

SAR Test Report

Report No.: AGC00520190404FH01

FCC ID : 2AS95-A905

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION : Mobile Phone

BRAND NAME : MFU

MODEL NAME : A905

APPLICANT : Shenzhen Jingdingfeng Technology Co.,Ltd.

DATE OF ISSUE : July 26,2019

STANDARD(S) : IEEE Std. 1528:2013
FCC 47 CFR Part 2§2.1093:2013
IEEE C95.1TM:2005

REPORT VERSION : V1.1

Attestation of Global Compliance(Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	July 12,2019	Invalid	Initial Release
V1.1	1 st	July 26,2019	Valid	Modified GSM antenna gain and max power of PCS1900

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Test Report	
Applicant Name	Shenzhen Jingdingfeng Technology Co.,Ltd.
Applicant Address	Flr6.Block 6, South Area, HongHuaLing Industrial Zone, XiLi Town, NanShan District, Shenzhen, China
Manufacturer Name	Shenzhen Jingdingfeng Technology Co.,Ltd.
Manufacturer Address	Flr6.Block 6, South Area, HongHuaLing Industrial Zone, XiLi Town, NanShan District, Shenzhen, China
Factory Name	Shenzhen Jingdingfeng Technology Co.,Ltd.
Factory Address	Flr6.Block 6, South Area, HongHuaLing Industrial Zone, XiLi Town, NanShan District, Shenzhen, China
Product Designation	Mobile Phone
Brand Name	MFU
Model Name	A905
EUT Voltage	DC3.7V by battery
Applicable Standard	IEEE Std. 1528:2013 FCC 47 CFR Part 2§2.1093:2013 IEEE C95.1TM:2005
Test Date	May 10,2019 to May 11,2019
Report Template	AGCRT-US-2.5G/SAR (2018-01-01)

Note: The results of testing in this report apply to the product/system which was tested only.

Tested By

Owen Xiao (Xiao Qi)

May 11,2019

Checked By

Jack Gui (Gui Jiafeng)

July 26,2019

Authorized By

Forrest Lei(Lei Yonggang)

July 26,2019

Authorized Officer

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	7
3.1. THE DASY5 SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS	7
3.2. DASY5 E-FIELD PROBE	8
3.3. DATA ACQUISITION ELECTRONICS DESCRIPTION	8
3.4. ROBOT	9
3.5. LIGHT BEAM UNIT	9
3.6. DEVICE HOLDER	10
3.7. MEASUREMENT SERVER	10
3.8. PHANTOM	11
4. SAR MEASUREMENT PROCEDURE	12
4.1. SPECIFIC ABSORPTION RATE (SAR)	12
4.2. SAR MEASUREMENT PROCEDURE	13
4.3. RF EXPOSURE CONDITIONS	15
5. TISSUE SIMULATING LIQUID	16
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	16
5.2. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	16
5.3. TISSUE CALIBRATION RESULT	17
6. SAR SYSTEM CHECK PROCEDURE	18
6.1. SAR SYSTEM CHECK PROCEDURES	18
6.2. SAR SYSTEM CHECK	19
7. EUT TEST POSITION	21
7.2. CHEEK POSITION	22
7.3. TILT POSITION	22
7.4. BODY WORN POSITION	23
8. SAR EXPOSURE LIMITS	24
9. TEST FACILITY	25
10. TEST EQUIPMENT LIST	26
11. MEASUREMENT UNCERTAINTY	27
12. CONDUCTED POWER MEASUREMENT	30
13. TEST RESULTS	37
13.1. SAR TEST RESULTS SUMMARY	37
APPENDIX A. SAR SYSTEM CHECK DATA	42
APPENDIX B. SAR MEASUREMENT DATA	46
APPENDIX C. TEST SETUP PHOTOGRAPHS	54
APPENDIX D. CALIBRATION DATA	58

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Frequency Band	Highest Reported 1g-SAR(W/Kg)		SAR Test Limit (W/Kg)
	Head	Body-worn	
GSM 850	0.239	0.613	1.6
PCS 1900	0.122	0.409	
Simultaneous Reported SAR		0.665	
SAR Test Result	PASS		

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

2. GENERAL INFORMATION

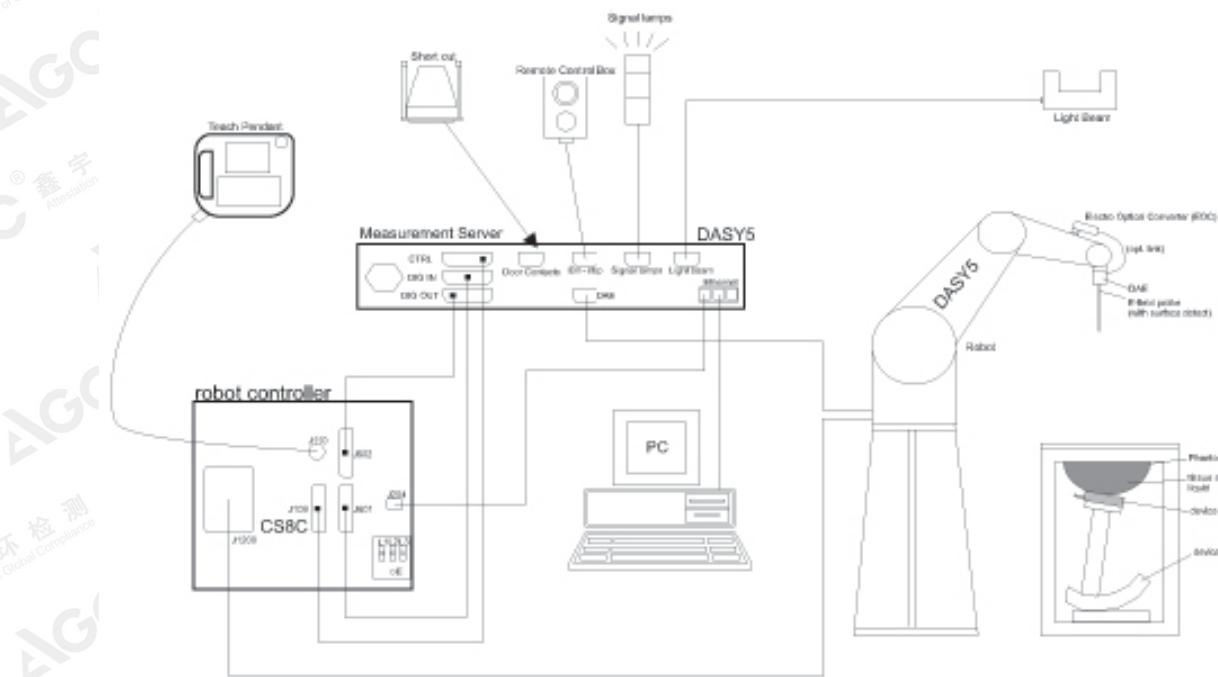
2.1. EUT Description

General Information	
Product Designation	Mobile Phone
Test Model	A905
Hardware Version	C802_V1.1_180518
Software Version	V10
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
GSM and GPRS	
Support Band	<input checked="" type="checkbox"/> GSM 850 <input checked="" type="checkbox"/> PCS 1900 <input checked="" type="checkbox"/> GSM 900 <input checked="" type="checkbox"/> DCS 1800
GPRS Type	Class B
GPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)
TX Frequency Range	GSM 850 : 820-850MHz;; PCS 1900: 1850-1910MHz;
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz
Release Version	R99
Type of modulation	GMSK for GSM/GPRS;
Antenna Gain	GSM850: 0.95dBi; PCS1900: 1.02dBi;
Max. Average Power	GSM850: 31.80dBm ;PCS1900: 28.62dBm
Bluetooth	
Operation Frequency	2402~2480MHz
Antenna Gain	0dBi
Bluetooth Version	V2.1
Type of modulation	GFSK
Max. Output Power	3.627dBm
Accessories	
Battery	Brand name: MFU Model No. : A905 Voltage and Capacitance: 3.7 V & 4000mAh
Earphone	Brand name: N/A Model No. : N/A

Note:1. CMU200 can measure the average power and Peak power at the same time

2. The sample used for testing is end product.

Product	Type
	<input checked="" type="checkbox"/> Production unit <input type="checkbox"/> Identical Prototype


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

3. SAR MEASUREMENT SYSTEM

3.1. The DASY5 system used for performing compliance tests consists of following items

- A standard high precision 6-axis robot with controller, teach pendant and software.
- Data acquisition electronics (DAE) which attached to the robot arm extension. The DAE consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock
- A dosimetric probe equipped with an optical surface detector system.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital Communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- A Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- Phantoms, device holders and other accessories according to the targeted measurement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

3.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE-1528 etc.) Under ISO17025. The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	EX3DV4-SN:3953		
Manufacture	SPEAG		
frequency	0.7GHz-6GHz Linearity: $\pm 0.9\% (k=2)$		
Dynamic Range	0.01W/Kg-100W/Kg Linearity: $\pm 0.9\% (k=2)$		
Dimensions	Overall length: 337mm Tip diameter: 2.5mm Typical distance from probe tip to dipole centers: 1mm		
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.		

3.3. Data Acquisition Electronics description

The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement sever is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm	
The Inputs	Symmetrical and floating	
Common mode rejection	above 80 dB	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

3.4. Robot

The DASY system uses the high precision robots (DASY5:TX60) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

3.5. Light Beam Unit

The light beam switch allows automatic “tooling” of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned prob.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. e, the same position will be reached with another aligned probe within 0

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

3.6. Device Holder

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.7. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip-disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DAYS I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

3.8. PHANTOM SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

ELI4 Phantom

- Flat phantom a fiberglass shell flat phantom with 2mm+/- 0.2 mm shell thickness. It has only one measurement area for Flat phantom

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg)
 SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \left. \frac{dT}{dt} \right|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
 E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
 σ is the conductivity of the tissue in siemens per metre;
 ρ is the density of the tissue in kilograms per cubic metre;
 c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;
 $\frac{dT}{dt} \mid t = 0$ is the initial time derivative of temperature in the tissue in kelvins per second

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
	≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g and 10g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

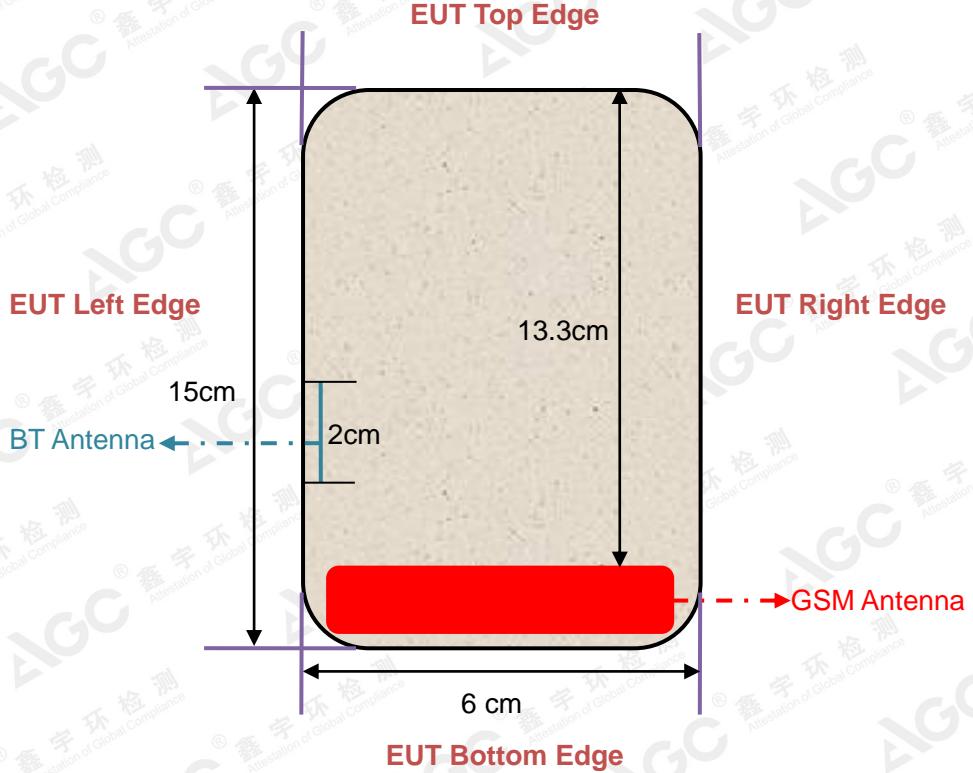
Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$ graded grid	≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
		≤ 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm
Minimum zoom scan volume	x, y, z	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
		≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. * When zoom scan is required and the <u>reported</u> SAR from the <i>area scan based 1-g SAR estimation</i> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.			

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.


4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports GSM/GPRS and BT.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

Antenna Location: (the back view)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight)	Water	NaCl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
Frequency (MHz)						
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
835 Body	54.00	1	0.0	15	0.0	30
1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
1900 Body	70	1	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency (MHz)	head		body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

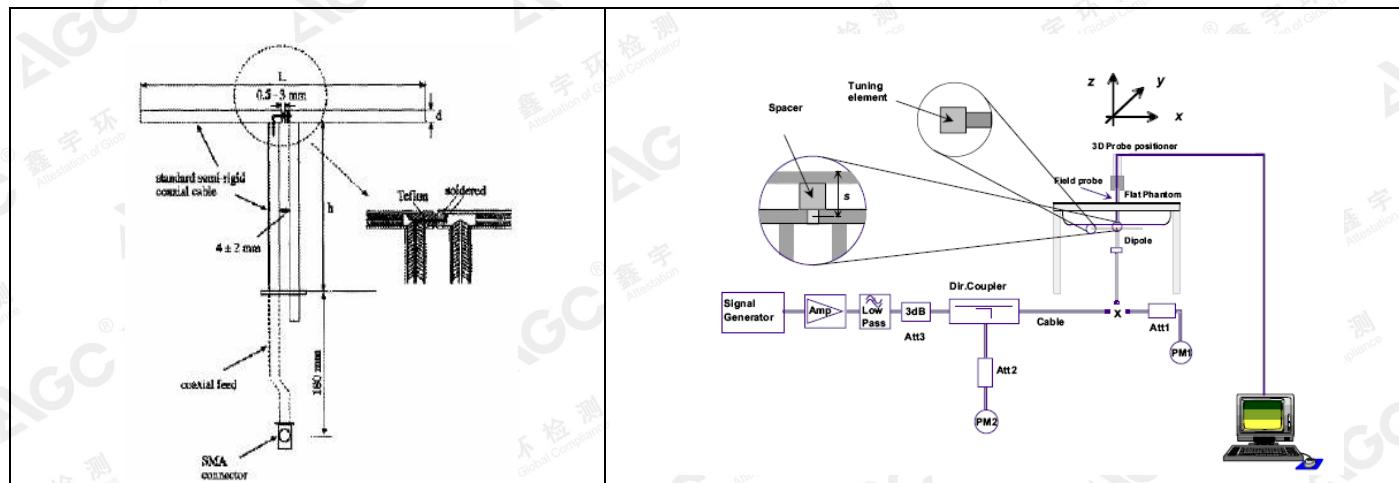
5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY 5 Dielectric Probe Kit and R&S Network Analyzer ZVL6.

Tissue Stimulant Measurement for 835MHz					
Head	Fr. (MHz)	Dielectric Parameters ($\pm 5\%$)		Tissue Temp [°C]	Test time
		ϵ_r 41.5 (39.425-43.575)	δ [s/m] 0.90(0.855-0.945)		
Head	824.2	43.46	0.88	21.7	May 10,2019
	835	43.12	0.89		
	836.6	42.95	0.91		
	848.8	41.20	0.93		
Body	Fr. (MHz)	Dielectric Parameters ($\pm 5\%$)		Tissue Temp [°C]	Test time
		ϵ_r 55.20(52.44-57-96)	δ [s/m] 0.97(0.9215-1.0185)		
	824.2	55.82	0.96	21.6	May 10,2019
	835	54.69	0.98		
	836.6	54.13	0.99		
	848.8	53.16	1.00		

Tissue Stimulant Measurement for 1900MHz					
Head	Fr. (MHz)	Dielectric Parameters ($\pm 5\%$)		Tissue Temp [°C]	Test time
		ϵ_r 40.00(38.00-42.00)	δ [s/m] 1.40(1.33-1.47)		
Head	1850.2	41.67	1.35	21.4	May 11,2019
	1880	40.21	1.38		
	1900	39.56	1.41		
	1909.8	38.39	1.44		
Body	Fr. (MHz)	Dielectric Parameters ($\pm 5\%$)		Tissue Temp [°C]	Test time
		ϵ_r 53.30(50.635-55.965)	δ [s/m] 1.52(1.444-1.596)		
	1850.2	53.76	1.46	21.3	May 11,2019
	1880	52.62	1.50		
	1900	51.85	1.51		
	1909.8	51.27	1.53		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

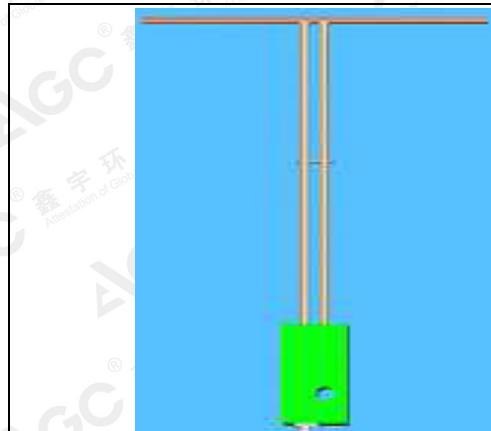

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each DASY system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

6.2. SAR System Check

6.2.1. Dipoles

The dipoles used are based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

6.2.2. System Check Result

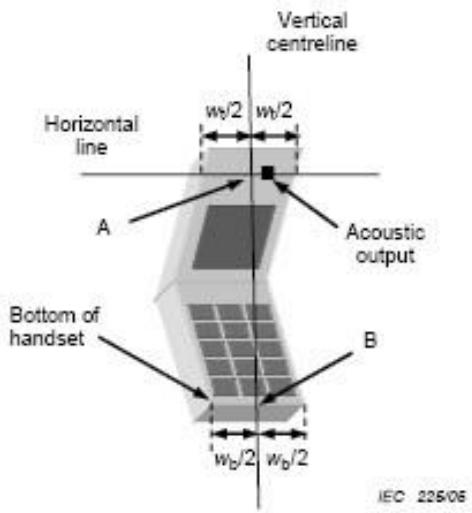
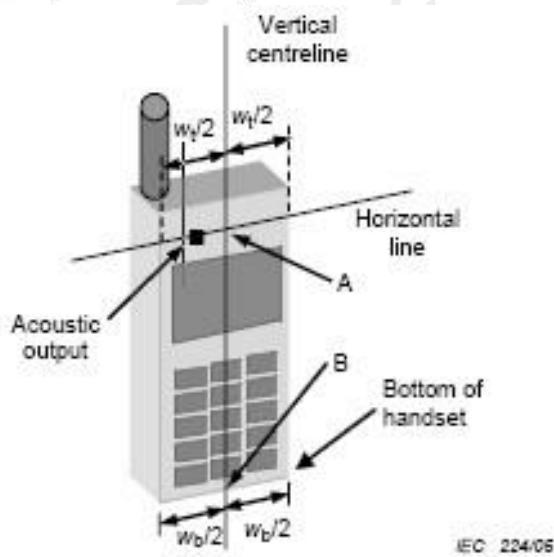
System Performance Check at 835MHz&1900MHz for Head								
Validation Kit: SN29/15 DIP 0G835-383&SN 29/15 DIP 1G900-389								
Frequency [MHz]	Target Value(W/Kg)		Reference Result (± 10%)		Tested Value(W/Kg)		Tissue Temp. [°C]	Test time
	1g	10g	1g	10g	1g	10g		
835	10.04	6.43	9.036-11.044	5.787-7.073	9.30	5.91	21.7	May 10,2019
1900	41.44	21.33	37.296-45.584	19.197-23.463	40.10	20.60	21.4	May 11,2019

System Performance Check at 835 MHz &1900MHz for Body								
Frequency [MHz]	Target Value(W/Kg)		Reference Result (± 10%)		Tested Value(W/Kg)		Tissue Temp. [°C]	Test time
	1g	10g	1g	10g	1g	10g		
835	9.85	6.45	8.865-10.835	5.805-7.095	9.67	6.28	21.6	May 10,2019
1900	39.38	20.86	35.442-43.318	18.774-22.946	38.04	19.65	21.3	May 11,2019

Note:

(1) We use a CW signal of 18dBm for system check, and then all SAR values are normalized to 1W forward power. The result must be within ±10% of target value.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.



Attestation of Global Compliance

7. EUT TEST POSITION

This EUT was tested in **Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front**.

7.1. Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

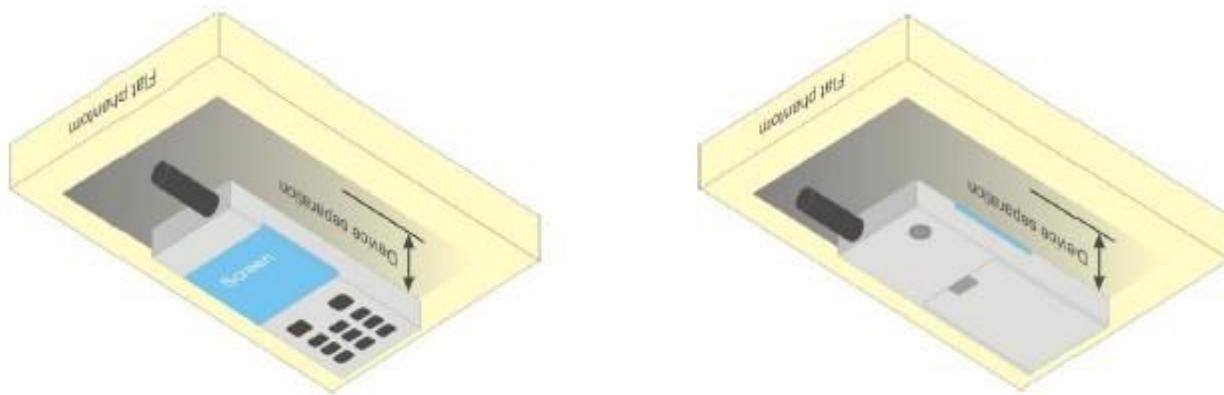
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

7.2. Cheek Position

- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to **10mm**.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong China

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date
Stäubli Robot	Stäubli-TX60	F13/5Q2UD1/A/01	N/A	N/A
Robot Controller	Stäubli-CS8	139522	N/A	N/A
E-Field Probe	Speag- EX3DV4	SN:3953	Aug. 10,2018	Aug. 09,2019
SAM Twin Phantom	Speag-SAM	1790	N/A	N/A
Device Holder	Speag-SD 000 H01 KA	SD 000 H01 KA	N/A	N/A
DAE4	Speag-SD 000 D04 BM	1398	Feb. 16,2019	Feb. 15,2020
SAR Software	Speag-DASY5	DASY52.8	N/A	N/A
Liquid	SATIMO	-	N/A	N/A
Radio Communication Tester	R&S-CMU200	069Y7-158-13-712	Mar. 14,2019	Mar. 13,2020
Dipole	SATIMO SID835	SN29/15 DIP 0G835-383	July 05,2016	July 04,2019
Dipole	SATIMO SID1900	SN 29/15 DIP 1G900-389	July 05,2016	July 04,2019
Signal Generator	Agilent-E4438C	US41461365	Nov. 01,2018	Oct. 31,2019
Vector Analyzer	Agilent / E4440A	US41421290	Feb. 27,2019	Feb. 26,2020
Network Analyzer	Rhode & Schwarz ZVL6	SN101443	Nov. 01,2018	Oct. 31,2019
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A
Amplifier	EM30180	SN060552	Feb. 27,2019	Feb. 26,2020
Directional Couple	Werlatone/ C5571-10	SN99463	Jun. 12,2018	Jun. 11,2019
Directional Couple	Werlatone/ C6026-10	SN99482	Jun. 12,2018	Jun. 11,2019
Power Sensor	NRP-Z21	1137.6000.02	Sep. 20,2018	Sep. 19,2019
Power Sensor	NRP-Z23	US38261498	Feb. 19,2019	Feb. 18,2020
Power Viewer	R&S	V2.3.1.0	N/A	N/A

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;
2. System validation with specific dipole is within 10% of calibrated value;
3. Return-loss is within 20% of calibrated measurement;
4. Impedance is within 5Ω of calibrated measurement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

11. MEASUREMENT UNCERTAINTY

DASY Uncertainty- EX3DV4 Measurement uncertainty for Dipole averaged over 1 gram / 10 gram.									
a	b	c	d	e f(d,k)	f	g	h cx ² /e	i cxg/e	k
Uncertainty Component	Sec.	Tol (\pm %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (\pm %)	10g Ui (\pm %)	vi
Measurement System									
Probe calibration	E.2.1	6.65	N	1	1	1	6.65	6.65	∞
Axial Isotropy	E.2.2	0.6	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	0.24	0.24	∞
Hemispherical Isotropy	E.2.2	1.6	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	0.65	0.65	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	0.45	R	$\sqrt{3}$	1	1	0.26	0.26	∞
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response 调制响应	E2.5	3.3	R	$\sqrt{3}$	1	1	1.91	1.91	∞
Readout Electronics	E.2.6	0.15	N	1	1	1	0.15	0.15	∞
Response Time	E.2.7	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	E.2.8	1.7	R	$\sqrt{3}$	1	1	0.98	0.98	∞
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mechanical tolerance	E.6.2	0.4	R	$\sqrt{3}$	1	1	0.37	0.37	∞
Probe positioning with respect to phantom shell	E.6.3	6.7	R	$\sqrt{3}$	1	1	3.87	3.87	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Test sample Related									
Test sample positioning	E.4.2	2.9	N	1	1	1	2.90	2.90	∞
Device holder uncertainty	E.4.1	3.6	N	1	1	1	3.60	3.60	∞
Output power variation—SAR drift measurement	E.2.9	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	E.6.5	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Phantom and tissue parameters									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	6.6	R	$\sqrt{3}$	1	1	3.81	3.81	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	∞
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	M
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	M
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty			RSS				11.80	11.635	
Expanded Uncertainty (95% Confidence interval)			K=2				23.60	23.27	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

DASY Uncertainty- EX3DV4 System Check uncertainty for Dipole averaged over 1 gram / 10 gram.									
a	b	c	d	e f(d,k)	f	g	h cx ² /e	i cxg/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System									
Probe calibration drift	E.2.1	0.5	N	1	1	1	0.5	0.5	∞
Axial Isotropy	E.2.2	0.6	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Hemispherical Isotropy	E.2.2	1.6	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Linearity	E.2.4	0.45	R	$\sqrt{3}$	0	0	0.00	0.00	∞
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Modulation response	E.2.5	3.3	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Readout Electronics	E.2.6	0.15	N	1	0	0	0.00	0.00	∞
Response Time	E.2.7	0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Integration Time	E.2.8	1.7	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Probe positioner mechanical tolerance	E.6.2	0.4	R	$\sqrt{3}$	1	1	0.37	0.37	∞
Probe positioning with respect to phantom shell	E.6.3	6.7	R	$\sqrt{3}$	1	1	3.87	3.87	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	4	R	$\sqrt{3}$	0	0	0.00	0.00	∞
System check source (dipole)									
Deviation of experimental dipoles	E.6.4	2.0	N	1	1	1	2.00	2.00	∞
Input power and SAR drift measurement	8,E.6.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and tissue parameters									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	6.6	R	$\sqrt{3}$	1	1	3.81	3.81	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	∞
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	M
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	M
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty			RSS				7.344	7.076	
Expanded Uncertainty (95% Confidence interval)			K=2				14.689	14.153	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

DASY Uncertainty- EX3DV4 System Validation uncertainty for Dipole averaged over 1 gram / 10 gram.									
a	b	c	d	e f(d,k)	f	g	h cx ² /e	i cx ² /e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System									
Probe calibration	E.2.1	6.65	N	1	1	1	6.65	6.65	∞
Axial Isotropy	E.2.2	0.6	R	$\sqrt{3}$	1	1	0.35	0.35	∞
Hemispherical Isotropy	E.2.2	1.6	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	0.45	R	$\sqrt{3}$	1	1	0.26	0.26	∞
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	E.2.5	3.3	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Readout Electronics	E.2.6	0.15	N	1	1	1	0.15	0.15	∞
Response Time	E.2.7	0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Integration Time	E.2.8	1.7	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mechanical tolerance	E.6.2	0.4	R	$\sqrt{3}$	1	1	0.37	0.37	∞
Probe positioning with respect to phantom shell	E.6.3	6.7	R	$\sqrt{3}$	1	1	3.87	3.87	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
System check source (dipole)									
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	1	1	1	5.00	5.00	∞
Input power and SAR drift measurement	8,E.6.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and tissue parameters									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	6.6	R	$\sqrt{3}$	1	1	3.81	3.81	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	∞
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	M
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	M
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty			RSS				11.451	11.281	
Expanded Uncertainty (95% Confidence interval)			K=2				22.901	22.561	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

12. CONDUCTED POWER MEASUREMENT

GSM BAND

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1>				
GSM 850	824.2	31.40	-9	22.40
	836.6	31.32	-9	22.32
	848.8	31.80	-9	22.80
GPRS 850 (1 Slot)	824.2	31.35	-9	22.35
	836.6	31.06	-9	22.06
	848.8	31.46	-9	22.46
GPRS 850 (2 Slot)	824.2	30.12	-6	24.12
	836.6	30.08	-6	24.08
	848.8	30.25	-6	24.25
GPRS 850 (3 Slot)	824.2	28.73	-4.26	24.47
	836.6	28.22	-4.26	23.96
	848.8	28.90	-4.26	24.64
GPRS 850 (4 Slot)	824.2	27.51	-3	24.51
	836.6	27.38	-3	24.38
	848.8	27.96	-3	24.96
Maximum Power <2>				
GSM 850	824.2	31.36	-9	22.36
	836.6	31.28	-9	22.28
	848.8	31.71	-9	22.71
GPRS 850 (1 Slot)	824.2	31.32	-9	22.32
	836.6	31.01	-9	22.01
	848.8	31.43	-9	22.43
GPRS 850 (2 Slot)	824.2	30.10	-6	24.10
	836.6	30.02	-6	24.02
	848.8	30.23	-6	24.23
GPRS 850 (3 Slot)	824.2	28.71	-4.26	24.45
	836.6	28.20	-4.26	23.94
	848.8	28.86	-4.26	24.60
GPRS 850 (4 Slot)	824.2	27.46	-3	24.46
	836.6	27.32	-3	24.32
	848.8	27.93	-3	24.93

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <3>				
GSM 850	824.2	31.35	-9	22.35
	836.6	31.26	-9	22.26
	848.8	31.68	-9	22.68
GPRS 850 (1 Slot)	824.2	31.38	-9	22.38
	836.6	31.01	-9	22.01
	848.8	31.37	-9	22.37
GPRS 850 (2 Slot)	824.2	30.06	-6	24.06
	836.6	30.03	-6	24.03
	848.8	30.20	-6	24.20
GPRS 850 (3 Slot)	824.2	28.69	-4.26	24.43
	836.6	28.16	-4.26	23.90
	848.8	28.83	-4.26	24.57
GPRS 850 (4 Slot)	824.2	27.42	-3	24.42
	836.6	27.33	-3	24.33
	848.8	27.91	-3	24.91

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1>				
PCS1900	1850.2	28.57	-9	19.57
	1880	28.52	-9	19.52
	1909.8	28.61	-9	19.61
GPRS1900 (1 Slot)	1850.2	28.62	-9	19.62
	1880	28.39	-9	19.39
	1909.8	28.40	-9	19.40
GPRS1900 (2 Slot)	1850.2	27.39	-6	21.39
	1880	27.06	-6	21.06
	1909.8	27.83	-6	21.83
GPRS1900 (3 Slot)	1850.2	25.73	-4.26	21.47
	1880	25.46	-4.26	21.20
	1909.8	25.81	-4.26	21.55
GPRS1900 (4 Slot)	1850.2	23.78	-3	20.78
	1880	23.55	-3	20.55
	1909.8	23.96	-3	20.96
Maximum Power <2>				
PCS1900	1850.2	28.46	-9	19.46
	1880	28.50	-9	19.50
	1909.8	28.53	-9	19.53
GPRS1900 (1 Slot)	1850.2	28.56	-9	19.56
	1880	28.33	-9	19.33
	1909.8	28.37	-9	19.37
GPRS1900 (2 Slot)	1850.2	27.32	-6	21.32
	1880	27.03	-6	21.03
	1909.8	27.81	-6	21.81
GPRS1900 (3 Slot)	1850.2	25.68	-4.26	21.42
	1880	25.42	-4.26	21.16
	1909.8	25.77	-4.26	21.51
GPRS1900 (4 Slot)	1850.2	23.75	-3	20.75
	1880	23.51	-3	20.51
	1909.8	23.92	-3	20.92

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <3>				
PCS1900	1850.2	28.42	-9	19.42
	1880	28.44	-9	19.44
	1909.8	28.47	-9	19.47
GPRS1900 (1 Slot)	1850.2	28.56	-9	19.56
	1880	28.32	-9	19.32
	1909.8	28.35	-9	19.35
GPRS1900 (2 Slot)	1850.2	27.31	-6	21.31
	1880	27.02	-6	21.02
	1909.8	27.79	-6	21.79
GPRS1900 (3 Slot)	1850.2	25.66	-4.26	21.40
	1880	25.42	-4.26	21.16
	1909.8	25.75	-4.26	21.49
GPRS1900 (4 Slot)	1850.2	23.73	-3	20.73
	1880	23.47	-3	20.47
	1909.8	23.90	-3	20.90

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

$$\text{Frame Power} = \text{Max burst power (1 Up Slot)} - 9 \text{ dB}$$

$$\text{Frame Power} = \text{Max burst power (2 Up Slot)} - 6 \text{ dB}$$

$$\text{Frame Power} = \text{Max burst power (3 Up Slot)} - 4.26 \text{ dB}$$

$$\text{Frame Power} = \text{Max burst power (4 Up Slot)} - 3 \text{ dB}$$

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

UMTS BAND
HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Based Station with following setting:
 - (1) Set Gain Factors(β_c and β_d) parameters set according to each
 - (2) Set RMC 12.2Kbps+HSDPA mode.
 - (3) Set Cell Power=-86dBm
 - (4) Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - (5) Select HSDPA Uplink Parameters
 - (6) Set Delta ACK, Delta NACK and Delta CQI=8
 - (7) Set Ack - Nack Repetition Factor to 3
 - (8) Set CQI Feedback Cycle (k) to 4ms
 - (9) Set CQI Repetition Factor to 2
 - (10) Power Ctrl Mode=All Up bits
- The transmitted maximum output power was recorded.

 Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	β_c (Note5)	β_d	β_d (SF)	β_c/β_d	β_{HS} (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15(Note 4)	15/15(Note 4)	64	12/15(Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: Δ ACK, Δ NACK and Δ CQI = 30/15 with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause

5.13.1AA, Δ ACK and Δ NACK = 30/15 with $\beta_{hs} = 30/15 * \beta_c$, and Δ CQI = 24/15 with $\beta_{hs} = 24/15 * \beta_c$.

Note 3: CM = 1 for $\beta_c/\beta_d = 12/15$, $hs/c = 24/15$. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the c/d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $c = 11/15$ and $d = 15/15$.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting * :
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - Set Cell Power = -86 dBm
 - Set Channel Type = 12.2k + HSPA
 - Set UE Target Power
 - Power Ctrl Mode= Alternating bits
 - Set and observe the E-TFCI
 - Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- The transmitted maximum output power was recorded.

 Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	β_{HS} (Note 1)	β_{EC}	β_{ED} (Note 4) (Note 5)	β_{ED} (SF)	β_{ED} (Code s)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TF CI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/225	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ED1}:$ 47/15 $\beta_{ED2}:$ 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, Δ ACK, Δ NACK and Δ CQI = 30/15 with $\beta_{hs} = 30/15 * \beta_c$. For sub-test 5, Δ ACK, Δ NACK and Δ CQI = 5/15 with $\beta_{hs} = 5/15 * \beta_c$.

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the c/d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $c = 10/15$ and $d = 15/15$.

Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: β_{ED} cannot be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Bluetooth_V2.1

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
GFSK	0	2402	3.621
	39	2441	3.627
	78	2480	3.528

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn and 4 Edges SAR was performed with the device 10mm from the phantom.

13.1.2. Operation Mode

1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥ 0.8 W/kg, testing for repeated SAR measurement is required , that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥ 0.8 W/kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥ 1.45 W/kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥ 1.5 W/kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20 .
3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected is not required.
5. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:
Maximum Scaling SAR = tested SAR (Max.) \times [maximum turn-up power (mw)/ maximum measurement output power(mw)]
6. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR result

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

13.1.3. Test Result

SAR MEASUREMENT															
Depth of Liquid (cm):>15				Relative Humidity (%): 44.5											
Product: Mobile Phone															
Test Mode: GSM850 with GMSK modulation															
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2 dB)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)						
SIM 1 Card															
Left Cheek	voice	190	836.6	0.10	0.190	31.80	31.32	0.212	1.6						
Left Tilt	voice	190	836.6	-0.13	0.100	31.80	31.32	0.112	1.6						
Right Cheek	voice	190	836.6	0.08	0.214	31.80	31.32	0.239	1.6						
Right Tilt	voice	190	836.6	-0.10	0.111	31.80	31.32	0.124	1.6						
Body back	voice	190	836.6	0.05	0.549	31.80	31.32	0.613	1.6						
Body front	voice	190	836.6	-0.13	0.263	31.80	31.32	0.294	1.6						
Body back	GPRS-4 slot	190	836.6	-0.06	0.485	28.00	27.38	0.559	1.6						
Body front	GPRS-4 slot	190	836.6	-0.10	0.249	28.00	27.38	0.287	1.6						

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- The test separation for body back and body front is 10mm of all above table.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

SAR MEASUREMENT																
Depth of Liquid (cm):>15			Relative Humidity (%): 46.2													
Product: Mobile Phone																
Test Mode: PCS1900 with GMSK modulation																
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<=0.2 dB)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)							
SIM 1 Card																
Left Cheek	voice	661	1880.0	0.03	0.028	28.70	28.52	0.029	1.6							
Left Tilt	voice	661	1880.0	-0.19	0.028	28.70	28.52	0.029	1.6							
Right Cheek	voice	661	1880.0	0.04	0.117	28.70	28.52	0.122	1.6							
Right Tilt	voice	661	1880.0	0.01	0.038	28.70	28.52	0.040	1.6							
Body back	voice	661	1880.0	0.08	0.352	28.70	28.52	0.367	1.6							
Body front	voice	661	1880.0	-0.19	0.061	28.70	28.52	0.064	1.6							
Body back	GPRS-2 slot	661	1880.0	-0.12	0.337	27.90	27.06	0.409	1.6							
Body front	GPRS-2 slot	661	1880.0	0.09	0.075	27.90	27.06	0.091	1.6							

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- The test separation for body back and body front is 10mm of all above table.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

NO	Simultaneous state	Portable Handset		
		Head	Body-worn	Hotspot
1	GSM(voice)+Bluetooth(data)	-	Yes	-
2	GSM (Data) + Bluetooth(data)	-	Yes	Yes

NOTE:

1. Simultaneous with every transmitter must be the same test position.
2. KDB 447498 D01, BT SAR is excluded as below table.
3. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 10mm for body-worn SAR.
4. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:

For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

5. If the test separation distance is < 5 mm, 5mm is used for excluded SAR calculation.
6. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4) When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det
 $(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm}) \cdot [\sqrt{f(\text{GHz})}/x] \text{ W/kg}$ for test separation distances ≤ 50 mm;
 where $x = 7.5$ for 1-g SAR, and $x = 18.75$ for 10-g SAR.

7. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by $(\text{SAR1} + \text{SAR2})/1.5/R_i$, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR		Max Power including Tune-up Tolerance		Separation Distance (mm)	Estimated SAR (W/kg)
		dBm	mW		
BT	Head	4	2.512	0	0.105
	Body	4	2.512	10	0.052

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Sum of the SAR for GSM 850 & Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario		Σ1-g SAR (W/Kg)	SPLSR (Yes/No)
		GSM 850	Bluetooth		
Head (voice)	Left Touch	0.212	0.105	0.317	No
	Left Tilt	0.112	0.105	0.217	No
	Right Touch	0.239	0.105	0.344	No
	Right Tilt	0.124	0.105	0.229	No
Body-worn (voice)	Rear	0.613	0.052	0.665	No
	Front	0.294	0.052	0.346	No
Body-worn (Data)	Rear	0.559	0.052	0.611	No
	Front	0.287	0.052	0.339	No

Note:

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio"

Sum of the SAR for GSM 1900 & Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario		Σ1-g SAR (W/Kg)	SPLSR (Yes/No)
		PCS 1900	Bluetooth		
Head (voice)	Left Touch	0.029	0.105	0.134	No
	Left Tilt	0.029	0.105	0.134	No
	Right Touch	0.122	0.105	0.227	No
	Right Tilt	0.040	0.105	0.145	No
Body-worn (voice)	Rear	0.367	0.052	0.419	No
	Front	0.064	0.052	0.116	No
Body-worn (Data)	Rear	0.409	0.052	0.461	No
	Front	0.091	0.052	0.143	No

Note:

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- SPLSR mean is "The SAR to Peak Location Separation Ratio"

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab

10,2019

Date: May

System Check Head 835 MHz

DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1;
Frequency: 835 MHz; Medium parameters used: $f = 835$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 43.12$; $\rho = 1000$ kg/m³;

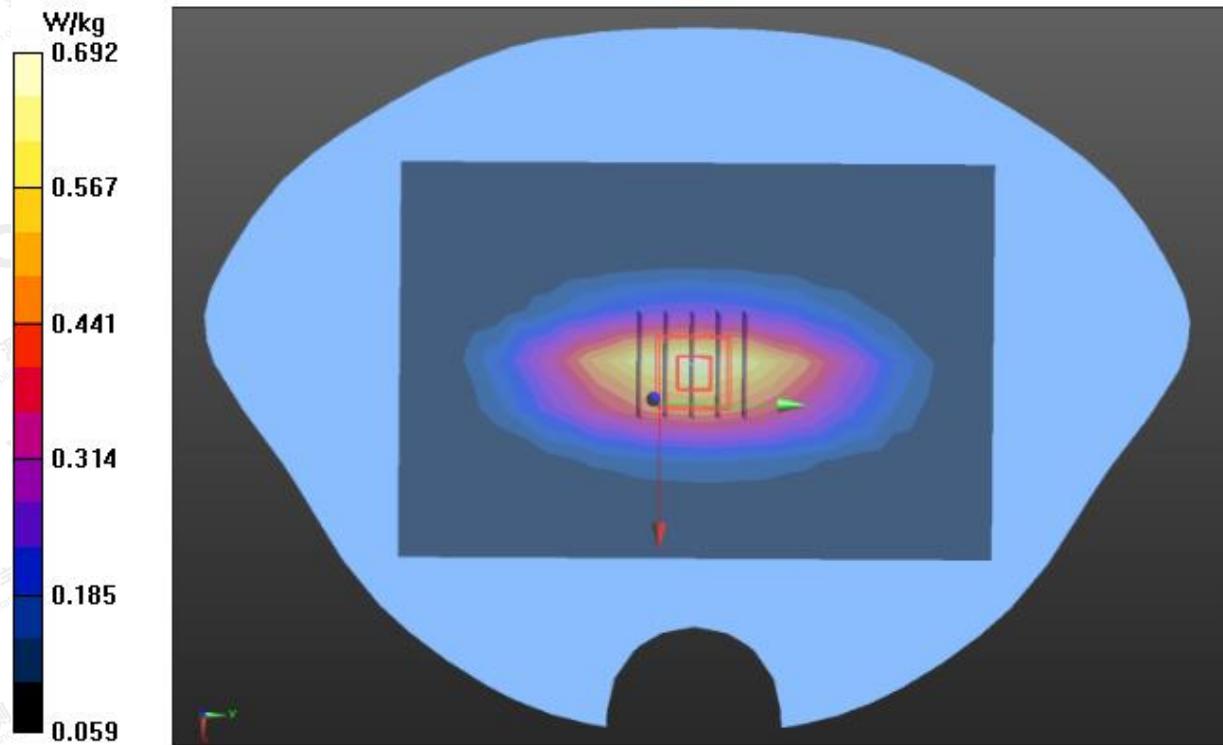
Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C): 22.0, Liquid temperature (°C): 21.7

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(10.11, 10.11, 10.11); Calibrated: Aug. 10, 2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16, 2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 835MHz Head/Area Scan (9x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.684 W/kg


Configuration/System Check 835MHz Hea/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 28.085 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.942 W/kg

SAR(1 g) = 0.587 W/kg; SAR(10 g) = 0.373 W/kg

Maximum value of SAR (measured) = 0.692 W/kg

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Test Laboratory: AGC Lab
10,2019
System Check Body 835 MHz
DUT: Dipole 835 MHz Type: SID 835

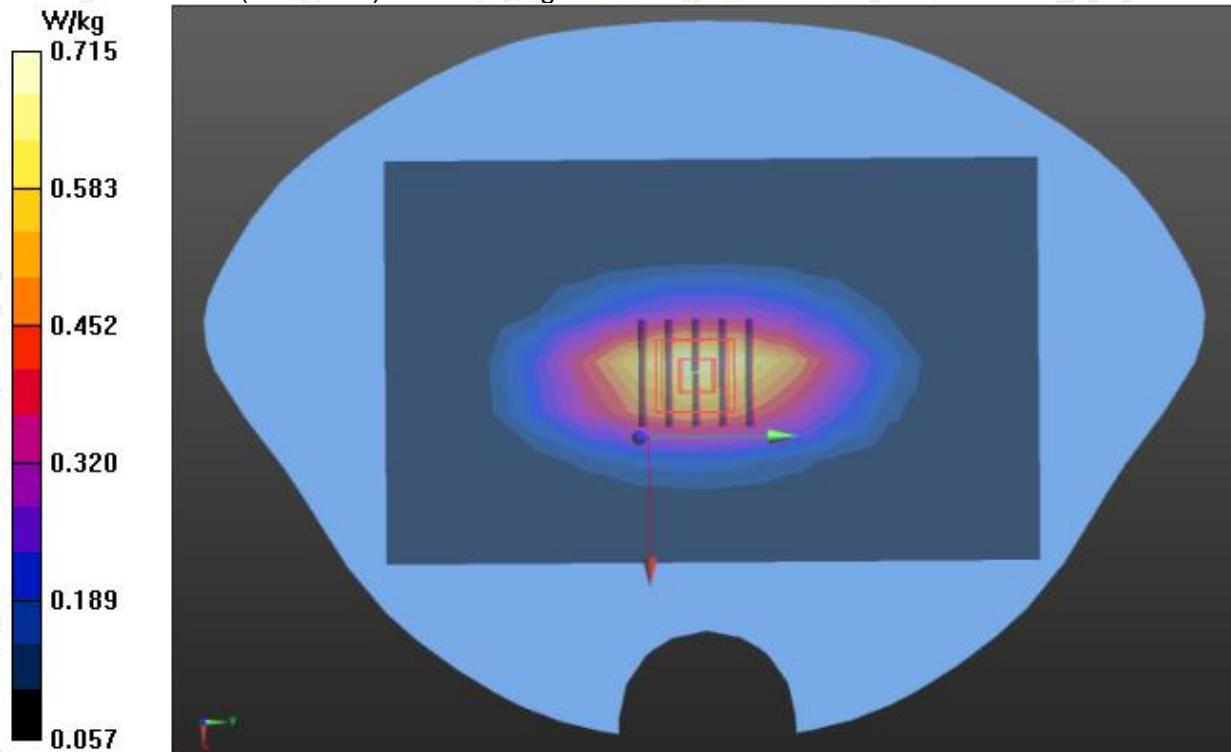
Date: May

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1;
 Frequency: 835 MHz; Medium parameters used: $f = 835$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 54.69$; $\rho = 1000$ kg/m³;
 Phantom section: Flat Section; Input Power=18dBm
 Ambient temperature (°C): 22.0, Liquid temperature (°C): 21.6

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(10.18, 10.18, 10.18); Calibrated: Aug. 10,2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 835MHz Body /Area Scan (9x14x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
 Maximum value of SAR (measured) = 0.677 W/kg


Configuration/System Check 835MHz Body /Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 28.249 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.909 W/kg

SAR(1 g) = 0.610 W/kg; SAR(10 g) = 0.396 W/kg

Maximum value of SAR (measured) = 0.715 W/kg

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Test Laboratory: AGC Lab
11,2019
System Check Head 1900MHz
DUT: Dipole 1900 MHz; Type: SID 1900

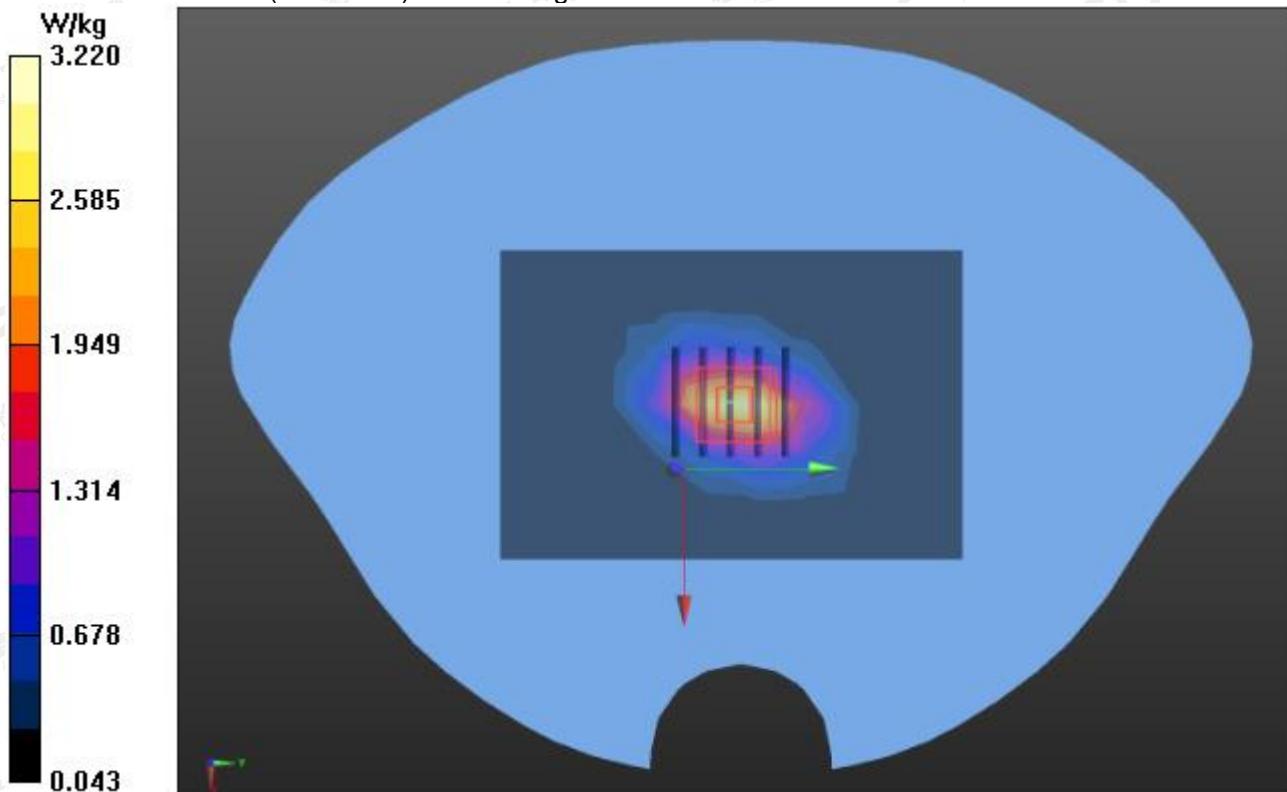
Date: May

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;
Frequency: 1900 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 39.56$; $\rho = 1000$ kg/m³;
Phantom section: Flat Section; Input Power=18dBm
Ambient temperature (°C):21.7, Liquid temperature (°C): 21.4

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(8.14, 8.14, 8.14); Calibrated: Aug. 10,2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 1900MHz Head/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 3.02 W/kg


Configuration/System Check 1900MHz Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 49.491 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 4.71 W/kg

SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.3 W/kg

Maximum value of SAR (measured) = 3.22 W/kg

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Test Laboratory: AGC Lab
11,2019
System Check Body 1900MHz
DUT: Dipole 1900 MHz; Type: SID 1900

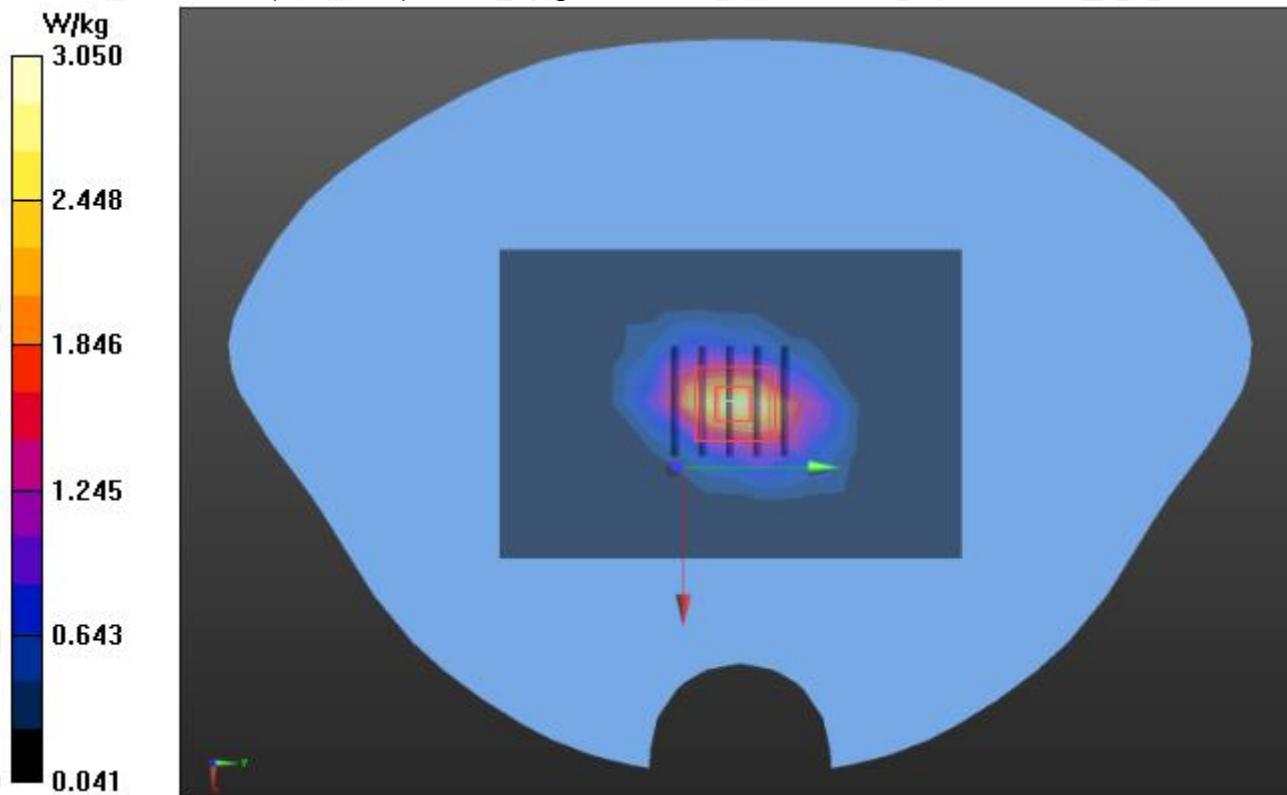
Date: May

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle: 1:1;
 Frequency: 1900 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 51.85$; $\rho = 1000$ kg/m³;
 Phantom section: Flat Section; Input Power=18dBm
 Ambient temperature (°C): 21.7, Liquid temperature (°C): 21.3

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(7.90, 7.90, 7.90); Calibrated: Aug. 10, 2018;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16, 2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 1900MHz Body/Area Scan (7x10x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
 Maximum value of SAR (measured) = 2.86 W/kg


Configuration/System Check 1900MHz Body /Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 48.298 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 4.47 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.24 W/kg

Maximum value of SAR (measured) = 3.05 W/kg

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab

Date: May

10,2019

GSM 850 Mid-Touch-Right <SIM 1>

DUT: Mobile Phone; Type: A905

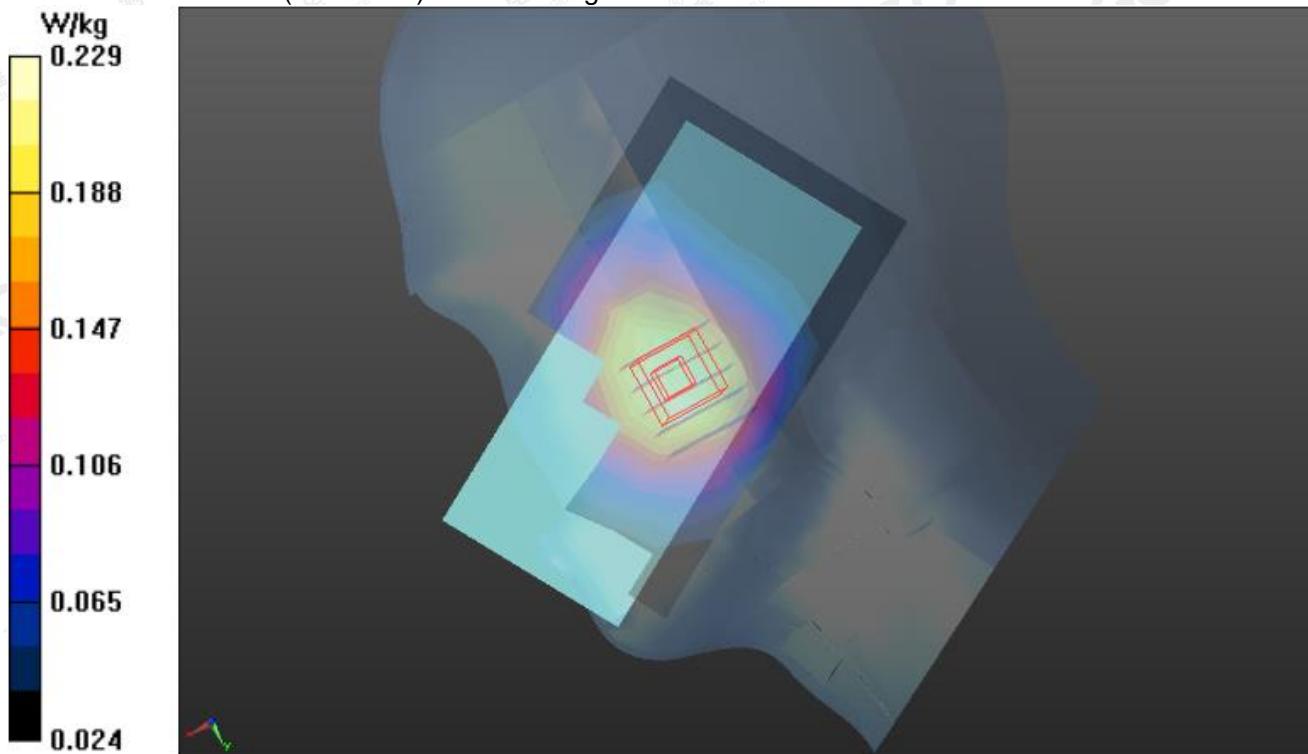
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3;
Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 42.95$; $\rho = 1000$ kg/m³;
Phantom section: Right Section

Ambient temperature (°C): 22.0, Liquid temperature (°C): 21.7

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(10.11, 10.11, 10.11); Calibrated: Aug. 10, 2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16, 2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (7x12x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.221 W/kg


RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 2.749 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.251 W/kg

SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.170 W/kg

Maximum value of SAR (measured) = 0.229 W/kg

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

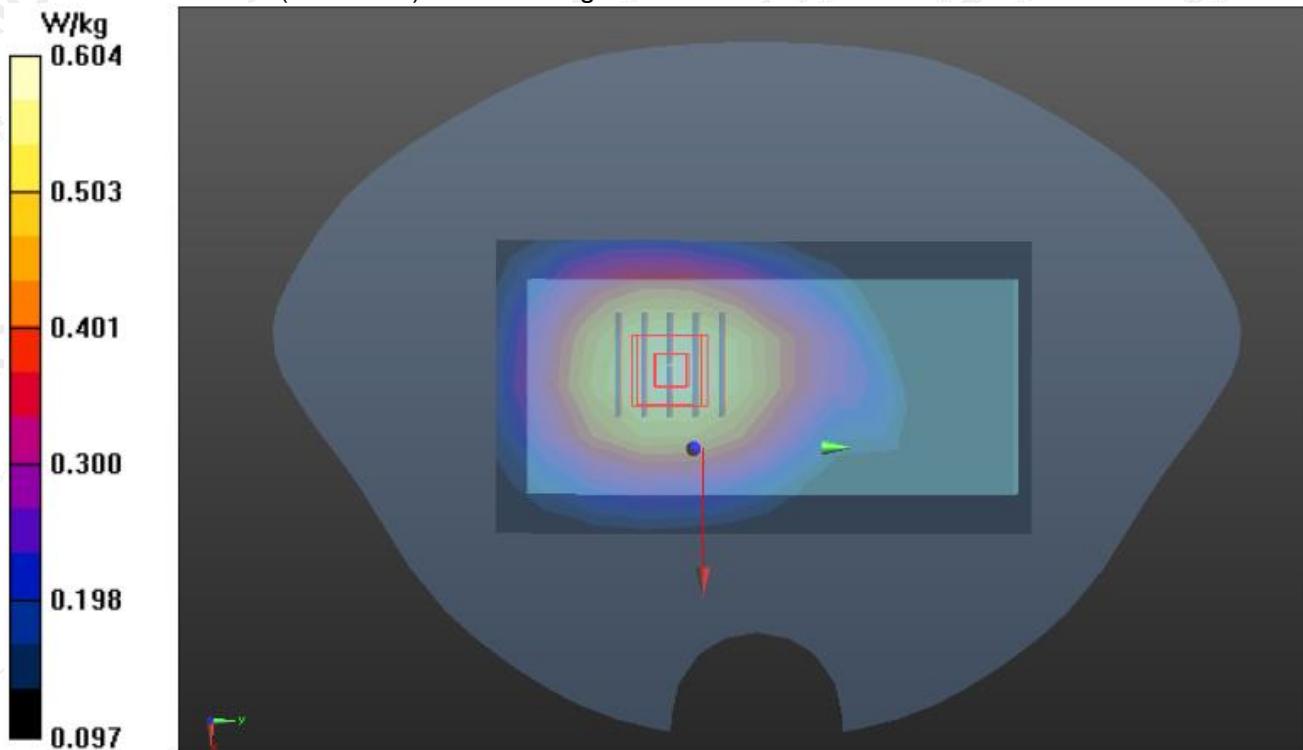
Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Test Laboratory: AGC Lab
10,2019
GSM 850 Mid- Body- Back(MS)<SIM 1>
DUT: Mobile Phone; Type: A905

Date: May

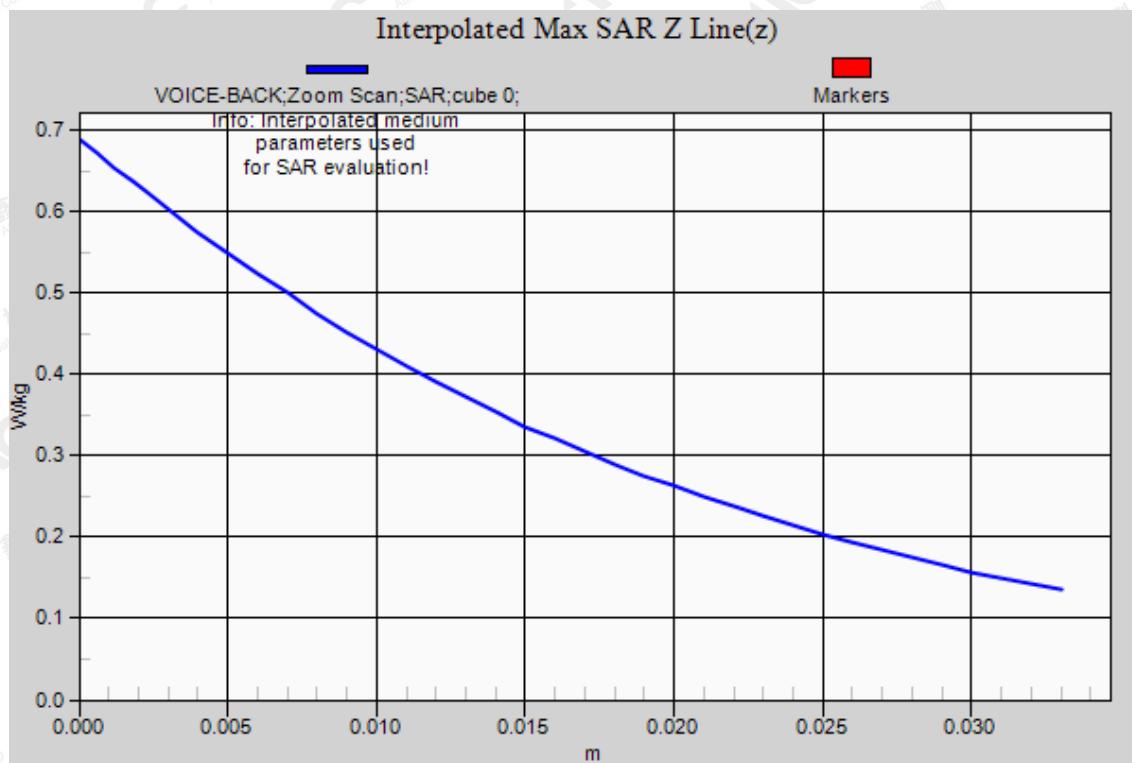
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3;
Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 54.13$; $\rho = 1000$ kg/m³;
Phantom section: Flat Section


Ambient temperature (°C): 22.0, Liquid temperature (°C): 21.6

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(10.18, 10.18, 10.18); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/VOICE-BACK/Area Scan (7x12x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.583 W/kg


BODY/VOICE-BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm
Reference Value = 22.362 V/m; Power Drift = 0.05 dB
Peak SAR (extrapolated) = 0.688 W/kg
SAR(1 g) = 0.549 W/kg; SAR(10 g) = 0.416 W/kg
Maximum value of SAR (measured) = 0.604 W/kg

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

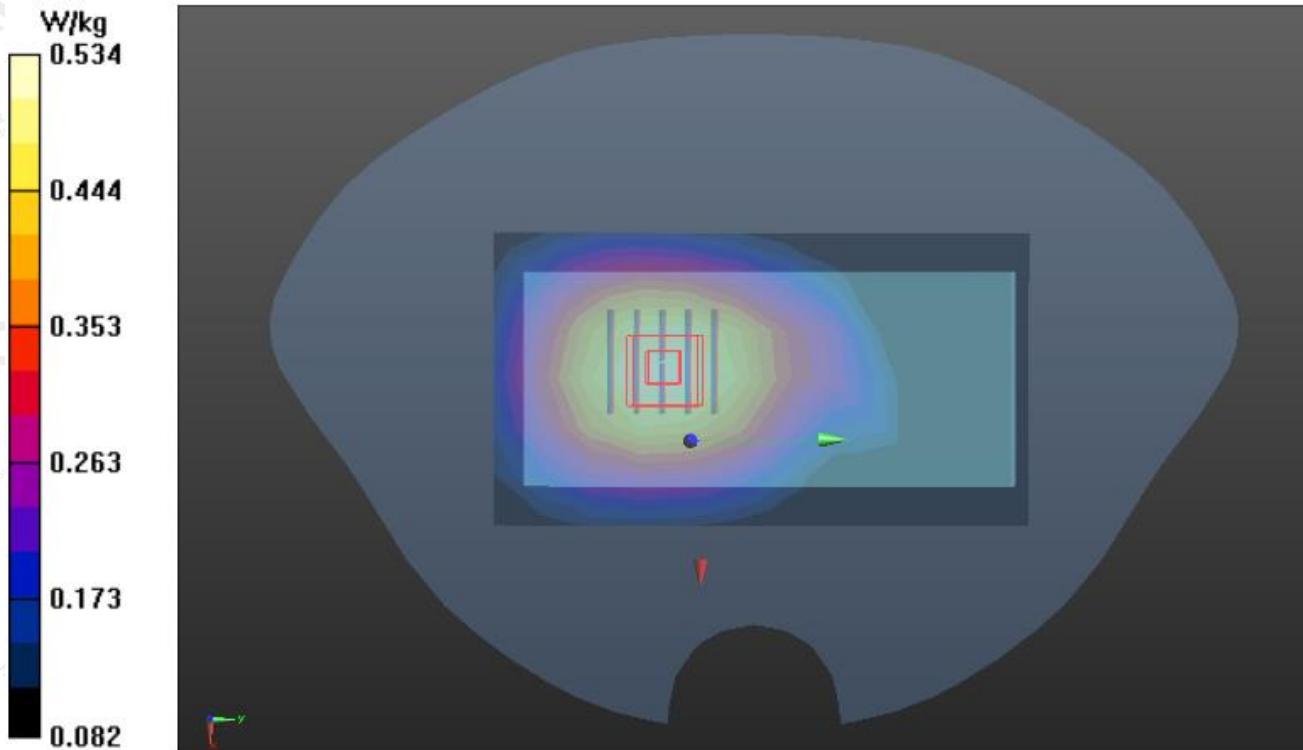
Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Test Laboratory: AGC Lab
10,2019
GPRS 850 Mid- Body- Back (4up) < SIM 1>
DUT: Mobile Phone; Type: A905

Date: May

Communication System: GPRS-4 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.1;
Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 54.13$; $\rho = 1000$ kg/m³;
Phantom section: Flat Section


Ambient temperature (°C): 22.0, Liquid temperature (°C): 21.6

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(10.18, 10.18, 10.18); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QDOVA002AA;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/4ST-BACK/Area Scan (7x12x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.522 W/kg

BODY/4ST-BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm
Reference Value = 21.087 V/m; Power Drift = -0.06 dB
Peak SAR (extrapolated) = 0.612 W/kg
SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.368 W/kg
Maximum value of SAR (measured) = 0.534 W/kg

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Test Laboratory: AGC Lab
11,2019
PCS 1900 Mid-Touch-Right <SIM 1>
DUT: Mobile Phone; Type: A905

Date: May

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;
Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 40.21$; $\rho = 1000$ kg/m³;
Phantom section: Right Section

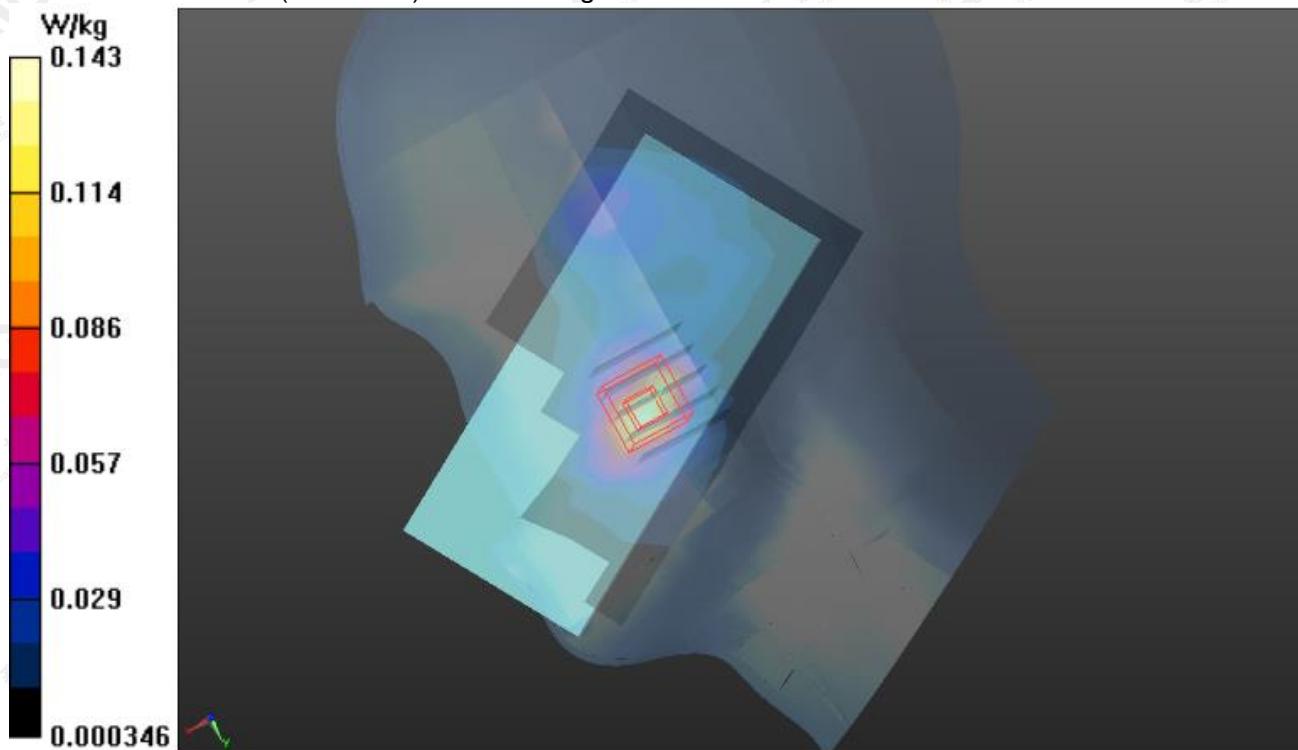
Ambient temperature (°C): 21.7, Liquid temperature (°C): 21.4

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(8.14, 8.14, 8.14); Calibrated: Aug. 10, 2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16, 2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

RIGHT HEAD/R-C/Area Scan (7x12x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 0.145 W/kg


RIGHT HEAD/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 3.332 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.210 W/kg

SAR(1 g) = 0.117 W/kg; SAR(10 g) = 0.060 W/kg

Maximum value of SAR (measured) = 0.143 W/kg

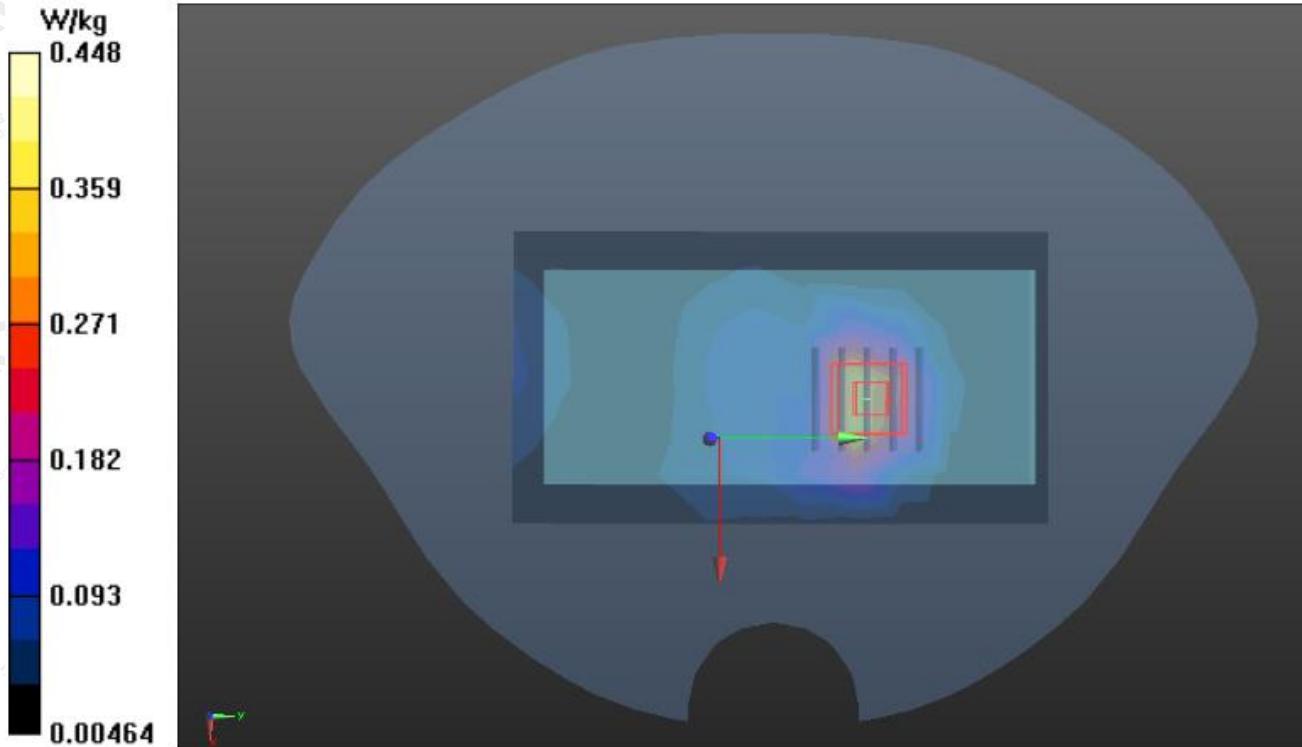
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Test Laboratory: AGC Lab
11,2019
PCS 1900 Mid-Body- Back(MS)<SIM 1>
DUT: Mobile Phone; Type: A905

Date: May

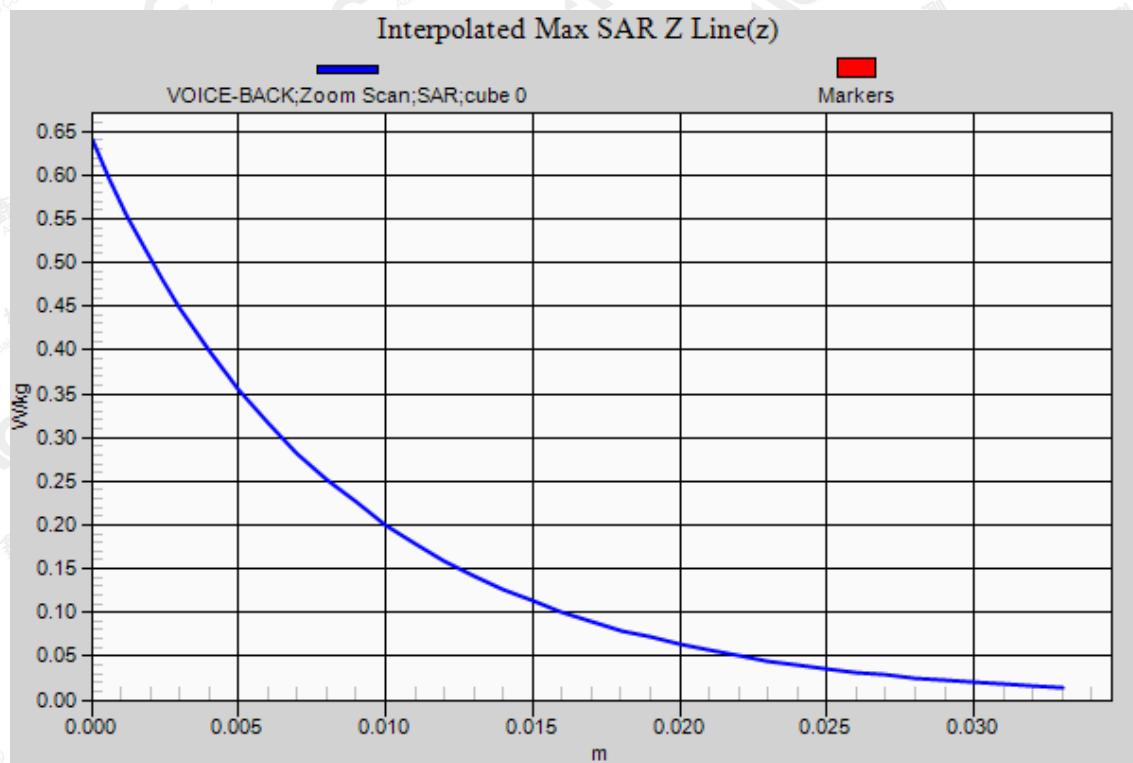
Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3;
Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.50$ mho/m; $\epsilon_r = 52.62$; $\rho = 1000$ kg/m³;
Phantom section: Flat Section


Ambient temperature (°C): 21.7, Liquid temperature (°C): 21.3

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(7.90, 7.90, 7.90); Calibrated: Aug. 10, 2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16, 2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/VOICE-BACK/Area Scan (7x12x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.357 W/kg


BODY/VOICE-BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm
Reference Value = 7.331 V/m; Power Drift = 0.08 dB
Peak SAR (extrapolated) = 0.640 W/kg
SAR(1 g) = 0.352 W/kg; SAR(10 g) = 0.182 W/kg
Maximum value of SAR (measured) = 0.448 W/kg

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

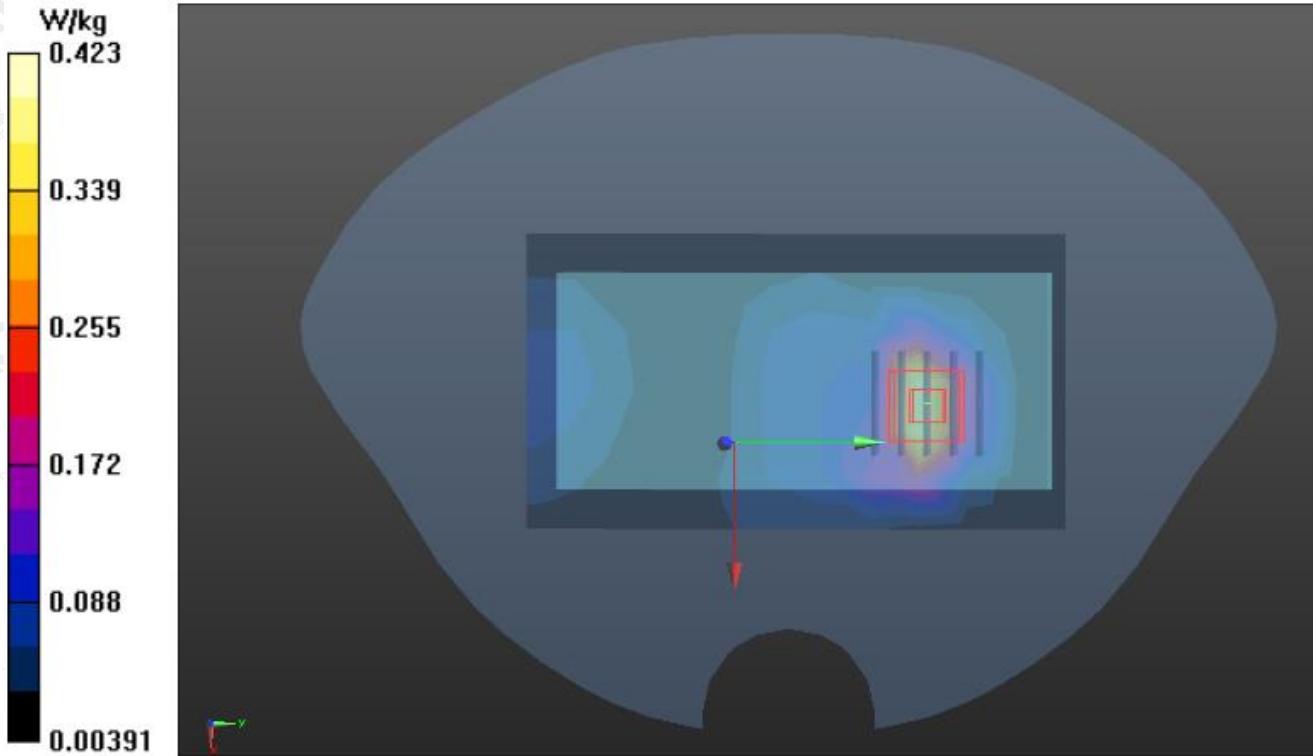
Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Test Laboratory: AGC Lab
11,2019
GPRS 1900 Mid-Body- Back (2up) < SIM 1>
DUT: Mobile Phone; Type: A905

Date: May

Communication System: GPRS-2 Slot; Communication System Band: PCS 1900; Duty Cycle: 1:4.2;
Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.50$ mho/m; $\epsilon_r = 52.62$; $\rho = 1000$ kg/m³ ;
Phantom section: Flat Section


Ambient temperature (°C): 21.7, Liquid temperature (°C): 21.3

DASY Configuration:

- EX3DV4 – SN:3953; ConvF(7.90, 7.90, 7.90); Calibrated: Aug. 10,2018;
- Sensor-Surface: 3mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 SN1398; Calibrated: Feb. 16,2019
- Phantom: SAM (20deg probe tilt) with CRP v5.0; Type: QD000P40CD;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

BODY/4ST-BACK/Area Scan (7x12x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.388 W/kg

BODY/4ST-BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm
Reference Value = 7.456 V/m; Power Drift = -0.12 dB
Peak SAR (extrapolated) = 0.607 W/kg
SAR(1 g) = 0.337 W/kg; SAR(10 g) = 0.176 W/kg
Maximum value of SAR (measured) = 0.423 W/kg

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.



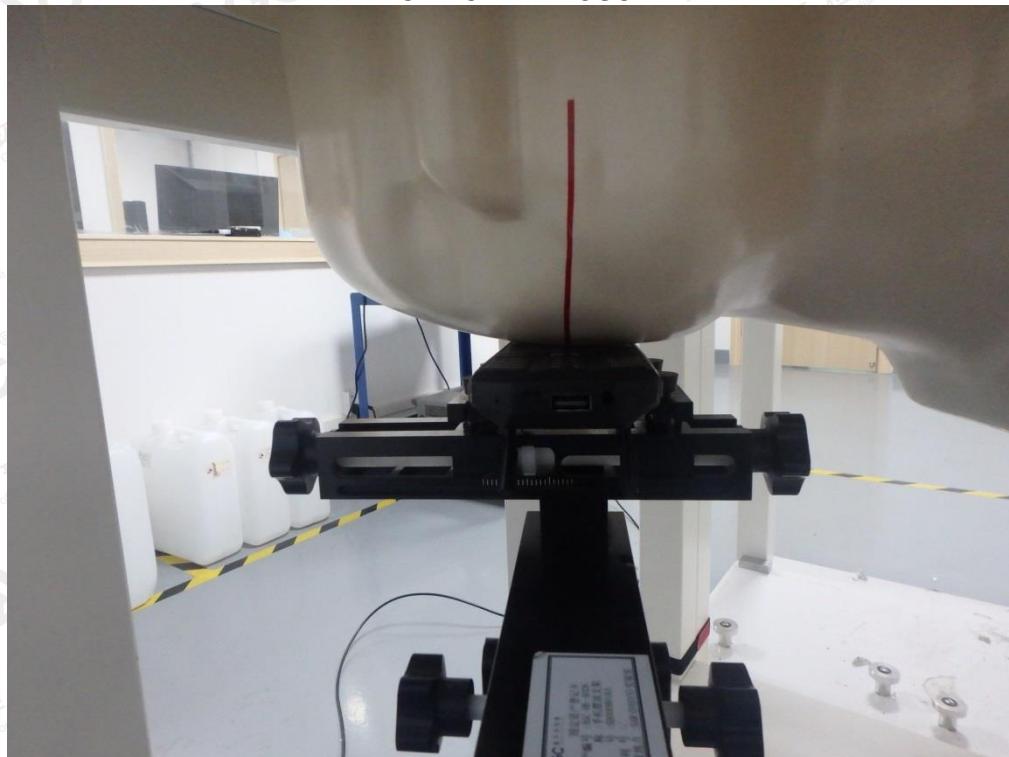
Attestation of Global Compliance

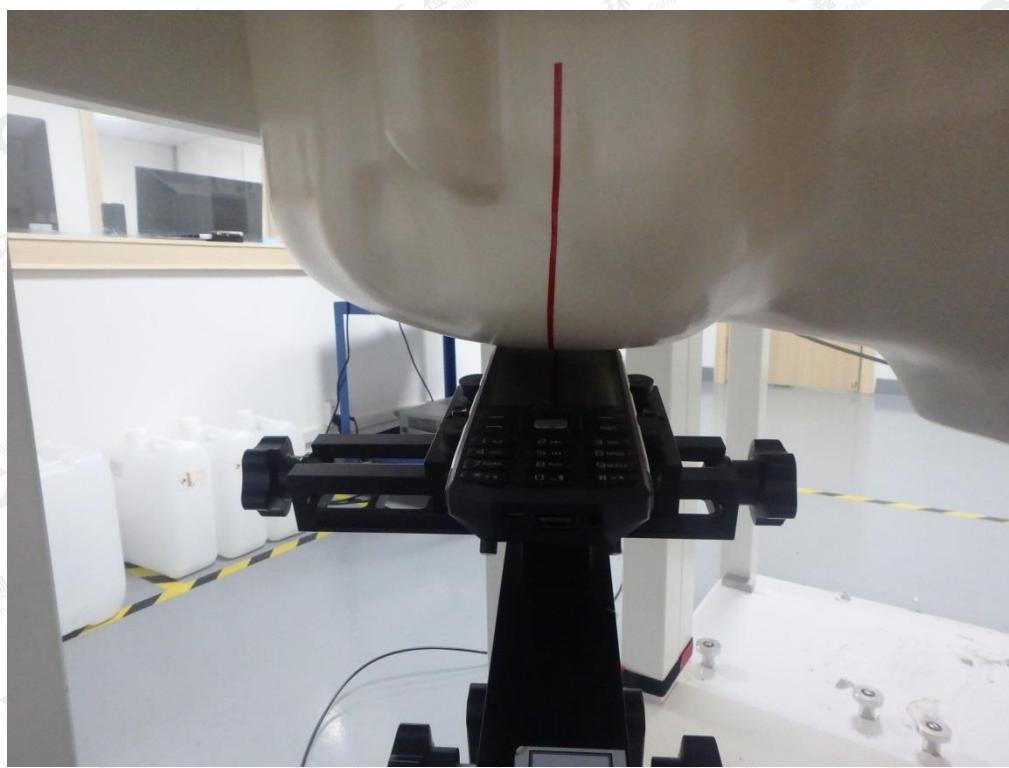
Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

APPENDIX C. TEST SETUP PHOTOGRAPHS

LEFT-CHEEK TOUCH

LEFT-TILT 15°


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.


Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

RIGHT-CHEEK TOUCH

RIGHT-TILT 15°

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

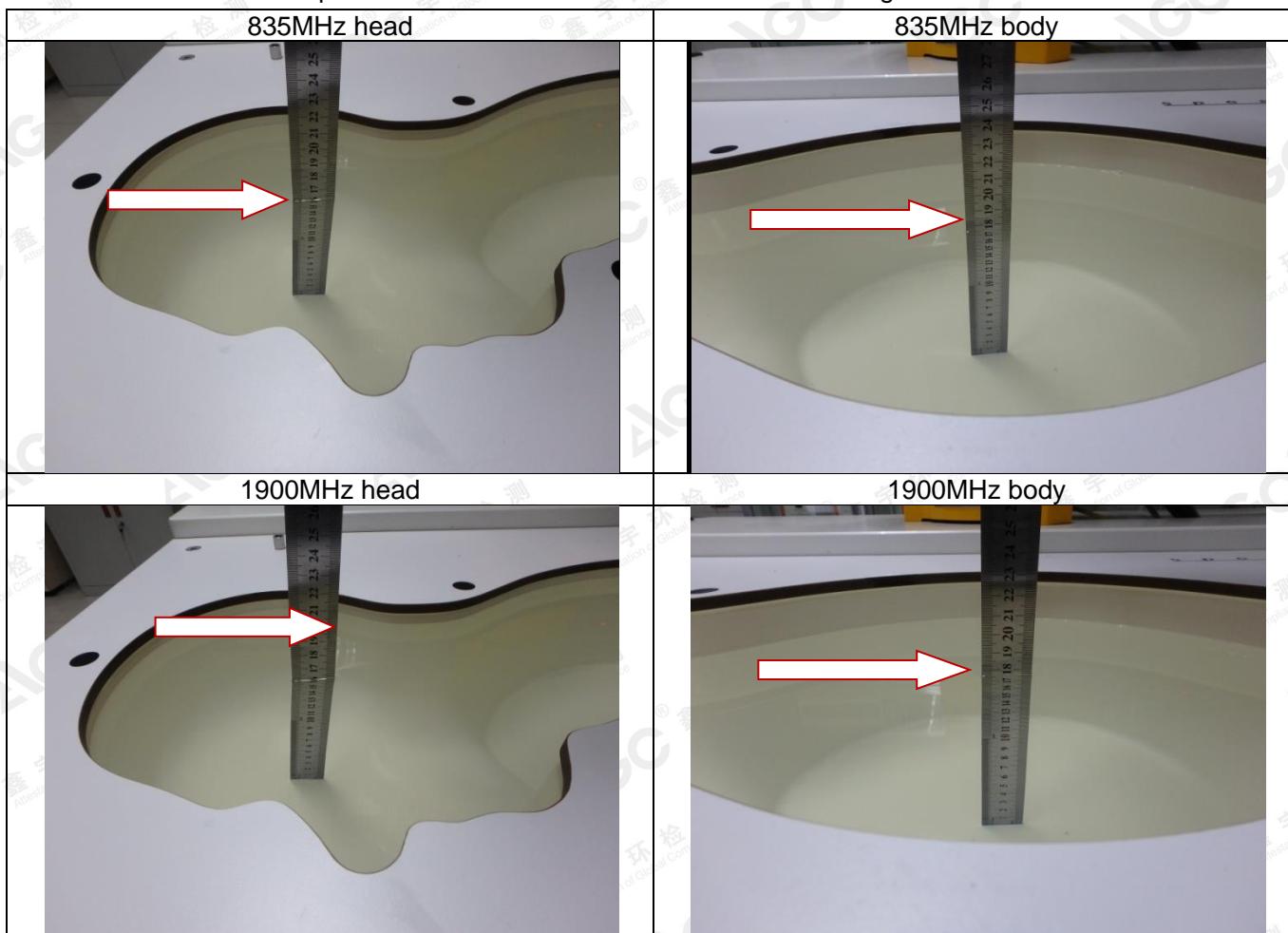
Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Body Back 10mm

Body Front 10mm

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.



Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note : The position used in the measurement were according to IEEE 1528-2013

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.agc-cert.com>.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118
Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China