

FCC TEST REPORT FCC ID: 2AS80-EP-T1

		T						
Product Name	:	ULTRA-PORTABLEACTIVE SPEAKER						
Model Name	:	EP-T1						
Brand Name	:	EDISON PROFESSIONAL						
Report No.	:	PTC19061903101E-FC01						
Prepared for								
		BLT'S						
11901 SANT	A MONIC	CA BLVD., SUITE 413, LOS ANGELES, CA 90025						
Prepared by								
Dongguan Precise Testing & Certification Corp., Ltd.								
Building D, Baoding Technology Park, Guangming Road 2, Guangming Community, Dongcheng District, Dongguan, Guangdong, China								

1TEST RESULT CERTIFICATION

Applicant's name : BLT'S

Address : 11901 SANTA MONICA BLVD., SUITE 413, LOS ANGELES, CA

90025

Manufacture's name : NINGBO RIXING ELECTRONICS CO.,LTD

Address : NO.1-2, ZHONGYI ROAD, INDUSTRIAL ZONE, WUXIANG TOWN,

NINGBO, CHINA

Product name : ULTRA-PORTABLEACTIVE SPEAKER

Model name : EP-T1

Standards : FCC CFR47 Part 15 Section 15.247

Test procedure : ANSI C63.10:2013

Test Date : July 5, 2019 to July 15, 2019

Date of Issue : July 16, 2019

Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Leo Yang / Engineer

Cholm

Leo Yang

Technical Manager:

Chris Du / Manager

Contents

		Page
1 TEST RESULT CERTIFICA	TION	2
2 TEST SUMMARY		5
3 TEST FACILITY		6
4 GENERAL INFORMATION		7
4.1	GENERAL DESCRIPTION OF E.U.T	
4.2	TEST MODE	
	T	
5.1	EQUIPMENTS LIST	
5.2	MEASUREMENT UNCERTAINTY	
5.3	DESCRIPTION OF SUPPORT UNITS	
6 CONDUCTED EMISSION		14
6.1	E.U.T. OPERATION	
6.2	EUT SETUP	
6.3	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
6.4	MEASUREMENT PROCEDURE:	
6.5	CONDUCTED EMISSION LIMIT	15
6.6	MEASUREMENT DESCRIPTION	15
6.7	CONDUCTED EMISSION TEST RESULT	15
7 RADIATED SPURIOUS EM	IISSIONS	18
7.1	EUT OPERATION	18
7.2	TEST SETUP	19
7.3	SPECTRUM ANALYZER SETUP	20
7.4	TEST PROCEDURE	21
7.5	SUMMARY OF TEST RESULTS	22
8 CONDUCTED BAND EDGI	E EMISSION	27
8.1	REQUIREMENT	27
8.2	TEST PROCEDURE	27
8.3	TEST SETUP	27
8 4	FUT OPERATION CONDITIONS	28

8.5	TEST RESULTS	28
9 20 DB BANDWIDTH	I MEASUREMENT	39
9.1	Test Procedure	39
9.2	TEST RESULT	39
10 MAXIMUM PEAK	OUTPUT POWER	45
10.1	Test Procedure	45
10.2	TEST RESULT	45
11 HOPPING CHANN	EL SEPARATION	52
11.1	Test Procedure	52
11.2	TEST RESULT	53
12 NUMBER OF HOP	PING FREQUENCY	59
12.1	TEST PROCEDURE	59
12.2	TEST RESULT	59
13 DWELL TIME		60
13.1	Test Procedure	60
13.2	TEST RESULT	60
14 ANTENNA REQUI	REMENT	63
15 TEST PHOTOS		64
16 EUT PHOTOS		66

2 Test Summary

Test Items	Test Requirement	Result
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	PASS

3 TEST FACILITY

Dongguan Precise Testing & Certification Corp., Ltd.

Address: Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan,

Guangdong, China

FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A-1

Test Lab: Shenzhen BCTC Testing Co., Ltd.

Address: BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou

Community, Fuyong Street, Bao'an District, Shenzhen, China

FCC Registered No.: 712850

Test items: Radiated Spurious Emission(18GHz to 25GHz)

4 General Information

4.1 General Description of E.U.T.

Product Name	:	ULTRA-PORTABLEACTIVE SPEAKER	
Model Name	:	EP-T1	
Bluetooth Version	:	BT 5.0	
Operating frequency	:	2402-2480MHz	
Numbers of Channel	:	79 channels	
Antenna Type	:	Internal PCB Antenna	
Antenna Gain	:	-0.58 dBi	
Type of Modulation	:	GFSK, Π/4-DQPSK, 8DPSK	
Power supply	:	AC 120V/60Hz	
Hardware Version	:	V1.0	
Software Version	:	V1.0	

4.2 Test Mode

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

The EUT has been tested under TX operating condition.

This EUT is a FHSS system, were conducted to determine the final configuration from all possible combinations. We use software control the EUT, Let EUT hopping on and transmit with highest power, all the modes GFSK, Π/4-DQPSK, 8DPSK have been tested. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.

Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

Channel	Frequency(MHz)
0	2402
39	2441
78	2480

5 Equipment During Test

5.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
MXG Signal Analyzer	Agilent	N9020A	MY56070279	10Hz-30GHz	Apr 07, 2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Oct 09, 2019
Antenna Connector	Florida RF Labs	N/A	RF01#	N/A	Aug. 26, 2019

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radiated Emissions(Test Frequency from 9KHz-18GHz)

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 03, 2019
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Aug 31, 2019
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Aug 31, 2019
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Sep. 03, 2019
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Sep. 03, 2019
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Oct. 13, 2019
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Aug. 31, 2019
Power Amplifier	LUNAR EM	LNA1G18-40	J10100000081	1GHz-26.5GHz	Aug. 31, 2019
Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	Sep. 03, 2019

Radiated Emission (Test Frequency from 18GHz-25GHz)

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-26.5GHz	2019.08.26
Test Receiver	R&S	ESPI	101396	9KHz-7GHz	2019.08.26
Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	14GHz-40GHz	2019.09.02
Amplifier	SCHWARZBECK	BBV 9721	9721-205	18GHz-40GHz	2019.08.26
RF Cable	R&S	R204	R21X	1GHz-40GHz	2019.08.26

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 03, 2019
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	9KHz-300MHz	Sep. 03, 2019
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Sep. 03, 2019

5.2 Measurement Uncertainty

Parameter	Uncertainty				
RF output power, conducted	±1.0dB				
Power Spectral Density, conducted	±2.2dB				
Radio Frequency	± 1 x 10 ⁻⁶				
Bandwidth	± 1.5 x 10 ⁻⁶				
Time	±2%				
Duty Cycle	±2%				
Temperature	±1°C				
Humidity	±5%				
DC and low frequency voltages	±3%				
Conducted Emissions (150kHz~30MHz)	±3.64dB				
Radiated Emission(30MHz~1GHz)	±5.03dB				
Radiated Emission(1GHz~25GHz) ±4.74dB					
Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%					

5.3 Description of Support Units

Equipment	Model No.	Series No.
N/A	N/A	N/A

6 Conducted Emission

Test Requirement: : FCC CFR 47 Part 15 Section 15.207

Test Method: : ANSI C63.10:2013

Test Result: : PASS

Frequency Range: : 150kHz to 30MHz

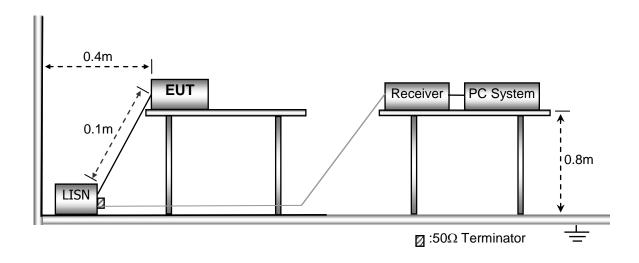
Class/Severity: : Class B

Detector: : Peak for pre-scan (9kHz Resolution Bandwidth)

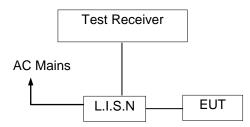
6.1 E.U.T. Operation

Operating Environment:

Temperature: : 23.8 °C


Humidity: : 50 % RH

Atmospheric Pressure: : 101.21kPa


Test Voltage : AC 120V/60Hz

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10: 2013

6.3 Test SET-UP (Block Diagram of Configuration)

6.4 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.1m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.5 Conducted Emission Limit

Conducted Emission

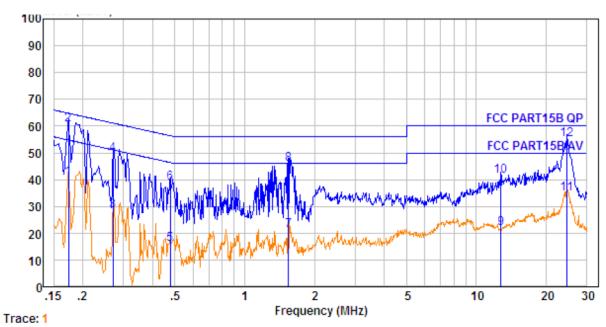
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

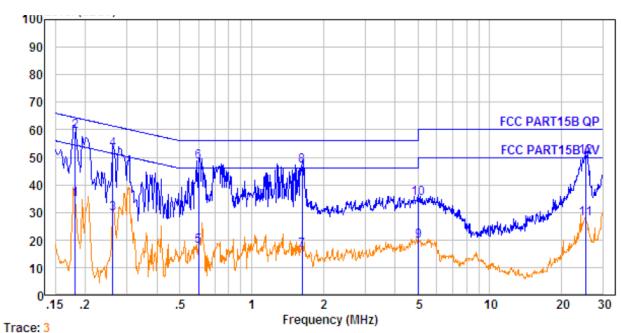
6.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.


6.7 Conducted Emission Test Result

Pass.

All the modulation modes were tested the data of the worst mode (AC 120V/60Hz, GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.


Line -120V/60Hz:

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBµV	Emission Level dBµV	Limit dBµ∨	O∨er Limit dB	Remark
1.	0.174	0.24	9.54	30.92	40.70	54.77	-14.07	Average
2.	0.174	0.24	9.54	50.70	60.48	64.77	-4.29	QP -
3.	0.270	0.35	9.65	18.44	28.44	51.12	-22.68	Average
4.	0.270	0.35	9.65	39.52	49.52	61.12	-11.60	QP -
5.	0.479	0.42	9.77	5.59	15.78	46.36	-30.58	Average
6.	0.479	0.42	9.77	28.64	38.83	56.36	-17.53	QP -
7.	1.544	0.47	9.84	10.77	21.08	46.00	-24.92	Average
8.	1.544	0.47	9.84	35.63	45.94	56.00	-10.06	QP
9.	12.784	0.56	9.99	11.12	21.67	50.00	-28.33	Average
10.	12.784	0.56	9.99	30.65	41.20	60.00	-18.80	QP -
11.	24.659	0.53	9.89	24.42	34.84	50.00	-15.16	Average
12.	24.659	0.53	9.89	44.66	55.08	60.00	-4.92	QP

Neutral -120V/60Hz:

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBµV	Emission Level dBµV	Limit dBµV	Over Limit dB	Remark
1.	0.182	0.25	9.59	24.74	34.58	54.42	-19.84	Average
2.	0.182	0.25	9.59	49.70	59.54	64.42	-4.88	QP _
3.	0.262	0.34	9.68	19.53	29.55	51.38	-21.83	Average
4.	0.262	0.34	9.68	42.63	52.65	61.38	-8.73	QP -
5.	0.598	0.44	9.82	7.46	17.72	46.00	-28.28	Average
6.	0.598	0.44	9.82	37.96	48.22	56.00	-7.78	QP _
7.	1.628	0.47	9.87	5.88	16.22	46.00	-29.78	Average
8.	1.628	0.47	9.87	36.52	46.86	56.00	-9.14	QP _
9.	5.031	0.50	9.96	9.06	19.52	50.00	-30.48	Average
10.	5.031	0.50	9.96	24.63	35.09	60.00	-24.91	QP -
11.	25.456	0.53	10.07	17.20	27.80	50.00	-22.20	Average
12.	25.456	0.53	10.07	39.52	50.12	60.00	-9.88	QP _

7 Radiated Spurious Emissions

Test Requirement : FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method : ANSI C63.10:2013

Test Result : PASS
Measurement Distance : 3m

Limit : See the follow table

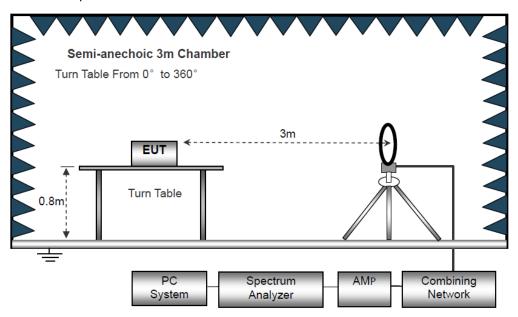
	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz) 30		100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

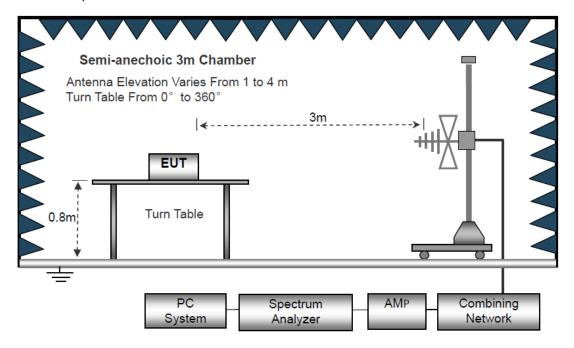
7.1 EUT Operation

Operating Environment:

Temperature : 23.9 °C

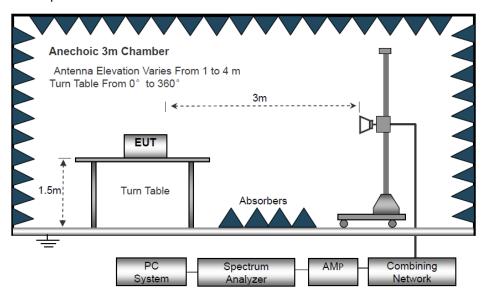
Humidity : 51.32 % RH


Atmospheric Pressure : 101.12kPa


7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz.



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz	Below 30MHz							
IF Bandwidth	:	10kHz						
Resolution Bandwidth	:	10kHz						
Video Bandwidth	:	10kHz						
30MHz ~ 1GHz								
Detector	:	PK	QP					
Resolution Bandwidth	:	100kHz	120kHz					
Video Bandwidth	:	300kHz	300kHz					
Above 1GHz								
Detector	:	PK	AV					
Resolution Bandwidth	:	1MHz	1MHz					
Video Bandwidth	:	3MHz	10Hz					

7.4 Test Procedure

- 1. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane, And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
- 8. The test above 1GHz must be use the fully anechoic room, and the test below 1GHz use the half anechoic room

7.5 Summary of Test Results

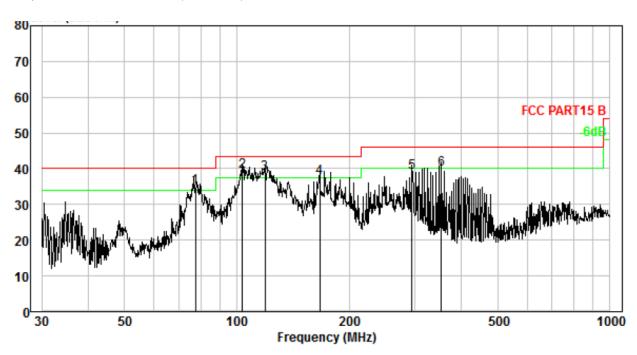
Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

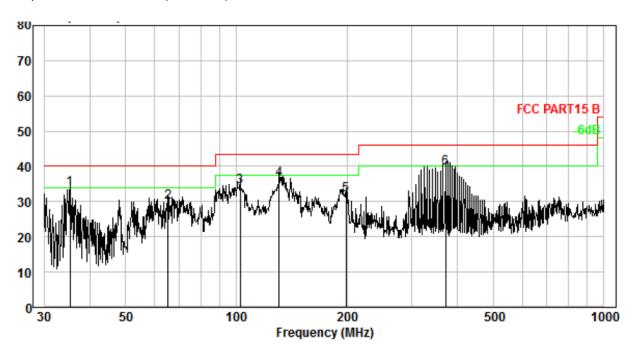
The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


Test Frequency: 30MHz ~ 1GHz

Please refer to the following test plots:

All the modulation modes were tested the data of the worst mode (AC 120V/60Hz, GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.


Test plot for Horizontal: GFSK(2402MHz)

No.	Freq MHz	Cable Loss dB		Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	77.593	2.84	9.29	52.87	30.30	34.70	40.00	-5.30	QP
2.	103.442	3.33	10.53	55.78	30.40	39.24	43.50	-4.26	QP
3.	119.018	3.58	11.94	53.72	30.45	38.79	43.50	-4.71	QP
4.	166.651	4.15	13.51	50.39	30.57	37.48	43.50	-6.02	QP
5.	295.147	5.13	13.10	51.51	30.77	38.97	46.00	-7.03	QP
6.	352.943	5.44	14.29	51.07	30.83	39.97	46.00	-6.03	QP

Test plot for Vertical: GFSK(2402MHz)

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	35.251	1.48	13.41	48.69	30.03	33.55	40.00	-6.45	QP QP
2.	65.114	2.53	11.80	45.79	30.24	29.88	40.00	-10.12	QP
3.	102.360	3.31	10.44	50.87	30.40	34.22	43.50	-9.28	QP
4.	130.837	3.74	12.69	50.42	30.48	36.37	43.50	-7.13	QP
5.	198.588	4.45	10.48	47.54	30.63	31.84	43.50	-11.66	QP
6.	370.702	5.53	14.66	50.09	30.84	39.44	46.00	-6.56	QP

Test Frequency 1GHz-18GHz

Low Channel (2402MHz) Worst case GFSK

	EOW Officialition (2 TOZIVII 12) WORLD GOOD OF CIT												
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin				
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)				
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)						
						(dB)							
4804	28.43	AV	V	7.69	10.13	10.43	35.82	54	-18.18				
4804	29.05	AV	Н	7.69	10.13	10.43	36.44	54	-17.56				
4804	30.45	PK	V	7.69	10.13	10.43	37.84	74	-36.16				
4804	31.29	PK	Н	7.69	10.13	10.43	38.68	74	-35.32				
15425	28.43	AV	V	8.26	12.48	8.29	40.88	54	-13.12				
15425	29.57	AV	Н	8.26	12.48	8.29	42.02	54	-11.98				
15425	31.69	PK	V	8.26	12.48	8.29	44.14	74	-29.86				
15425	32.48	PK	Н	8.26	12.48	8.29	44.93	74	-29.07				

Middle Channel (2441MHz) Worst case $\pi/4$ -DQPSK

Wilder Charmer (2 1 11Wil 2) Wellet Gase III 1 Bar ett										
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin	
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)	
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)			
						(dB)				
4882	29.35	AV	V	8.45	9.24	8.13	38.91	54	-15.09	
4882	30.11	AV	Н	8.45	9.24	8.13	39.67	54	-14.33	
4882	30.46	PK	V	8.45	9.24	8.13	38.02	74	-35.98	
4882	31.26	PK	Н	8.45	9.24	8.13	40.82	74	-33.18	
16518	29.85	AV	V	7.96	9.55	10.27	37.09	54	-16.91	
16518	30.45	AV	Н	7.96	9.55	10.27	37.69	54	-16.31	
16518	32.58	PK	V	7.96	9.55	10.27	39.82	74	-34.18	
16518	31.69	PK	Н	7.96	9.55	10.27	38.93	74	-35.07	

High Channel (2480MHz) Worst case GFSK

1	Trigit Gridinion (2 1001/11/2) World Gade Gr Grk											
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin			
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)			
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)					
						(dB)						
4960	31.26	AV	V	8.09	9.85	10.49	38.71	54	-15.29			
4960	29.54	AV	Н	8.09	9.85	10.49	36.99	54	-17.01			
4960	33.04	PK	V	8.09	9.85	10.49	35.49	74	-38.51			
4960	30.48	PK	Н	8.09	9.85	10.49	37.93	74	-36.07			
17125	32.65	AV	V	9.51	10.24	8.67	43.73	54	-10.27			
17125	33.24	AV	Н	9.51	10.24	8.67	44.32	54	-9.68			
17125	34.26	PK	V	9.51	10.24	8.67	42.34	74	-31.66			
17125	35.54	PK	Н	9.51	10.24	8.67	40.62	74	-33.38			

PRECISE TESTING Report No.: PTC19061903101E-FC01

Note: 1. The testing has been conformed to 10*2480MHz=24800MHz.

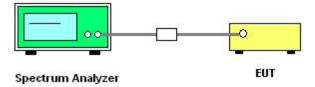
- 2. All other emissions more than 30dB below the limit.
- Factor = Antenna Factor + Cable Loss Pre-amplifier.
 Emission Level = Reading + Factor
 Margin=Emission Level-Limit

Test Frequency: From 18GHz to 25GHz

The measurements were more than 20dB below the limit and not reported.

8 CONDUCTED BAND EDGE EMISSION

8.1 REQUIREMENT


Regulation 15.247 (d), In any 100 kHz bandwidth outside the

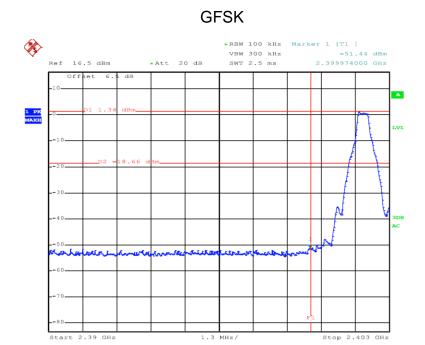
frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.2 TEST PROCEDURE

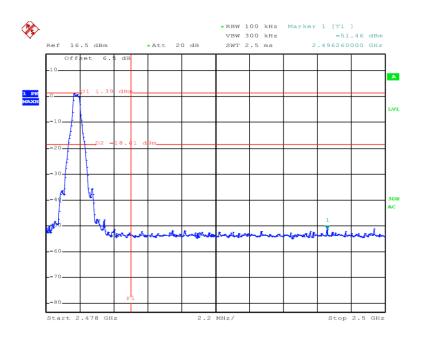
- . 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

8.3 TEST SETUP

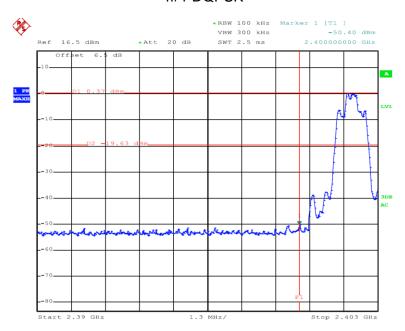
- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

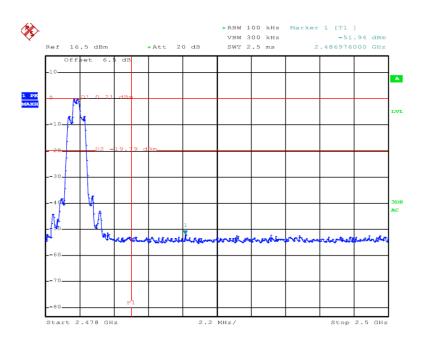


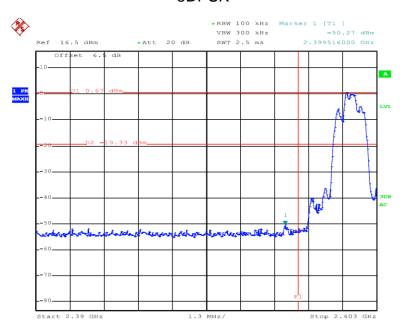
8.4 EUT OPERATION CONDITIONS

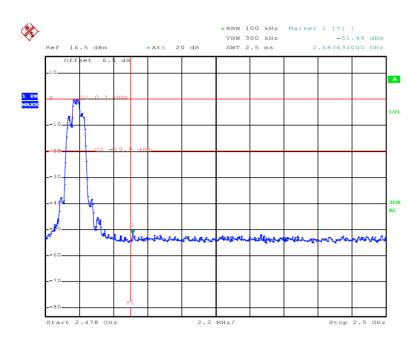

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

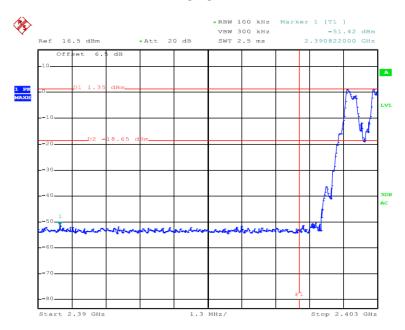

For Non-Hopping Mode:

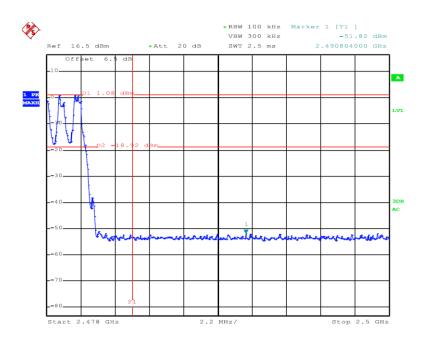



π/4-DQPSK

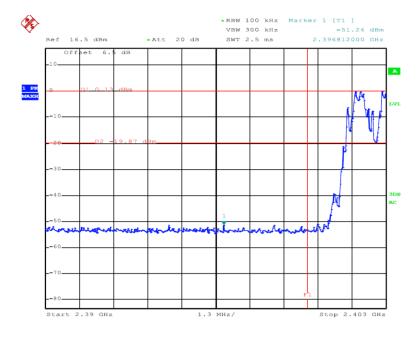


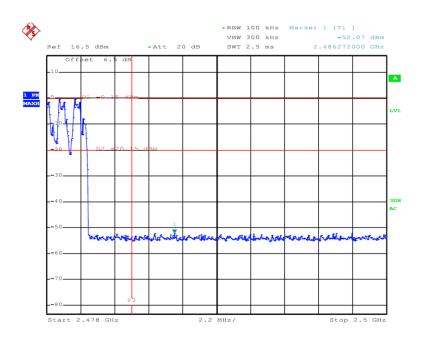
8DPSK

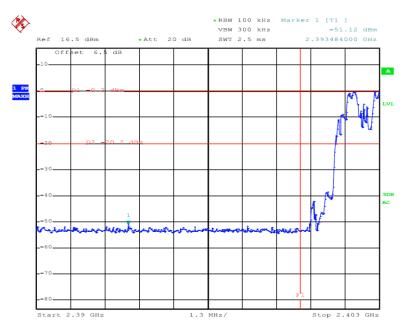


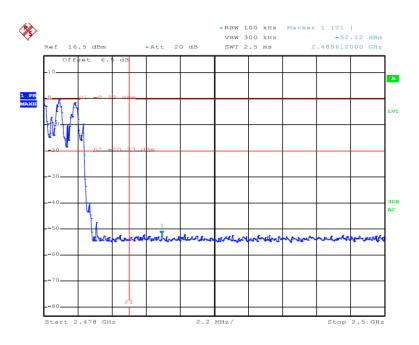


For Hopping Mode:

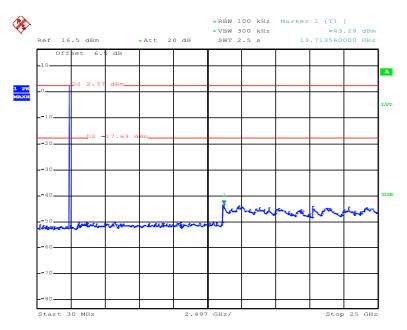

GFSK



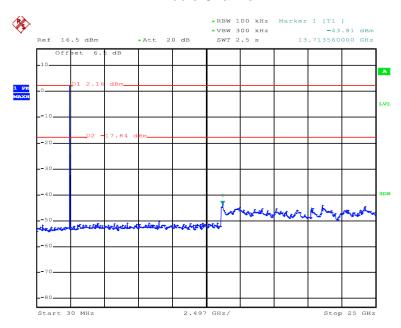

π/4-DQPSK



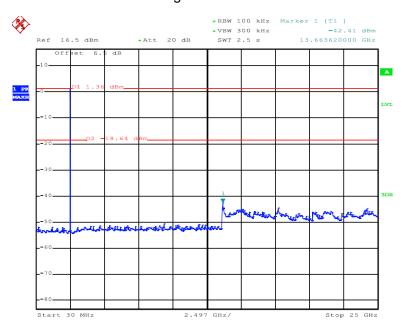
8DPSK



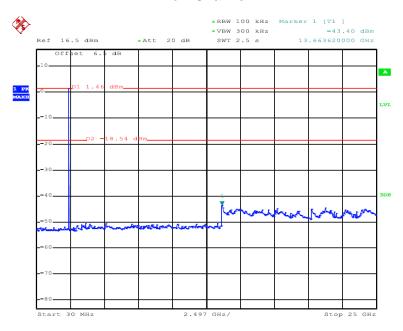
For Conduct spurious emissions

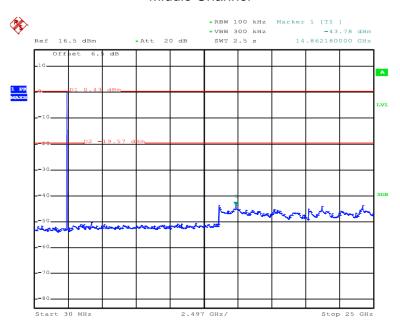

GFSK

Low Channel



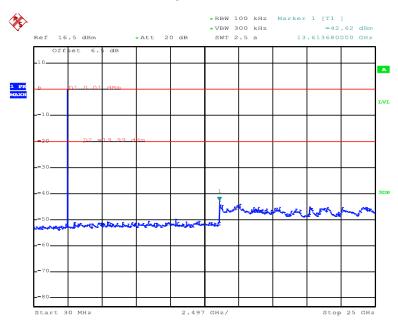
Middle Channel


High Channel

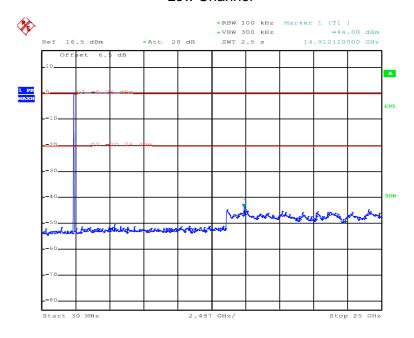


π/4-DQPSK

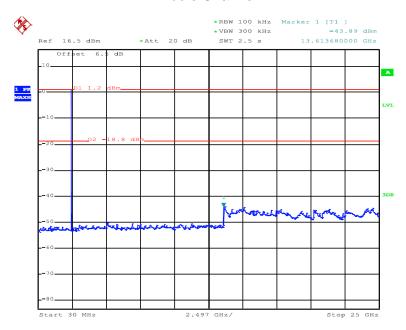
Low Channel



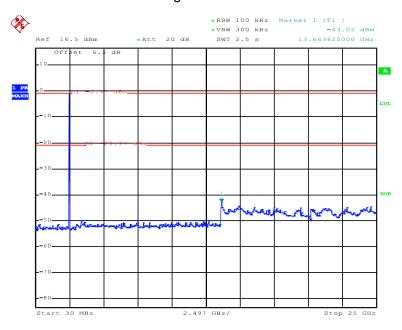
Middle Channel



High Channel


8DPSK

Low Channel



Middle Channel

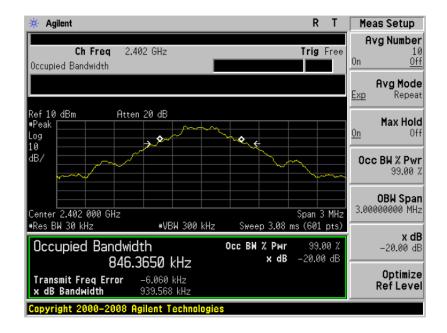
High Channel

9 20 dB Bandwidth Measurement

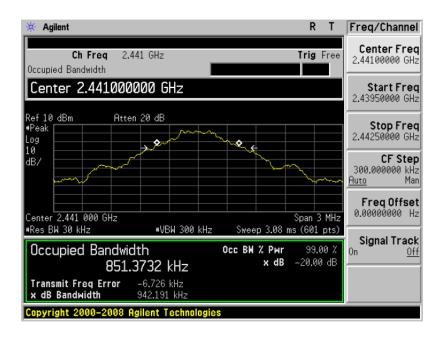
Test Requirement : FCC CFR47 Part 15 Section 15.247

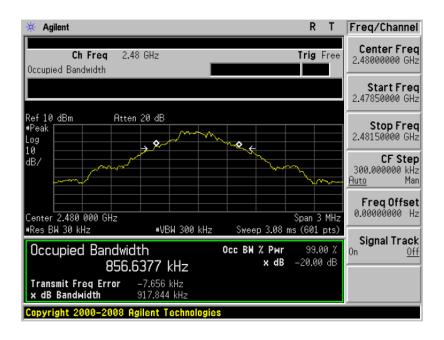
Test Method : ANSI C63.10:2013

9.1 Test Procedure

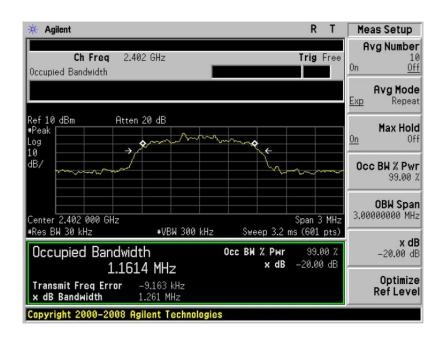

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

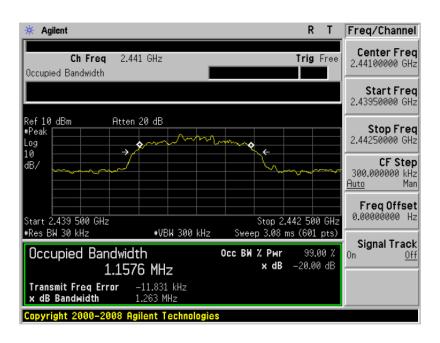
2. Set the spectrum analyzer: RBW =30kHz, VBW = 300kHz

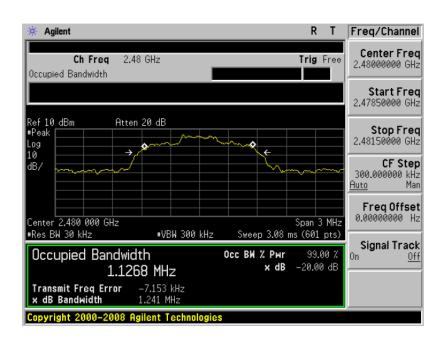

9.2 Test Result


Test Mode: CH00 / CH39 / CH78 (GFSK/(1Mbps)Mode)

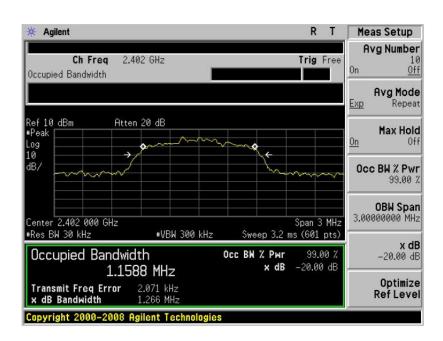
Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	939.568
39	2441	942.191
78	2480	917.844

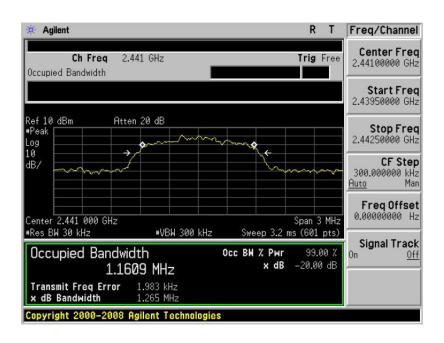


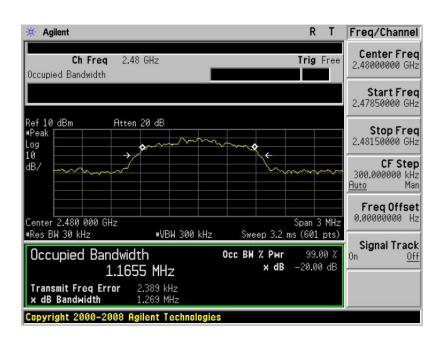



Test Mode: CH00 / CH39 / CH78 (Π/4-DQPSK /(2Mbps)Mode)

Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	1261
39	2441	1263
78	2480	1241






Test Mode: CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)

Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	1266
39	2441	1265
78	2480	1269

10 Maximum Peak Output Power

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247 (b)(1), For frequency hopping systems operating in the

2400-2483.5 MHz band eploying at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt (30dBm). For all other frequency hopping systems in the

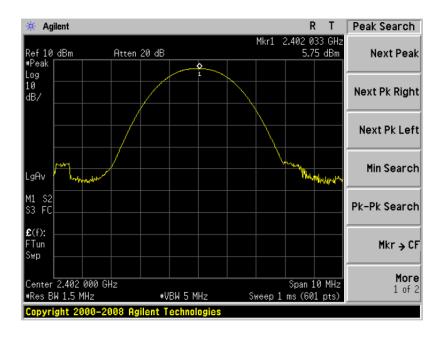
2400-2483.5 MHz band: 0.125 watts.

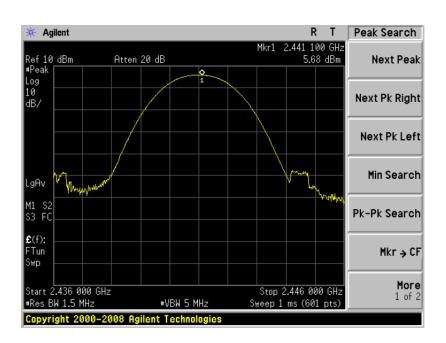
Refer to the result "Number of Hopping Frequency" of this document. The

0.125watts (20.97 dBm) limit applies.

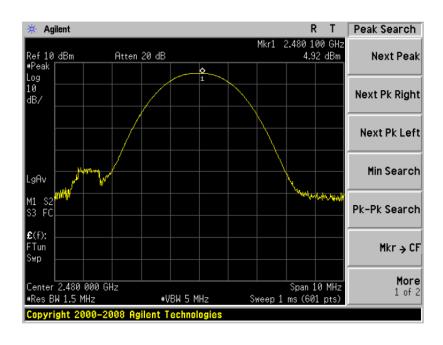
10.1Test Procedure

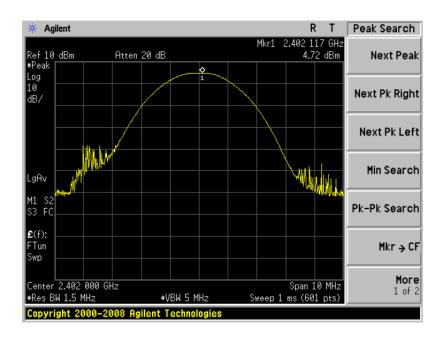
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

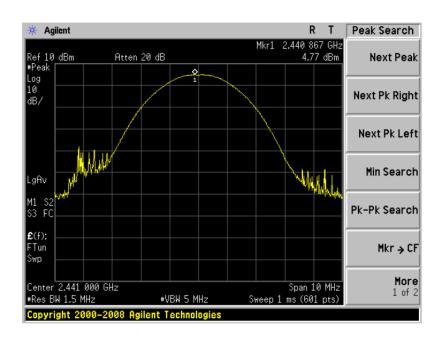

2. Set the spectrum analyser: RBW = 1.5 MHz. VBW = 5 MHz. Sweep = auto; Detector Function = Peak.

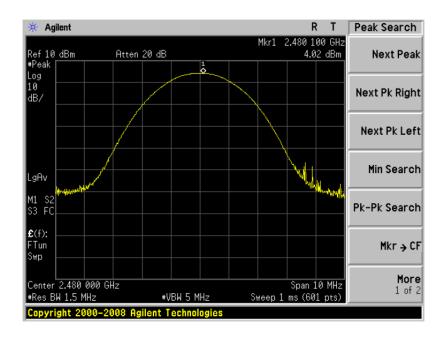

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

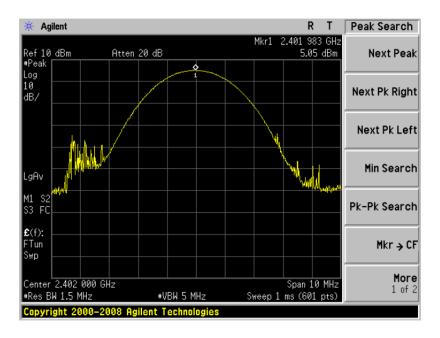
10.2Test Result

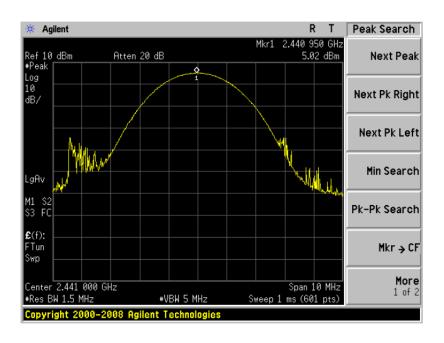

GFSK(1Mbps)					
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail
	(MHz)	(dBm)	(W)	(W)	
CH00	2402	5.75	0.00376	1	Pass
CH39	2441	5.68	0.00370	1	Pass
CH78	2480	4.92	0.00310	1	Pass

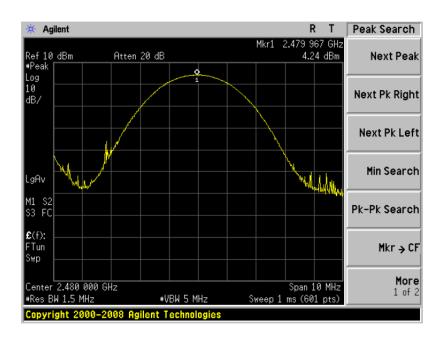





	π/4QPSK(2Mbps)				
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail
	(MHz)	(dBm)	(W)	(W)	
CH00	2402	4.72	0.00296	0.125	Pass
CH39	2441	4.77	0.00300	0.125	Pass
CH78	2480	4.02	0.00252	0.125	Pass






	8DPSK(3Mbps)				
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail
	(MHz)	(dBm)	(W)	(W)	
CH00	2402	5.05	0.00320	0.125	Pass
CH39	2441	5.02	0.00318	0.125	Pass
CH78	2480	4.24	0.00265	0.125	Pass

PRECISE TESTING Report No.: PTC19061903101E-FC01

11 Hopping Channel Separation

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247(a)(1) Frequency hopping systems shall have

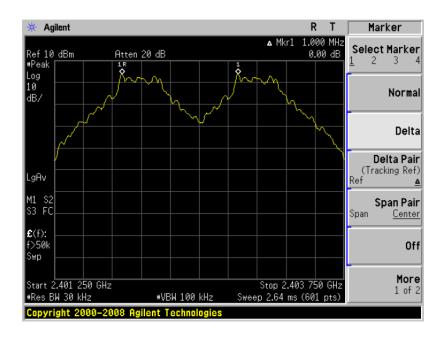
hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems

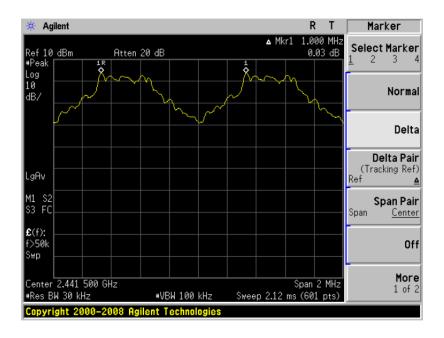
operate with an output power no greater than 1W.

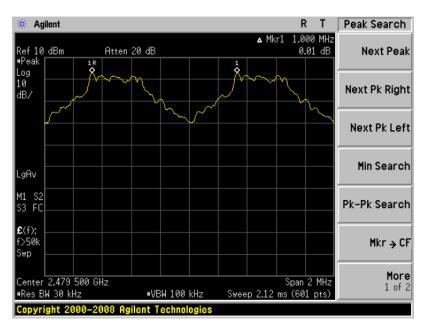
Test Mode : Hopping

11.1 Test Procedure

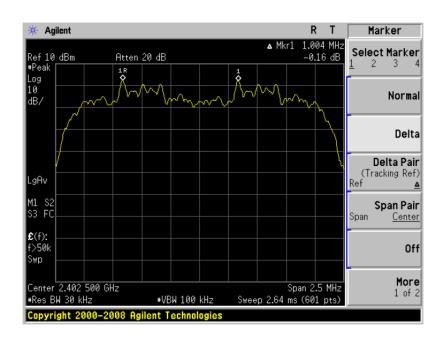
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

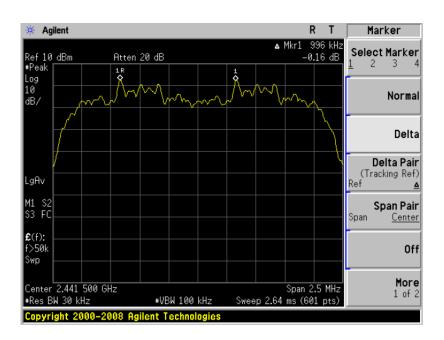

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz, Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

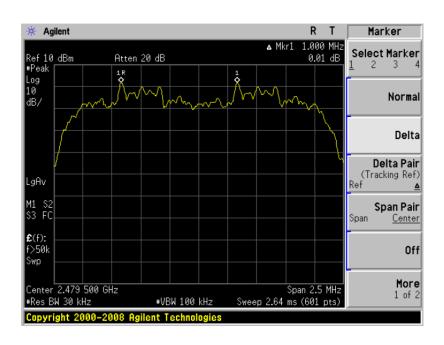

11.2 Test Result


Test Mode:	CH00 / CH39 / CH78 (GFSK(1Mbps) Mode)

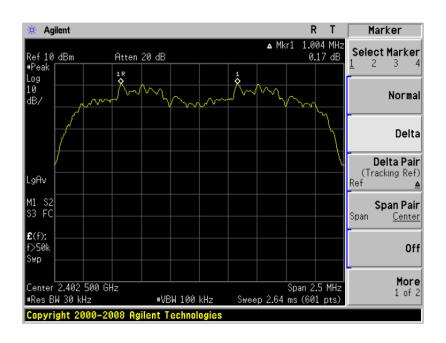
Channel number	Channel number Channel Separation Read	Separation Limit	
	frequency (MHz)	Value (kHz)	20dB Down BW(kHz)
00	2402	1000	>932
39	2441	1000	>944
78	2480	1000	>944

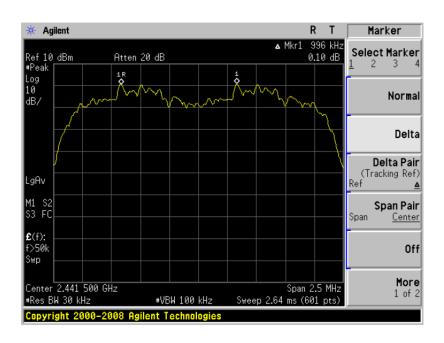


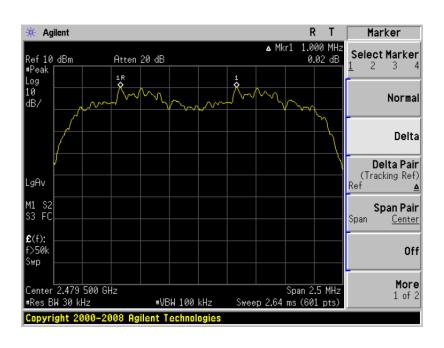



Test Mode:	CH00 / CH39 / CH78 (π/4-DQPSK(2Mbps) Mode)

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
00	2402	1004	>818.67
39	2441	996	>818.67
78	2480	1000	>818.67






Test Mode:	CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
00	2402	1004	>848
39	2441	996	>848
78	2480	1000	>848

12 Number of Hopping Frequency

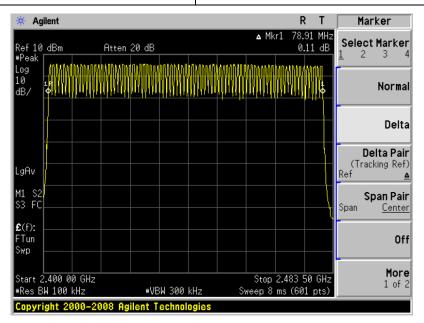
Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the 2400-

2483.5 MHz band shall use at least 15 channels.

Test Mode : Hopping(GFSK)


12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100KHz. VBW = 300KHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

12.2 Test Result

Channel Number	Limit
79	≥15

13 Dwell Time

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247(a)(1)(iii) Frequency hopping systems in the 2400-

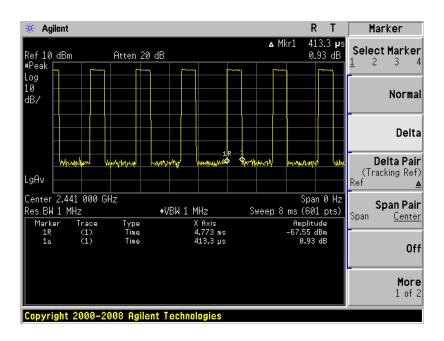
2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels

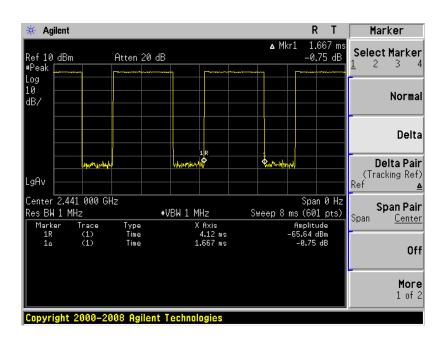
employed.

Test Mode : The worst case($\pi/4$ -DQPSK) was recorded

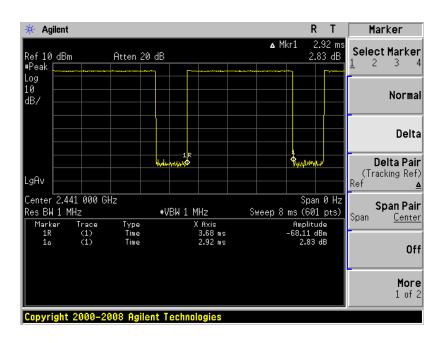
13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).


13.2 Test Result

Toot Modo:	π/4-DQPSK(2Mbps)
Test Mode:	11/4-DQF3K(2Mbps)


Mode	Number of transmission in a 31.6(79 Hopping*0.4)	Length of transmissions time(msec)	Result (msec)	Limit (msec)
2DH1	1600/(2*79) x 31.6 = 320	0.413	132.160	400
2DH3	1600/(4*79) x 31.6 =160	1.667	266.720	400
2DH5	1600/(6*79) x 31.6 =106.67	2.920	311.476	400

14 Antenna Requirement

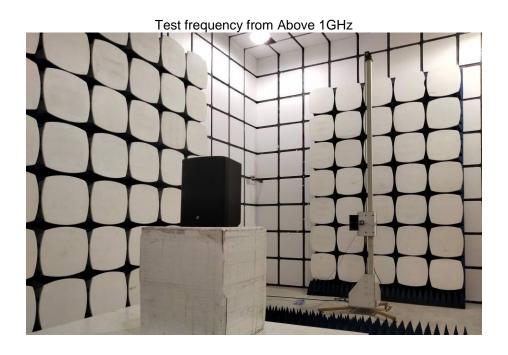
14.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

14.2 Result

The EUT'S antenna, permanent attached antenna, is Internal PCB Antenna. The antenna's gain is -0.58dBi and meets the requirement.

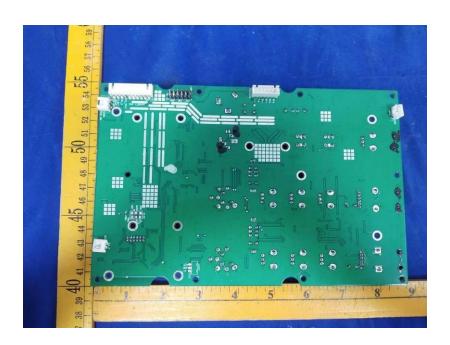
15 TEST PHOTOS


Conducted Emissions

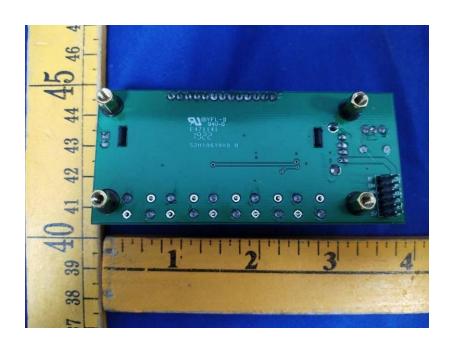
Radiated Spurious Emissions Test Frequency From 30MHz-1000MHz

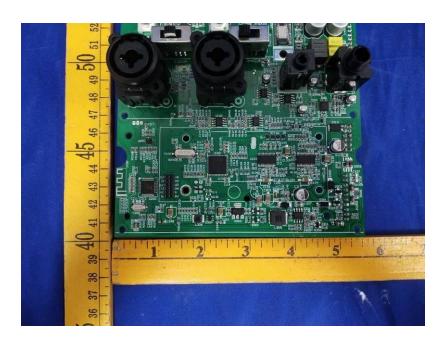
16 EUT PHOTOS

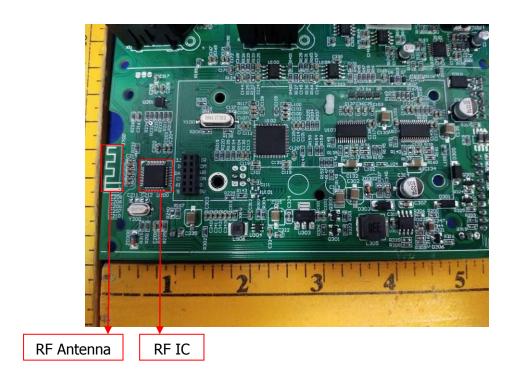












*****THE END REPORT*****