can be used to configure LED effects.

The head file libfl3236.so declares the APIs,

sysroots/aarch64-poky-linux/usr/include/fl3236_manager.h

The sample code is as follows：

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <fl3236/fl3236_manager.h>

int main(int argc, char const *argv[])

{

fl3236_init();

fl3236_set_light(FL3236_ID_ALL, FL3236_WHITE, 0xFF, CURRENT_MAX_4);

sleep(5);

fl3236_deinit();

return 0;

}

Or you can refer to the FL3236 manual to directly operate the I2C0 bus to configure the

FL3236 register.

4.2 Key

There’re five keys in DDK, these all can be configured as a normal key. The key driver reports

key events to the input subsystem, you can get key events through the standard input event

framework, and can also use libinputevent.so to get the events reported by the key driver.

The input event reported by libinputevent.so needs to be used to realize the key-press event

and the combination of key-press events。

About API，you can refer to the head file of libinputevent.so:

sysroots/aarch64-poky-linux/usr/include/input_manager.h

The sample code is as follows：

#include <stdio.h>

#include <stdlib.h>

#include <linux/input.h>

#include <inputevent/input_manager.h>

#define KEYPAD_DEV_NAME "gpio-keys"

static void key_evt_callback(struct input_event evt)

{

 if ((evt.type == EV_KEY) && (evt.value == 0 || evt.value == 1)) {

 printf("key %d %s\n", evt.code, (evt.value) ? "Pressed" : "Released");

 }

}

int main(int argc, char const *argv[])

{

 int ret = 0;

 ret = input_evt_register((char*)KEYPAD_DEV_NAME, key_evt_callback);

 if (ret) {

 printf("Failed reguster key input event\n");

 return -1;

 }

 for (;;) {

 }

 return 0;

}

4.3 I2C program

DDK2 leads to the i2c0 bus share reserved for developers. You can read and write from the

device node /dev/i2c0.

1. Open i2c device.

2. Set slave station address (7-bit address)

3. read/write

The sample code is as follows：

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#define I2C_DEV_ADDR 0x3e

int main(int argc, char const *argv[])

{

int fd = -1;

char data[32] = {0};

fd = open("/dev/i2c-0", O_WRONLY);

ioctl(fd, I2C_SLAVE, I2C_DEV_ADDR);

write(fd, (char*)data, sizeof(data));

close(fd);

return 0;

}

4.4 GPIO program

Operate GPIO in user space, you can refer to MTK SampleCode.

4.5 Audio operating programming

Audio operations can be performed directly using the standard ALSA framework. DDK2

operates on ALSA in the following ways:

1, Use the arecord that come with ALSA

arecord -D hw:0,1 -r 16000 -c 8 -f S32_LE -d 3 /tmp/16k_8ch_32bit.wav

SampleCode/gpioSampleCode.7z

2, Refer to the MTK SampleCode

3, Refer to ROOBO’s package on ALSA, use libasndaudio. so to record \ play \ audio

continuous reading

About API，you can refer to the head file of libasndaudio.so:

sysroots/aarch64-poky-linux/usr/include/asndaudio.h

The sample code is as follows：

#include <stdio.h>

#include <stdlib.h>

#include <asndaudio/asndaudio.h>

int main(int argc, char const *argv[])

{

asnd_audio_record_wav(“/tmp/record.wav”,”hw:0,1”, 3, 16000, 8, SND_PCM_FORMAT_S32_LE);

asnd_audio_play_wav(“/tmp/record.wav”);

return 0;

}

5 SDK Multi-media function

MT8516 platform system runs appmainprog process in the background，Integrated audio

player function and other important peripheral functions, such as WIFI, Bluetooth, OTA, etc.

Appmainprog could be available as an application development kit, it provides an interface

layer for docking applications.

· Use Domain Socket mode to communicate with other application commands.

· The communication command is in cJson format.

· Assistant Stub thread is responsible for receiving the cJson instruction, parsing it, and

distributing it. Meanwhile, it is also responsible for packaging cJson instructions and sending

them to other applications.

As for the sending of instructions, you don't need the user to assemble the json-formatted

command package, you just need to link to libcjson.so and use the API of

libAssistantCenter.so to send the corresponding instructions.

SampleCode/TDM_In_SampleCode.rar

include the head file：

sysroots/aarch64-poky-linux/usr/include/AssistantDef.h

sysroots/aarch64-poky-linux/usr/include/AssistantCmd.h

sysroots/aarch64-poky-linux/usr/include/CmdHubApi.h

The list of instructions is as follows：

typedef enum

{

 //Assistant Center send to appmainprog

 ASSISTANT_CMD_PLAY = 0,

 ASSISTANT_CMD_PLAY_VOICE_PROMPT,

 ASSISTANT_CMD_PLAY_VOICE_LOCAL,

 ASSISTANT_CMD_PLAY_TTS,

 ASSISTANT_CMD_PLAY_PREV_AUDIO,

 ASSISTANT_CMD_PLAY_NEXT_AUDIO,

 ASSISTANT_CMD_SET_VOLUME,

 ASSISTANT_CMD_SET_SYSTEM_STATUS,

 ASSISTANT_CMD_SET_BT_NAME,

 ASSISTANT_CMD_BT_MODE_SWITCH,

 ASSISTANT_CMD_BT_STOP_INQUIRY,

 ASSISTANT_CMD_BT_CONNECT,

 ASSISTANT_CMD_BT_UNPAIR,

 ASSISTANT_CMD_BT_PAIRED_LIST_UPDATE,

 ASSISTANT_CMD_BT_INQUIRY,

 ASSISTANT_CMD_START_BT_PAIR,

 ASSISTANT_CMD_DEL_BT_PAIRED,

 ASSISTANT_CMD_OPEN_BLE,

 ASSISTANT_CMD_CLOSE_BLE,

ASSISTANT_CMD_BT_POWER_ON,

 ASSISTANT_CMD_BT_POWER_OFF,

 ASSISTANT_CMD_PLAY_BT_MUSIC,

 ASSISTANT_CMD_BT_DISCONNECT,

 ASSISTANT_CMD_GET_AP_LIST,

 ASSISTANT_CMD_WIFI_CONNECT,

 ASSISTANT_CMD_WIFI_CONNECT_OVER,

 ASSISTANT_CMD_WIFI_SETUP_RESULT,

 ASSISTANT_CMD_WIFI_START_SMARTLINK,

 ASSISTANT_CMD_SPEECH_START,

 ASSISTANT_CMD_SPEECH_PROCESS,

 ASSISTANT_CMD_SPEECH_FEEDBACK,

 ASSISTANT_CMD_SPEECH_FINISH,

 ASSISTANT_CMD_GET_SPEAKER_STATUS,

 ASSISTANT_CMD_PAUSE,

 ASSISTANT_CMD_RESUME,

 ASSISTANT_CMD_OTA_UPGRADE,

 ASSISTANT_CMD_ADJUST_PROGRESS,

 ASSISTANT_CMD_STOP,

 ASSISTANT_CMD_FACTORY_RESET_RESULT,

 ASSISTANT_CMD_HFP_FREE_MIC_RESULT,

 //appmainprog send to Assistant Center

 ASSISTANT_CMD_PLAY_DONE,

 ASSISTANT_CMD_PLAY_TTS_DONE,

 ASSISTANT_CMD_SYSTEM_STATUS_CHANGE,

 ASSISTANT_CMD_PLAYER_STATUS_CHANGE,

 ASSISTANT_CMD_NETWORK_STATUS_CHANGE,

 ASSISTANT_CMD_BLUETOOTH_STATUS_CHANGE,

 ASSISTANT_CMD_BUTTON,

 ASSISTANT_CMD_OTA_PROGRESS,

 ASSISTANT_CMD_HFP_STATUS_CHANGE,

 ASSISTANT_CMD_BT_SRC_AVRCP_CMD,

 ASSISTANT_CMD_BT_BLE_MESH_STATUS_CHANGE,

 ASSISTANT_CMD_KEY,

 ASSISTANT_CMD_MAX

} ASSISTANT_CMD_E;

Each instruction corresponds to a different json command. You can learn the details and

implications of each command through <Appmainprog_Communication_Protocol.pdf> .

Programming reference routines or MTK SampleCode

#include "AssistantDef.h"

#include "AssistantCmd.h"

#include "CmdHubApi.h"

#include <unistd.h>

#include <fcntl.h>

static void player_callback(ASSISTANT_CMD_E cmd, char *msg, void *data)

{

 printf("Monk %s recive feedback cmd[%d], msg: %s\n", __func__, cmd, msg);

 if (ASSISTANT_CMD_PLAYER_STATUS_CHANGE == cmd) {

 ASSISTANT_CMD_PLAYER_STATUS_CHANGE_T *play_status =

 (ASSISTANT_CMD_PLAYER_STATUS_CHANGE_T *) msg;

 printf("get player status change:");

 printf("volume: %d", play_status->player.volume);

 printf("status: %s", play_status->player.status);

 printf("source: %s", play_status->player.source);

 printf("audioId: %s", play_status->player.audioId);

 printf("audioUid: %s", play_status->player.audioUid);

 printf("audioSource:%s", play_status->player.audioSource);

 printf("audioName: %s", play_status->player.audioName);

 printf("audioAnchor:%s", play_status->player.audioAnchor);

 printf("audioAlbum: %s", play_status->player.audioAlbum);

 printf("progress: %d", play_status->player.progress);

 printf("audioExt: %s", play_status->player.audioExt);

 }

}

int main(int argc, char const *argv[])

{

handle_t assistant_handler = CmdHubInit(player_callback);

 ASSISTANT_CMD_PLAY_VOICE_PROMPT_T voice_prompt;

 memset(&voice_prompt, 0, sizeof(voice_prompt));

 voice_prompt.volume = 87;

 voice_prompt.feedback = true;

 strncpy(voice_prompt.uri, “/tmp/test.mp3”, ASSISTANT_CMD_URI_MAX_LENGTH);

 strncpy(voice_prompt.type, "normal", ASSISTANT_CMD_TYPE_LENGTH);

 CmdHubSendCmd(assistant_handler, ASSISTANT_CMD_PLAY_VOICE_PROMPT,

 (char *)&voice_prompt, sizeof(voice_prompt));

CmdHubDeInit(assistant_handler);

}

This device complies with part 15 of the FCC Rules. Operation is subject to the condition that

this device does not cause harmful interference (1) this device may not cause harmful

interference, and (2) this device must accept any interference received, including interference

that may cause undesired operation.

Any changes or modifications not expressly approved by the party responsible for compliance

could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B

digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide

reasonable protection against harmful interference in a residential installation. This equipment

generates, uses and can radiate radio frequency energy and, if not installed and used in

accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception,

which can be determined by turning the equipment off and on, the user is encouraged to try to

correct the interference by one or more of the following measures:

-- Reorient or relocate the receiving antenna.

-- Increase the separation between the equipment and receiver.

-- Connect the equipment into an outlet on a circuit different

from that to which the receiver is connected.

-- Consult the dealer or an experienced radio/TV technician for help.

To maintain compliance with FCC’s RF Exposure guidelines, This equipment should be

installed and operated with minimum distance between 20cm the radiator your body: Use only

the supplied antenna.

FCC ID: 2ASEF-DDK2C7M1

