

Intertek ETL SEMKO Korea Ltd.
Intertek Building, 3, Gongdan-ro
160beon-gil, Gunpo-si, Gyeonggi-do, 15845 Korea
Tel +82 2 567 7474
Fax +82 2 567 8482
intertek.com

TEST REPORT

Report Number

190200116SEL-EMC4

Applicant Name/Address

Haenim CO.,LTD.

15, Saryeom-ro 21beon-gil, Seo-gu, Incheon, Republic of Korea

Test Sample Description

- Product:

Electric UV Sterilizer, UV Sterilizer & Dryer, UV Sanitizer & Dryer

- Model and/or Brand name:

HN-03+WB-BLE

- Variant model name:

See page 4

- Manufacturer Name / Address .:

Haenim CO.,LTD.

15, Saryeom-ro 21beon-gil, Seo-gu, Incheon, Republic of Korea

- Rating(s):

AC 120 V, 60 Hz

Receipt of sample(s)

01 Apr. 2019

Date of Test

03 Jul. 2019

Test Method(s)

FCC/OST MP-5 (1986)

FCC Part 18

Test Results & Uncertainty

See EMC Results Conclusion

Issue date

13 Aug. 2019

Note 1. The results shown in this test report refer only to the sample(s) tested.

Note 2: This report shall not be reproduced except in full, without the written approval of Intertek.

Note 3: This laboratory is not accredited for the test results marked as *.

Tested by:

Name: Walter Lee

EMC Engineer

Approved by:

Name: Rina Bae

EMC Technical Manager

Intertek ETL SEMKO Korea Ltd.

TRF No. FCC18_A / Version: 24 Apr 2017

TRF No. FCC15B_A / Version: 24 Apr 2017

SECTION 1 CONTENTS

SECTION 2 EMC Results Conclusion (with Justification)	3
SECTION 3 Test environment and conditions	3
SECTION 4 EUT Information	4
SECTION 5 TEST CONFIGURATION, Operation mode and SET-UP	5
SECTION 6 EMISSION	6
SECTION 7 Appendix I Photographs of Test Configurations	14 14
SECTION 8 Appendix II	16 16

SECTION 2 EMC RESULTS CONCLUSION (WITH JUSTIFICATION)

We tested the Electric UV Sterilizer, UV Sterilizer & Dryer, UV Sanitizer & Dryer, Model: HN-03+WB-BLE, to determine if it was in compliance with the relevant US standards as marked on the test report. We found that the unit met the requirement of FCC Part 18 standards when tested as received.

		Results			
Test Items	Applied Standards	Comply	Not Comply	N/A	See Note
Disturbance Voltage	FCC/OST MP-5 (1986) FCC Part 18				\boxtimes
Radiated disturbance (Below 1 GHz)	FCC/OST MP-5 (1986) FCC Part 18	\boxtimes			\boxtimes

Note 1) When determining the test conclusion, the Measurement Uncertainty of test has been considered.

Measurement Uncertainty

Conducted Emission	150 kHz – 30 MHz	U = 3.3 [dB]
	(Confidence level approximately 95 %, $k = 2$)	
	9 kHz – 30 MHz	<i>U</i> = 4.5 [dB]
	30 MHz – 1 000 MHz	Horizontal: <i>U</i> = 4.3 [dB]
		Vertical: <i>U</i> = 4.6 [dB]
Radiated Emissions	1 GHz – 6 GHz	Horizontal: <i>U</i> = 5.7 [dB]
Nadiated Lillissions	1 0112 - 0 0112	Vertical: <i>U</i> = 5.7 [dB]
	6 GHz – 18 GHz	Horizontal: <i>U</i> = 5.7 [dB]
	0 GHZ – 18 GHZ	Vertical <i>: U</i> = 5.8 [dB]
	Confidence level approximately 95 %, $k = 2$)	

SECTION 3 TEST ENVIRONMENT AND CONDITIONS

Test Environment

Test Item	Test Site	Test date (MM-DD)	Temp (°C)	Humidity (% R.H.)	Pressure (kPa)
Disturbance Voltage	Shielded Room #2	07-03	23.2 ± 1.0	38.3 ± 1.0	-
Radiated disturbance (Below 1 GHz)	10 m chamber	07-03	23.6 ± 1.0	39.0 ± 1.0	

SECTION 4 EUT INFORMATION

Equipment Under Test (EUT):	Electric UV Sterilizer, UV Sterilizer & Dryer,
-----------------------------	--

UV Sanitizer & Dryer

Model: HN-03+WB-BLE

Variant Model: HN-03+WM-BLE, HN-03+WG-BLE, HN-03+WS-BLE,

HN-03+WGN-BLE, HN-03+WP-BLE, HN-03+WBL-BLE, HN-03+WGY-BLE, HN-03+BM-BLE, HN-03+BG-BLE, HN-03+BB-BLE, HN-03+BGN-BLE, HN-03+BP-BLE, HN-03+BBL-BLE, HN-03+BGY-BLE, HN-03+GM-BLE, HN-03+GG-BLE, HN-03+GB-BLE, HN-03+GS-BLE, HN-03+GGN-BLE, HN-03+GB-BLE, HN-03+GBLE, HN-03+GBN-BLE, HN-03+GBN-BLE, HN-03+SWM-BLE, HN-03+SWG-BLE, HN-03+SWB-BLE, HN-0

HN-03+SWBL-BLE, HN-03+SWGY-BLE

Serial No.:

Rated Voltage: AC 120 V, 60 Hz

Internal clock frequency: 11.0592 MHz

UV lighting operating frequency: 60 kHz

Variant model information: The basic model and variant models have the same

electrical circuit, structure and performance, only the difference in model name according to

appearance colors.

HN - 03 + (1) (2) -BLE

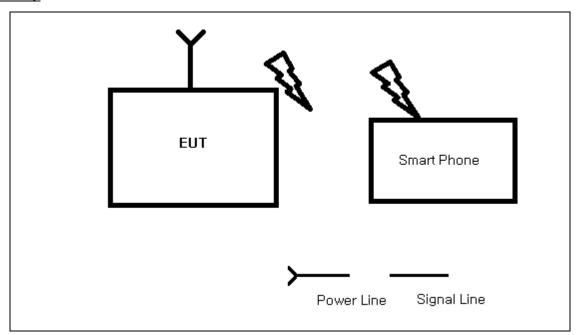
(1) : Body Color

W: WHITE, B: BLACK, G: GRAY, SW: SHINY

(2) : Handle Color

$$\label{eq:matching} \begin{split} M: \mathsf{METAL}, & \ \mathsf{G}: \mathsf{GOLD} \ , \ \mathsf{B}: \mathsf{BLACK} \ , \ \mathsf{S}: \mathsf{SILVER} \ , \\ \mathsf{GN}: \mathsf{GREEN} \ , \ \mathsf{P}: \mathsf{PINK} \ , \ \mathsf{BL}: \mathsf{BLUE} \ , \ \mathsf{GY}: \mathsf{GRAY} \end{split}$$

TRF No. FCC15B_A / Version: 24 Apr 2017


SECTION 5 TEST CONFIGURATION, OPERATION MODE AND SET-UP

Equipment	Model No.	Serial No.	Manufacturer	Connect type	CABLE Length (m)	Shield
Electric UV Sterilizer, UV Sterilizer & Dryer, UV Sanitizer & Dryer	HN-03+WB- BLE	-	Haenim CO.,LTD.	AC IN	1.7	Unshielded
Smart Phone	-	-	Samsung Electronics Co., Ltd.	-	-	-
UV Lamp	HNS 4W G5	-	OSRAM	-	-	-

Test Operation Mode

- Bluetooth Mode: It was controlling UV lamp by connecting smartphone with Bluetooth.

Test Setup

SECTION 6 EMISSION

Radiated disturbance test

Test Method and Summary

Test standard: FCC/OST MP-5 (1986), FCC Part 18

Used Test Equipment

Control No.	Equipment	Manufacturer	Model No.	Serial No.	Next Cal.	Cal Int.
EMC001	EMI Test Receiver	R & S	ESU40	100478	2020.01.03	1Y
EMC025	Biconilog (Type7)	ETS-Lindgren	3142E	00203547	2021.02.25	2Y
EMC077	AMP	R & S	SCU-18D	1952128	2020.06.28	1Y

Operating Environment

Test Voltage: AC 120 V, 60 Hz

Test Setup and Procedure

The EUT along with its peripherals were placed on a non-conducted table with a height of 0.8 m in height table above the reference ground plane.

Rotate the EUT from $(0 \sim 360)^\circ$ and position the receiving antenna at heights from $(1 \sim 4)$ m above the reference ground plane continuously to determine associated with higher emission levels and record them.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

For measurements above 1 GHz,

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal.

The final measurement antenna elevation shall be that which maximizes the emissions.

TRF No. FCC15B_A / Version: 24 Apr 2017

TRF No. FCC15B_A / Version: 24 Apr 2017

Limits

- The test frequency range of Radiated Disturbance measurements are listed below.

Frequency band in which device	Upper frequency of measurement range(MHz)				
operates (MHz)	Lowest frequency	Highest frequency			
Below 1.705	Lowest frequency generated in the device, but not lower than 9 kHz	30 MHz.			
1.705 to 30	Lowest frequency generated in the device, but not lower than 9 kHz	400 MHz.			
30 to 500	Lowest frequency generated in the device or 25 MHz, whichever is lower	Tenth harmonic or 1,000 MHz, whichever is higher.			
500 to 1,000	Lowest frequency generated in the device or 100 MHz, whichever is lower	Tenth harmonic.			
Above 1,000	do	Tenth harmonic or highest detectable emission.			

(a) ISM equipment operating on a frequency specified in 18.301 is permitted unlimited radiated energy in the band specified for that frequency :

ISM frequency	Tolerance
6.78 MHz	±15.0 kHz
13.56 MHz	±7.0 kHz
27.12 MHz	±163.0 kHz
40.68 MHz	±20.0 kHz
915 MHz	±13.0 MHz
2,450 MHz	±50.0 MHz
5,800 MHz	±75.0 MHz
24,125 MHz	±125.0 MHz
61.25 GHz	±250.0 MHz
122.50 GHz	±500.0 MHz
245.00 GHz	±1.0 GHz

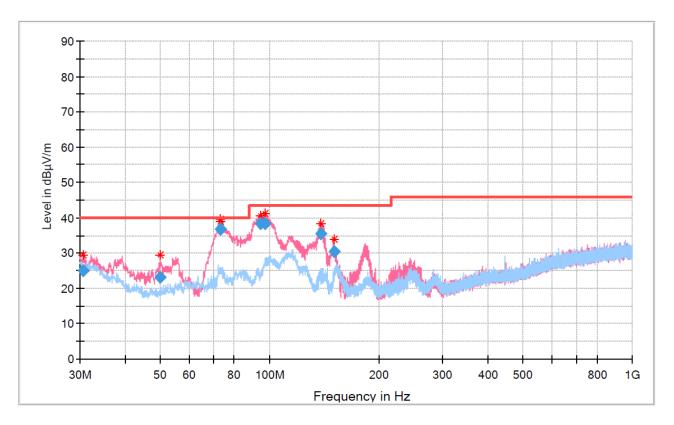
(b) The field strength level of emissions which lie outside the bands specified in 18.301 unless otherwise indicated, shall not exceed the following:

Equipment	Operating frequency	RF Power generated by equipment (W)	Field strength limit (μV/m)	Distance (meters)
Any type unless otherwise	Any ISM frequency	Below 500	25	300
specified		500 or more	25×SQRT(power/500)	¹ 300
(miscellaneous)	Any non-ISM frequency	Below 500	15	300
(IIIIscellatieous)	Any non-isivi frequency	500 or more	15×SQRT(power/500)	¹ 300
Industrial heaters and RF stabilized arc	On or below 5,725 MHz	Any	10	1 600
welders	Above 5,725 MHz	Any	(2)	(2)
Medical diathermy	Any ISM frequency	Any	25	300
iviedical diatrierity	Any non-ISM frequency	Any	15	300
	Dolow 400 kHz	Below 500	2,400/F(kHz)	300
	Below 490 kHz	500 or more	2,400/F(kHz)×SQRT(power/500)	³ 300
Ultrasonic	490 to 1,600 kHz	Any	24,000/F(kHz)	30
	Above 1,600 kHz	Any	15	30
Industion cooking ranges	Below 90 kHz	Any	1,500	⁴ 30
Induction cooking ranges	On or above 90 kHz	Any	300	⁴ 30

- 1. Field strength may not exceed 10 μ V/m at 1 600 meters. Consumer equipment operating below 1 000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 W.
- 2. Reduced to the greatest extent possible.
- 3. Field strength may not exceed 10 μ V/m at 1 600 meters. Consumer equipment is not permitted the increase in field strength otherwise permitted here for over 500 W.
- 4. Induction cooking ranges manufactured prior to February 1, 1 980, shall be subject to the field strength limits for miscellaneous ISM equipment.

(c) The field strength limits for RF lighting devices shall be the following:

Frequency (MHz)	Field strength limit at 30 meters (μV/m)
Non-consumer equipment:	
30 - 88	30
88 - 216	50
216 – 1000	70
Consumer equipment:	
30 - 88	10
88 - 216	15
216 – 1000	20


- 1. The tighter limit shall apply at the boundary between two frequency ranges.
- 2. Testing for compliance with these limits may be made at closer distances, provided a sufficient number of measurements are taken to plot the radiation pattern, to determine the major lobes of radiation, and to determine the expected field strength level at 30, 300, or 1 600 meters. Alternatively, if measurements are made at only one closer fixed distance, then the permissible field strength limits shall be adjusted using 1/d as an attenuation factor.

Test Data

[Below 1 GHz]

[Bluetooth Mode]

Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.59	24.96	40.00	15.04	100.0	V	289.00	-13.33
49.85	23.08	40.00	16.92	100.0	V	328.00	-21.45
73.13	36.67	40.00	3.33	100.0	V	268.00	-21.39
73.19	36.79	40.00	3.21	100.0	V	224.00	-21.39
94.20	38.48	43.52	5.04	100.0	V	95.00	-20.37
97.50	38.42	43.52	5.10	100.0	V	41.00	-19.97
138.79	35.59	43.52	7.93	100.0	V	77.00	-20.17
150.34	30.49	43.52	13.03	100.0	V	32.00	-19.14

Sample calculation (example : at 80 MHz)

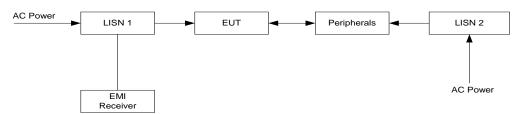
- \circ Limit = 30 dB μ V/m at 10 m
- Level (20 dBμV/m)
- = Meter Reading (40 dB μ V) + Factor (- 20 dB (1/m) = antenna factor + cable loss amplifier gain)
- \circ Margin (10 dB) = Limit (30 dB μ V/m) Level (20 dB μ V/m) = 10 dB below limit

Disturbance Voltage Test

Test Method and Summary

Test standard: FCC/OST MP-5 (1986), FCC Part 18

Used Test Equipment


Control No.	Equipment	Manufacturer	Model No.	Serial No.	Next Cal.	Cal Int.
EMC004	EMI Test Receiver	R & S	ESR7	101560	2020.01.02	1Y
EMC007	Two-Line V-Network	R & S	ENV216	101982	2019.10.31	1Y

Operating Environment

Test Voltage: AC 120 V, 60 Hz

Test Setup and Procedure

Disturbance Voltage Test at Mains Terminal:

The EUT along with its peripherals were placed on a 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 m space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50 characteristic coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. The excess power cable between the EUT and the LISN was bundled.

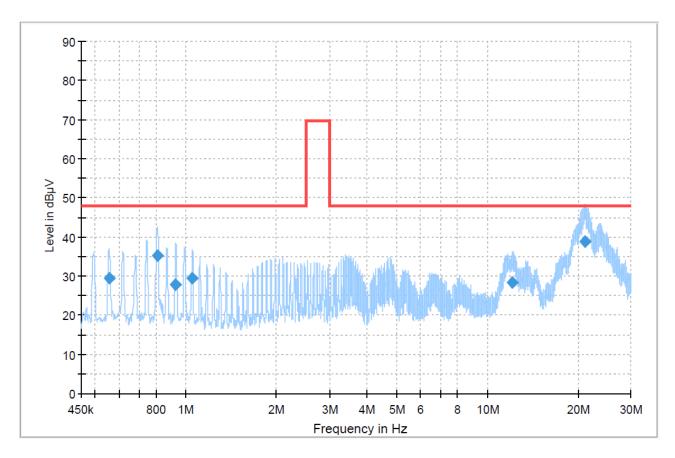
<u>Limits</u>

(a) All Induction cooking ranges and ultrasonic equipment:

Fraguancy (NAU-)	Conducted limit (dBµV)				
Frequency (MHz)	Quasi-peak	Average			
0.009 – 0.05	110	-			
0.05 – 0.15	90 – 80	-			
0.15 – 0.5	66 – 56	56 – 46			
0.5 – 5	56	46			
5 – 30	60	50			

(b) All other part 18 consumer devices:

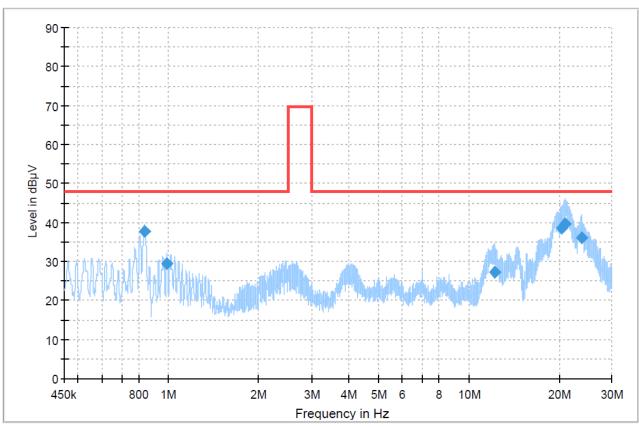
Frequency (MHz)	Conducted limit (dBµV)				
riequency (winz)	Quasi-peak	Average			
0.15 – 0.5	66 – 56	56 – 46 *			
0.5 – 5	56	46			
5 – 30	60	50			


(c) RF lighting devices:

(5) 111 (18.1511)							
Frequency (MHz)	Maximum RF line voltage measured with a 50 uH/50 ohm LISN (μV)						
Non-consumer equipment							
0.45 – 1.6	1 000						
1.6 – 30	3 000						
Consumer equipment							
0.45 – 2.51	250						
2.51 – 3.0	3 000						
3.0 – 30	250						

Test Data

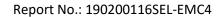
[Bluetooth Mode_Live]



Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.556380	29.37	47.96	18.59	9.000	L1	ON	10.0
0.803615	35.30	47.96	12.66	9.000	L1	ON	9.8
0.926740	27.91	47.96	20.05	9.000	L1	ON	9.8
1.050850	29.38	47.96	18.58	9.000	L1	ON	9.9
12.073000	28.34	47.96	19.62	9.000	L1	ON	9.9
21.109390	38.92	47.96	9.04	9.000	L1	ON	10.0

[Bluetooth Mode_Neutral]

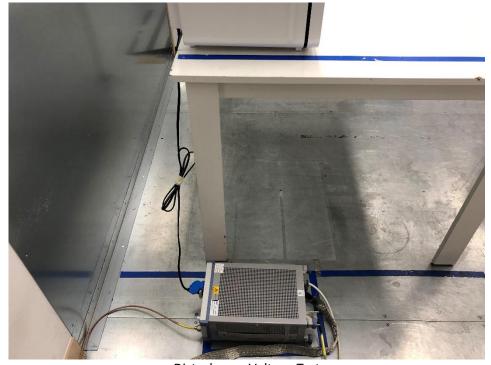


Final Result

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.833165	37.58	47.96	10.38	9.000	N	ON	9.9
0.987810	29.57	47.96	18.39	9.000	N	ON	9.9
12.212870	27.14	47.96	20.82	9.000	N	ON	9.9
20.431710	38.49	47.96	9.47	9.000	N	ON	10.1
20.974445	39.58	47.96	8.38	9.000	N	ON	10.1
23.727520	35.99	47.96	11.97	9.000	N	ON	10.1

Sample calculation (example : at 10 MHz)

- Limit = 60 dBμV (Quasi-peak limit)
- \circ Level (50 dB μ V) = Meter Reading (40.2 dB μ V) + Factor (9.9 dB = AMN factor 9.8 dB + Cable loss 0.1 dB)
- \circ Margin (10 dB) = Limit (60 dB μ V) Level (50 dB μ V) = 10 dB below limit



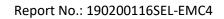
SECTION 7 APPENDIX I

Photographs of Test Configurations

Disturbance Voltage Test



Disturbance Voltage Test



Radiated disturbance (Below 1GHz)

Radiated disturbance (Below 1GHz)

SECTION 8 APPENDIX II

Photographs of EUT

Front

Rear