

Project No.: TM-2209000309P FCC ID: 2AS4N000003 Page: 1 / 186

Report No.: TMWK2209003822KR Rev.: 00

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard FCC Part 15.247

Product name Ridge X-ray Flat Panel Detector

Brand Name INCX

Model No. Ridge F17C, Ridge V14C, Ridge V17C, Ridge F14C,

Ridge F14G, Ridge F17G

Test Result Pass

Statements of Determination of compliance is based on the results of the

compliance measurement, not taking into account

measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Conformity

Shawn Wu Supervisor

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 186

Rev.: 00

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	November 30, 2022	Initial Issue	ALL	Doris Chu

Page: 3 / 186

Rev.: 00

Table of contents

1.	GENERAL INFORMATION	4
1.1	EUT INFORMATION	4
1.2	EUT CHANNEL INFORMATION	5
1.3	ANTENNA INFORMATION	6
1.4	MEASUREMENT UNCERTAINTY	
1.5	FACILITIES AND TEST LOCATION	7
1.6	INSTRUMENT CALIBRATION	8
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	9
1.8	TEST METHODOLOGY AND APPLIED STANDARDS	9
2.	TEST SUMMARY	10
3.	DESCRIPTION OF TEST MODES	11
3.1	THE WORST MODE OF OPERATING CONDITION	11
3.2	THE WORST MODE OF MEASUREMENT	13
3.3	EUT DUTY CYCLE	14
4.	TEST RESULT	16
4.1	AC POWER LINE CONDUCTED EMISSION	16
4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)	19
4.3	OUTPUT POWER MEASUREMENT	46
4.4	POWER SPECTRAL DENSITY	51
4.5	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	68
4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION	105
ΔΡΡ	ENDIX 1 - PHOTOGRAPHS OF EUT	Δ-1

Page: 4 / 186
Report No.: TMWK2209003822KR Rev.: 00

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	InnoCare Optoelectronics Corp Rm. B, No. 2, Sec. 2, Huanxi Rd., Southern Taiwan Science Park, Xinshi Dist., Tainan, 741 Taiwan									
Manufacturer	InnoCare Optoelectronics Corp Rm. B, No. 2, Sec. 2, Huanxi Rd., Southern Taiwan Science Park, Xinshi Dist., Tainan City 741, Taiwan, R.O.C.									
Equipment	Ridg	e X-ray Fla	it Panel Detec	tor						
Model Name		e F17C, Ri e F14G, Ri	dge V14C, Ri dge F17G	dge \	/17C, Ridg	ge F14C,				
		Model	PCBA X-Board	ROIC	Scintillator	Other				
	Main	Ridge F17C		17	CsI					
Model		Ridge V14C		14	CsI					
Discrepancy		Ridge V17C	different size	17	Csl	Marketing Differences				
	Series	Ridge F14C	dillerent size	14	CsI					
		Ridge F14G	ł	14	GOS					
		Ridge F17G		17	GOS					
Brand Name	INC	<								
Received Date	Sept	ember 23,	2022							
Date of Test	Octo	ber 6 ~ 19,	2022							
Power Supply Mean v I/P: 10 O/P: 2 2. Power t		lean well / P: 100-240 by: 24VDC ower from E	Power Adapte GSM60A24-P VAC, 1.4-0.7 , 2.5A, 60W M Battery. 31mAh or 412	'1L A, 50- ИАХ.						
HW Version V06										
SW Version	V81.	36				SW Version V81.36				

Remark:

- 1. For more details, please refer to the User's manual of the EUT.
- 2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.
- 3. Disclaimer: The variant trademarks are assessed as identical in hardware and software to each other, hence all variants are fully covered by the test results in this test report without further verification test.

Page: 5 / 186 Rev.: 00

1.2 EUT CHANNEL INFORMATION

	802.11b/g/n HT20 / ac VHT20 / ax HE20:
Fraguency Pango	2412MHz ~ 2462MHz
Frequency Range	802.11n HT40 / ac VHT40 / ax HE40:
	2422MHz ~ 2452MHz
	1. IEEE 802.11b mode: CCK
	2. IEEE 802.11g mode: OFDM
	3. IEEE 802.11n HT 20 Mode: OFDM
Modulation Type	4. IEEE 802.11n HT 40 MHz mode: OFDM
Modulation Type	5. IEEE 802.11ac VHT 20 Mode: OFDM
	6. IEEE 802.11ac VHT 40 MHz mode: OFDM
	7. IEEE 802.11ax HE20 MHz mode: OFDMA
	8. IEEE 802.11ax HE40 MHz mode: OFDMA
	1. IEEE 802.11b mode: 11 Channels
	2. IEEE 802.11g mode: 11 Channels
	3. IEEE 802.11n HT 20 Mode: 11 Channels
Number of channels	4. IEEE 802.11n HT 40 MHz mode: 7 Channels
Number of charmers	5. IEEE 802.11ac VHT 20 Mode: 11 Channels
	6. IEEE 802.11ac VHT 40 MHz mode: 7 Channels
	7. IEEE 802.11ax HE20 MHz mode: 11 Channels
	8. IEEE 802.11ax HE40 MHz mode: 7 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 and RSS-GEN Table 1 for test channels

Number of frequencies to be tested					
Frequency range in Number of Location in frequency which device operates frequencies range of operation					
1 MHz or less 1 Middle					
☐ 1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

Page: 6 / 186 Rev.: 00

1.3 ANTENNA INFORMATION

Antenna Specification	☐ PIFA ☑ PCB ☐ Dipole ☐ Coils
Antenna Gain	Chain 0: Gain: -1.84 dBi Chain 1: Gan: -0.68 dBi Direction Gain: 1.77 dBi
Antenna connector	I-PEX

Notes:

- 1. Power Directional Gain = 10*log { [10^(Ant1/20) + 10^(Ant2/20) + ... + 10^(Ant N /20)]^2 / N ANT} dBi
- 2. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203.

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	± 2.1183
Channel Bandwidth	± 2.1863
RF output power (Power Meter + Power sensor)	± 1.2688
Power Spectral density	± 2.1855
Conducted Bandedge	± 2.1866
Conducted Spurious Emission	± 2.1859
Radiated Emission_9kHz-30MHz	± 3.814
Radiated Emission_30MHz-200MHz	± 4.272
Radiated Emission_200MHz-1GHz	± 4.619
Radiated Emission_1GHz-6GHz	± 5.522
Radiated Emission_6GHz-18GHz	± 5.228
Radiated Emission_18GHz-26GHz	± 4.089
Radiated Emission_26GHz-40GHz	± 4.019

Remark:

- 1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2
- 2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 186

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

No. 12, Ln. 116, Wugong 3rd Rd., Wugu Dist., New Taipei City, Taiwan 24803

CAB identifier: TW1309

Test site Test Engineer		Remark
AC Conduction Room	Jack Chen	-
Radiation	Ray Li, Tony Chao	-
RF Conducted	David Li	-

Remark: The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No.:444940, the FCC Designation No.:TW1309.

Page: 8 / 186
Report No.: TMWK2209003822KR Rev.: 00

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site								
Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration								
Power Meter	Anritsu	ML2496A	2136002	2021-12-06	2022-12-05			
EXA Signal Analyzer	Keysight	N9010B	MY60242460	2022-01-30	2023-01-29			
Power Sensor	Anritsu	MA2411B	1911386	2022-08-08	2023-08-07			
Power Sensor	Anritsu	MA2411B	1911387	2022-08-08	2023-08-07			
Software	Radio Test Software Ver. 21							

	3M 966 Chamber Test Site							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
K-Type Cable	Huber+Suhner	SUCOFLEX 102	29406/2	2021-12-05	2022-12-04			
Bi-Log Antenna	Sunol Sciences	JB3	A030105	2022-08-03	2023-08-02			
Spectrum Analyzer	Agilent	E4446A	MY46180323	2021-12-06	2022-12-05			
Thermo-Hygro Meter	WISEWIND	1206	D07	2021-12-28	2022-12-27			
Loop Antenna	COM-POWER	AL-130	121051	2022-04-13	2023-04-12			
Horn Antenna	SCHWARZBEC K	BBHA9170	1047	2022-01-11	2023-01-10			
Coaxial Cable	EMCI	EMC101G- KM-KM-500	211041	2021-12-23	2022-12-22			
Coaxial Cable	EMC	EMC101G-KM-KM-900 0	211042	2021-12-23	2022-12-22			
Pre-Amplifier	EMCI	EMC184045SE	980860	2021-12-28	2022-12-27			
Horn Antenna	ETS LINDGREN	3116	00026370	2021-11-30	2022-11-29			
Cable	Woken	J-1099	201709090004	2021-12-23	2022-12-22			
Preamplifier	EMEC	EM330	060609	2022-02-23	2023-02-22			
Preamplifier	HP	8449B	3008A00965	2021-12-24	2022-12-23			
Band Reject Filter	MICRO TRONICS	BRM 50702	112	2021-11-23	2022-11-22			
Cable	Huber+Suhner	104PEA	20995+11112+18233 0	2022-02-23	2023-02-22			
Coaxial Cable	EMCI	EMC105	190914+33953	2022-06-15	2023-06-14			
Horn Antenna	ETC	MCTD 1209	DRH13M02003	2022-01-25	2023-01-24			
Turn Table	ccs	CC-T-1F	N/A	N.C.R	N.C.R			
Software	ftware e3 210616							

Remark:

- 1. Each piece of equipment is scheduled for calibration once a year.
- 2. N.C.R. = No Calibration Required.

	AC Conducted Emissions Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due			
CABLE	EMCI	CFD300-NL	CERF	2022-06-27	2023-06-26			
EMI Test Receiver	R&S	ESCI	100064	2022-06-17	2023-06-16			
LISN	SCHAFFNER	NNB 41	03/10013	2022-02-15	2023-02-14			
Software	EZ-EMC(CCS-3A1-CE-WUGU)							

Page: 9 / 186

Rev.: 00

Remark:

- 1. Each piece of equipment is scheduled for calibration once a year.
- 2. N.C.R. = No Calibration Required.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment						
No.	No. Equipment Brand Model Series No. FCC ID IC						
	N/A						

	Support Equipment								
No. Equipment Brand Model Series No. FCC ID IC									
1	NB(C)	Lenovo	T470	N/A	N/A	N/A			

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 662911.

Page: 10 / 186
Report No.: TMWK2209003822KR Rev.: 00

2. TEST SUMMARY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	7(a) 4.1 AC Conducted Emission		Pass
15.247(a)(2)	5.247(a)(2) 4.2 6 dB Bandw		Pass
-	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)	4.3	Output Power Measurement	Pass
15.247(e)	4.4	Power Spectral Density	Pass
15.247(d)	4.5	Conducted Band Edge	Pass
15.247(d)	4.5	Conducted Spurious Emission	Pass
15.247(d)	4.6	Radiation Band Edge	Pass
15.247(d)	4.6	Radiation Spurious Emission	Pass

Page: 11 / 186
Report No.: TMWK2209003822KR Rev.: 00

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

	IEEE 802.11b mode :1Mbps				
	IEEE 802.11g mode :6Mbps				
	IEEE 802.11n HT20 mode: MCS0				
	IEEE 802.11n HT40 mode: MCS0				
Operation mode	IEEE 802.11ac VHT20 mode: MCS0				
	IEEE 802.11ac VHT40 mode: MCS0				
	IEEE 802.11ax HE20 MHz mode: MCS0				
	IEEE 802.11ax HE40 MHz mode: MCS0				
	IEEE 802.11b mode: 2T2R				
	IEEE 802.11g mode: 2T2R				
	IEEE 802.11n HT20 mode: 2T2R				
On another Transmitter	IEEE 802.11n HT40 mode: 2T2R				
Operation Transmitter	IEEE 802.11ac VHT20 mode: 2T2R				
	IEEE 802.11ac VHT40 mode: 2T2R				
	IEEE 802.11ax HE20 mode: 2T2R				
	IEEE 802.11ax HE40 mode: 2T2R				

Page: 12 / 186
Report No.: TMWK2209003822KR Rev.: 00

IEEE 802.11b mode: 1. Lowest Channel: 2412MHz 2. Middle Channel: 2437MHz 3. Highest Channel: 2462MHz **IEEE 802.11g mode:** 1. Lowest Channel: 2412MHz 2. Middle Channel: 2437MHz 3. Highest Channel: 2462MHz **IEEE 802.11n HT20 mode:** 1. Lowest Channel: 2412MHz 2. Middle Channel: 2437MHz 3. Highest Channel: 2462MHz IEEE 802.11ac VHT20 mode: 1. Lowest Channel: 2412MHz 2. Middle Channel: 2437MHz 3. Highest Channel: 2462MHz Test Channel Frequencies IEEE 802.11 ax HE20 mode: 1. Lowest Channel: 2412MHz 2. Middle Channel: 2437MHz 3. Highest Channel: 2462MHz IEEE 802.11n HT40 mode: 1. Lowest Channel: 2422MHz 2. Middle Channel: 2437MHz 3. Highest Channel: 2452MHz IEEE 802.11ac VHT40 mode: 1. Lowest Channel: 2422MHz 2. Middle Channel: 2437MHz 3. Highest Channel: 2452MHz **IEEE 802.11 ax HE40 mode:** 1. Lowest Channel: 2422MHz 2. Middle Channel: 2437MHz 3. Highest Channel: 2452MHz

Remark:

- 1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.
- 2. The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the power and PSD across all date rates, bandwidths, and modulations. The device supports SISO and MIMO at 802.11b/g/ n HT20 / ax HE20 / n HT40 / ax HE40 mode, per pre-test, MIMO 2TX mode was the worst and reported.
- 3. The mode IEEE 802.11ac VHT20 and VHT40 are only different in control messages with IEEE 802.11n 20 MHz and HT40, and have same power setting. Therefore, the highest power(IEEE 802.11n 20 MHz and HT40) were test conducted and radiated measurement and recorded in this report.

Page: 13 / 186

Rev.: 00

3.2 THE WORST MODE OF MEASUREMENT

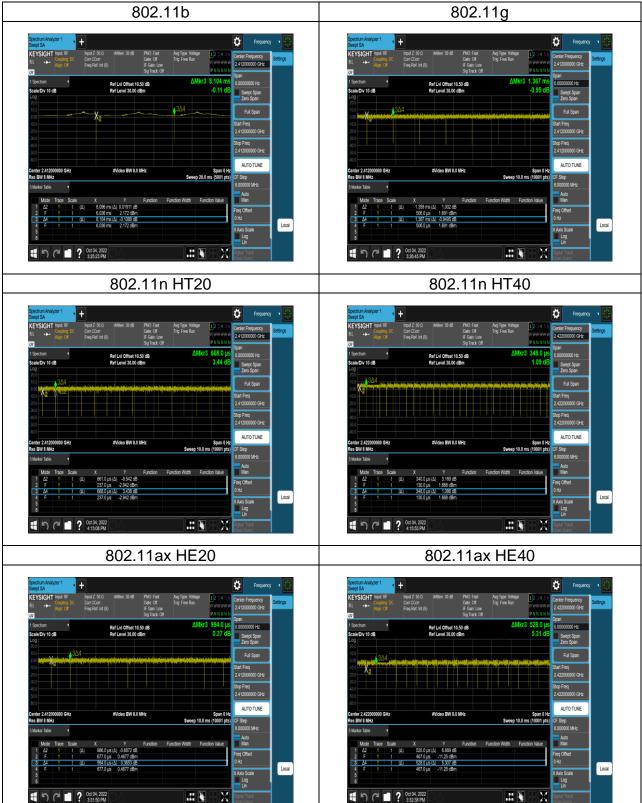
	AC Power Line Conducted Emission							
Test Condition	AC Power line conducted emission for line and neutral							
PAWAR SHINNIY IVIAAA	Mode 1: EUT power by Adapter (14 inch) Mode 2: EUT power by Adapter (17 inch)							
Worst Mode	Mode 1							
•								
R	adiated Emission Measurement Above 1G							
Test Condition	Radiated Emission Above 1G							
Power supply Mode	Mode 1: EUT power by Adapter (14 inch) Mode 2: EUT power by Adapter (17 inch)							
Worst Mode	☐ Mode 1 ☑ Mode 2 ☐ Mode 3 ☐ Mode 4							
Worst Position	 ☐ Placed in fixed position. ☐ Placed in fixed position at X-Plane (E2-Plane) ☐ Placed in fixed position at Y-Plane (E1-Plane) ☐ Placed in fixed position at Z-Plane (H-Plane) 							
R	adiated Emission Measurement Below 1G							
Test Condition	Radiated Emission Below 1G							
Power supply Mode	Mode 1: EUT power by Adapter (14 inch) Mode 2: EUT power by Adapter (17 inch)							
Worst Mode ☐ Mode 1 ☐ Mode 2 ☐ Mode 3 ☐ Mode 4								

Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(X-Plane) were recorded in this report
- 3. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.

Page: 14 / 186
Report No.: TMWK2209003822KR Rev.: 00

3.3 EUT DUTY CYCLE


Temperature: $22 \sim 25.5^{\circ}$ C **Test date:** October $5 \sim 19$, 2022

Humidity: 48 ~ 52% RH **Tested by:** David Li

Duty Cycle									
Configuration	Duty Cycle (%)	Duty Factor (dB) =10*log (1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)					
802.11b	99.90	0.00	0.12	0.01					
802.11g	99.41	0.03	0.74	0.01					
802.11n HT20	98.95	0.05	1.51	0.01					
802.11n HT40	97.70	0.10	2.94	3.00					
802.11ax HE20	99.20	0.03	1.01	0.01					
802.11ax HE40	98.48	0.07	1.92	0.01					

Page: 15 / 186

Page: 16 / 186
Report No.: TMWK2209003822KR Rev.: 00

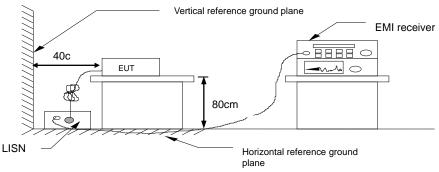
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a)(2)

Frequency Range	Limits(di	3μV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50


^{*} Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

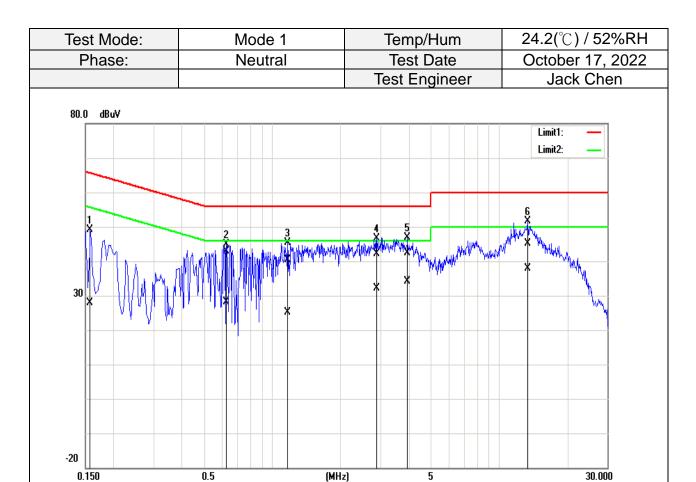
4.1.4 Test Result

Pass.

Page: 17 / 186

Rev.: 00

Test Data


100t Butu			
Test Mode:	Mode 1	Temp/Hum	24.2(°ℂ) / 52%RH
Phase:	Line	Test Date	October 17, 2022
		Test Engineer	Jack Chen
80.0 dBuV			
			Limit1: — Limit2: —
1			6 X
	Str. or Min Max. Max. Mr. Mayland	MARKAN MANANTANAN MANA	AN THE WAY AND
30	V4.1/V.,)	* * * * * * * * * * * * * * * * * * * *	, "M
MAN IN A	* "1"		₩ \
-20			

Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (d uV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak Iimit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1820	34.03	24.45	10.18	44.21	34.63	64.39	54.39	-20.18	-19.76	Pass
0.4220	31.61	17.26	10.19	41.80	27.45	57.41	47.41	-15.61	-19.96	Pass
0.6300	32.54	19.99	10.19	42.73	30.18	56.00	46.00	-13.27	-15.82	Pass
3.5300	31.13	23.18	10.30	41.43	33.48	56.00	46.00	-14.57	-12.52	Pass
7.1660	30.02	23.09	10.34	40.36	33.43	60.00	50.00	-19.64	-16.57	Pass
13.5580	41.18	35.45	10.36	51.54	45.81	60.00	50.00	-8.46	-4.19	Pass

Note: 1. Correction factor = LISN loss + Cable loss.

Page: 18 / 186

Frequency (MHz)	Quasi Peak reading dBuV)	Average reading (dBuV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak Iimit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1580	38.86	17.82	10.17	49.03	27.99	65.56	55.57	-16.53	-27.58	Pass
0.6300	32.65	18.02	10.18	42.83	28.20	56.00	46.00	-13.17	-17.80	Pass
1.1700	30.28	14.83	10.21	40.49	25.04	56.00	46.00	-15.51	-20.96	Pass
2.8860	31.99	21.95	10.26	42.25	32.21	56.00	46.00	-13.75	-13.79	Pass
3.9620	31.99	23.93	10.28	42.27	34.21	56.00	46.00	-13.73	-11.79	Pass
13.3740	34.64	27.50	10.37	45.01	37.87	60.00	50.00	-14.99	-12.13	Pass

Note: 1. Correction factor = LISN loss + Cable loss.

Page: 19 / 186

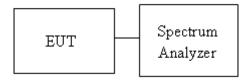
4.26dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to §15.247(a)(2)

6 dB Bandwidth :

Limit	Shall be at least 500kHz


Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as ANSI C63.10: 2013,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup

Page: 20 / 186
Report No.: TMWK2209003822KR Rev.: 00

4.2.4 Test Result

Temperature: $22 \sim 25.5^{\circ}$ C **Test date:** October $5 \sim 19$, 2022

Humidity: 48 ~ 52% RH **Tested by:** David Li

Test mode: IEEE 802.11b mode / 2412-2462 MHz									
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (kHz)	Chain 1 6dB BW (kHz)	6dB limit (kHz)			
Low	2412	14.886	14.921	11080.00	11100.00				
Mid	2437	14.902	14.972	10160.00	11100.00	≥500			
High	2462	14.819	14.936	10160.00	11100.00				

Test mode: IEEE 802.11g mode / 2412-2462 MHz										
Channel Frequency (MHz)		OBW(99%) OBW(99%) 6d		Chain 0 6dB BW (kHz)	Chain 1 6dB BW (kHz)	6dB limit (kHz)				
Low	2412	16.384	16.335	16090.00	16350.00					
Mid	2437	16.579	16.528	15770.00	16320.00	≥500				
High	2462	16.439	16.342	16120.00	16350.00					

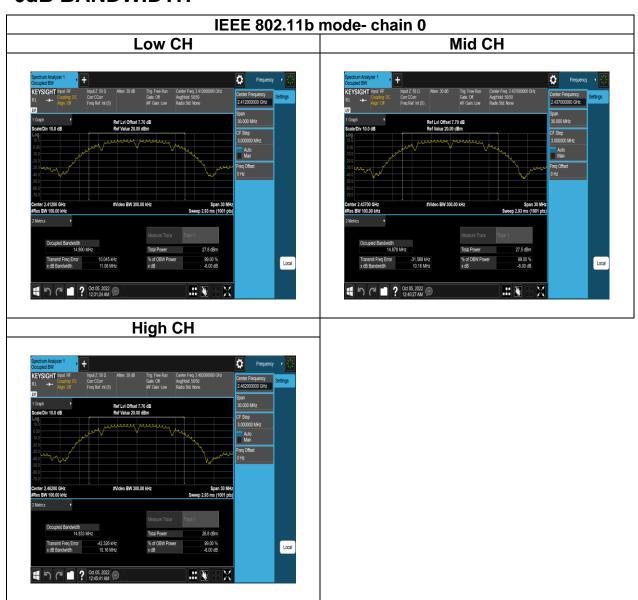
Test mode: IEEE 802.11n HT 20 mode / 2412-2462 MHz							
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (kHz)	Chain 1 6dB BW (kHz) 6dB limi (kHz)		
Low	2412	17.508	17.52	17180.00	17580.00		
Mid	2437	17.639	17.614	17180.00	17210.00	≥500	
High	2462	17.537	17.525	17220.00	17580.00		

Test mode: IEEE 802.11n HT 40 mode / 2422-2452 MHz							
Channel	Frequency (MHz)	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	OBW(99%) 6dB BW		6dB limit (kHz)	
Low	2412	36.106	36.169	35750.00	36060.00		
Mid	2437	36.111	36.187	35750.00	36370.00	≥500	
High	2462	36.162	36.191	35770.00	36390.00		

Page: 21 / 186 Rev.: 00

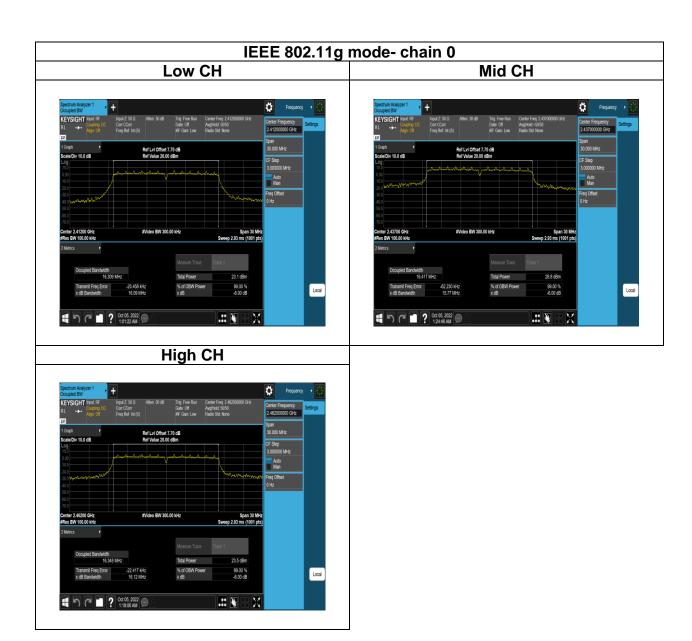
Test mode: IEEE 802.11ax HE20 MHz mode / 2412-2462 MHz								
Channel	Frequency (MHz)	RU Config	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (kHz)	Chain 1 6dB BW (kHz)	6dB limit (kHz)	
Low	2412	full	18.887	18.896	18150.00	18280.00		
Low	2412	26/0	18	17.825	13250.00	11990.00	>500	
Mid	2437	full	18.933	18.967	17790.00	18210.00	≥500	
High	2462	full	18.935	18.91	18210.00	18660.00		

Test mode: IEEE 802.11ax HE40 MHz mode / 2422-2452 MHz								
Channel	Frequency (MHz)	RU Config	Chain 0 OBW(99%) (MHz)	Chain 1 OBW(99%) (MHz)	Chain 0 6dB BW (kHz)	Chain 1 6dB BW (kHz)	6dB limit (kHz)	
Low	2422	full	37.581	37.687	36540.00	38010.00		
Mid	2437	full	37.573	37.704	36560.00	38000.00	≥500	
High	2452	full	37.619	37.724	36610.00	38020.00		

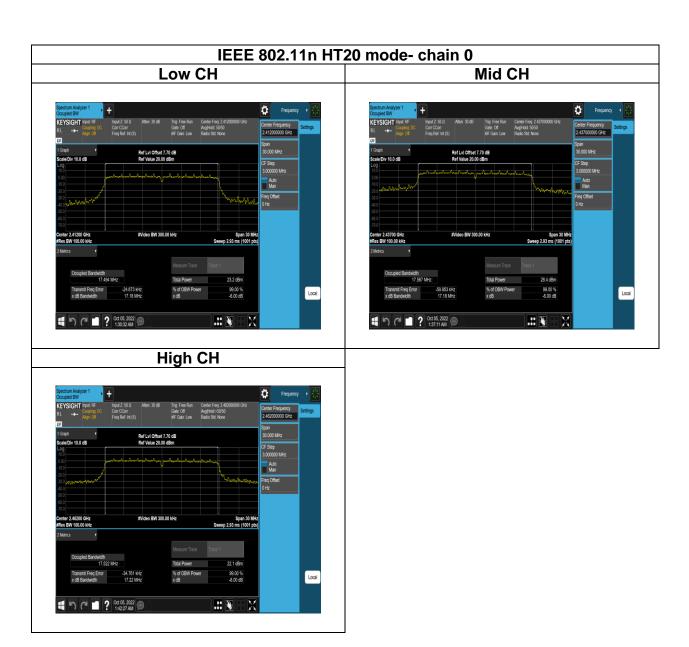


Page: 22 / 186

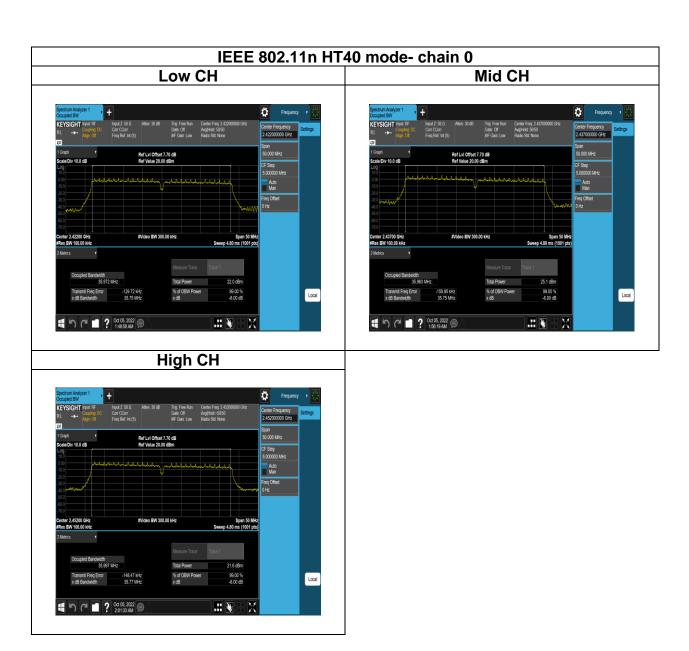
Rev.: 00


Test Data

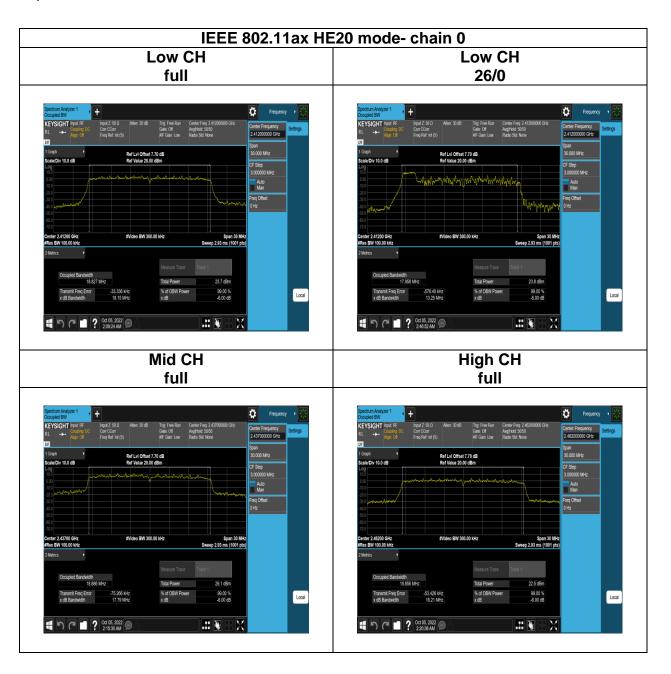
6dB BANDWIDTH



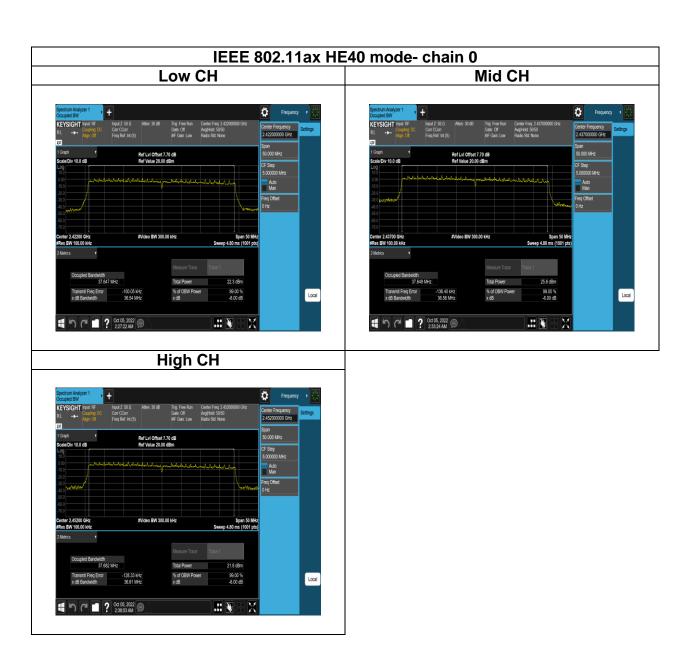
Page: 23 / 186



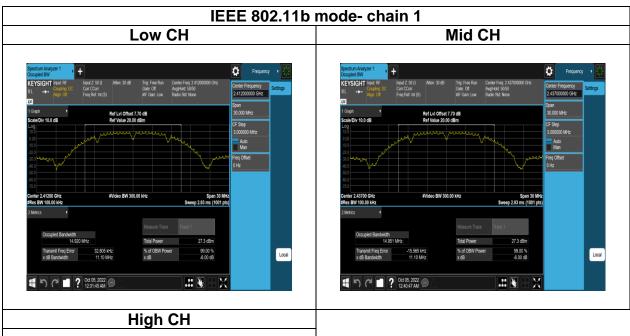
Page: 24 / 186



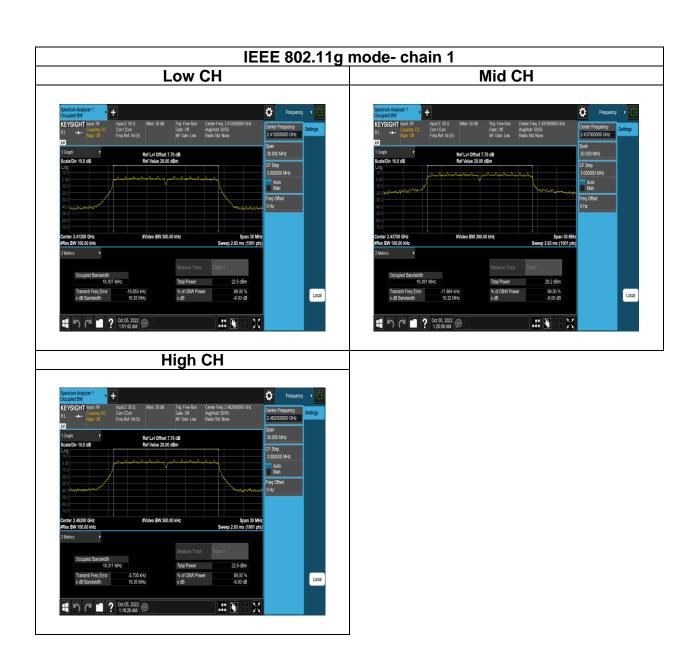
Page: 25 / 186



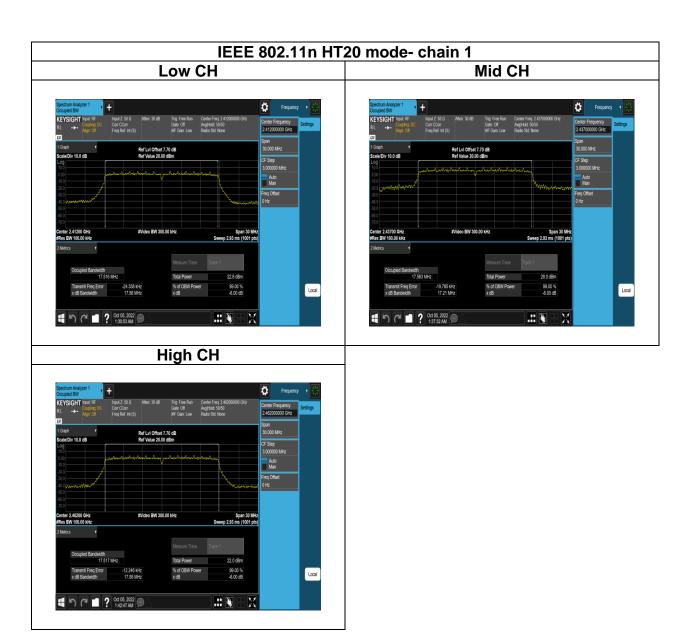
Page: 26 / 186



Page: 27 / 186

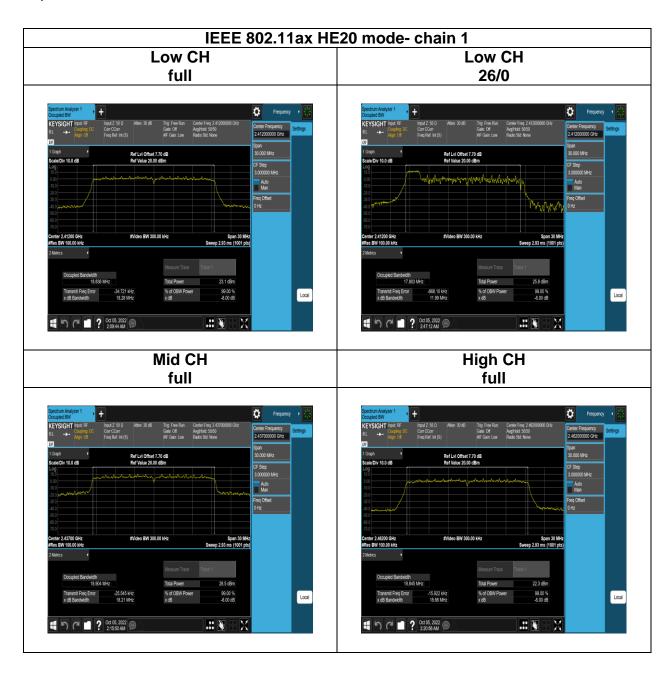


Page: 28 / 186

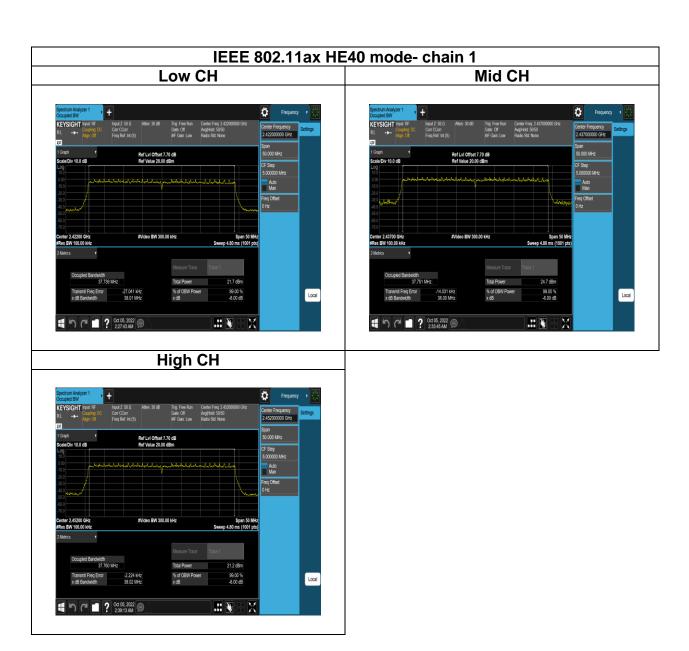


Page: 29 / 186

Page: 30 / 186

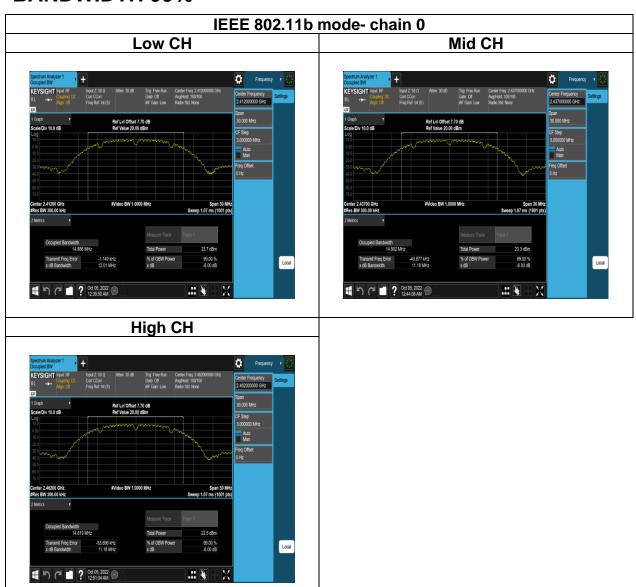


Page: 31 / 186



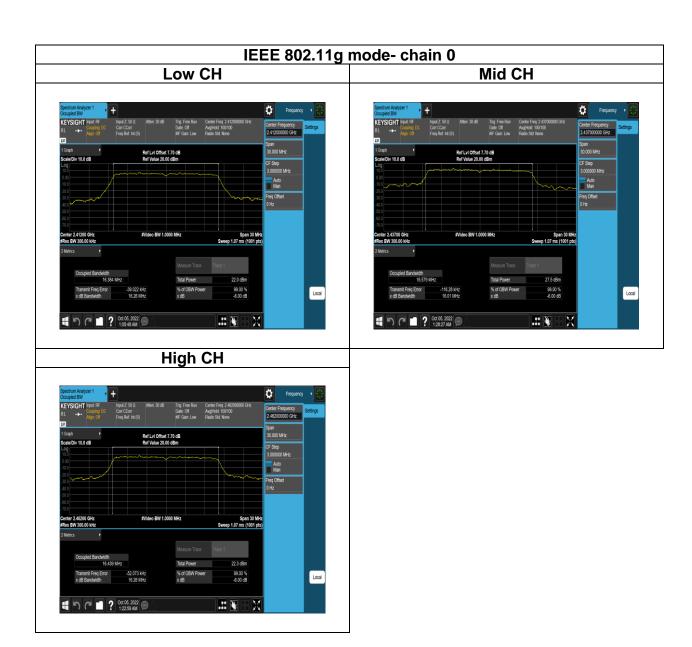
Page: 32 / 186

Page: 33 / 186

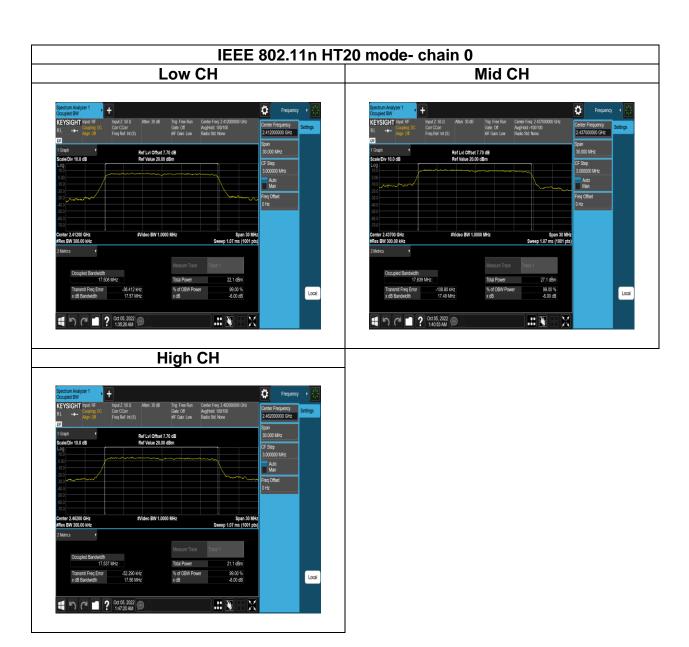


Page: 34 / 186

Rev.: 00

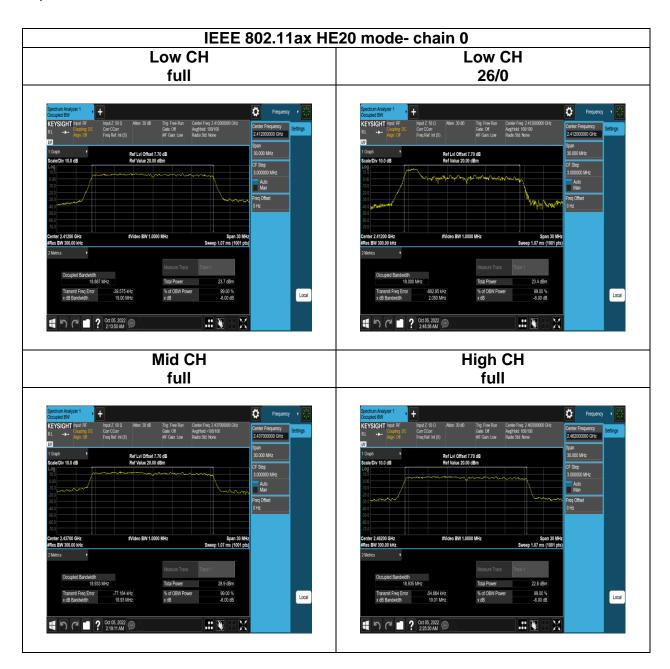

Test Data

BANDWIDTH 99%



Page: 35 / 186

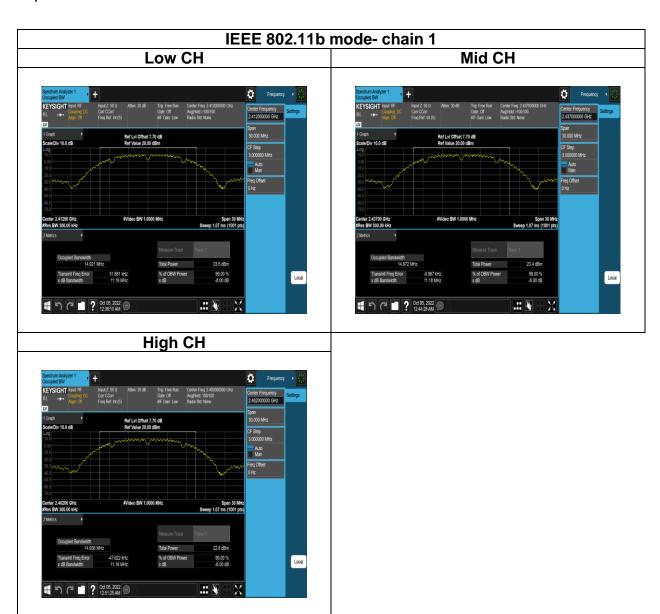
Page: 36 / 186



Page: 37 / 186



Page: 38 / 186



Page: 39 / 186

Page: 40 / 186

