

## Partial FCC Test Report (Spot Check)

**Report No.:** RF200424C06

**FCC ID:** 2ARXKVHE09-4GL

**Test Model:** VHE09-4GL

**Series Model:** VHE09XXXXX (X=A-Z, 0-9, blank or "-")

**Received Date:** Apr. 24, 2020

**Test Date:** Jun. 02 ~ Jun. 11, 2020

**Issued Date:** Jun. 17, 2020

**Applicant:** Veea Inc

**Address:** 164 E 83rd Street, New York NY, 10028, USA

**Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch  
Lin Kou Laboratories

**Lab Address:** No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

**Test Location:** No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City  
33383, Taiwan

**FCC Registration / Designation Number:** 788550 / TW0003



This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

## Table of Contents

|                                                                      |           |
|----------------------------------------------------------------------|-----------|
| <b>Release Control Record .....</b>                                  | <b>3</b>  |
| <b>1      Certificate of Conformity.....</b>                         | <b>4</b>  |
| <b>2      Summary of Test Results.....</b>                           | <b>5</b>  |
| 2.1    Measurement Uncertainty .....                                 | 5         |
| 2.2    Modification Record .....                                     | 5         |
| <b>3      General Information.....</b>                               | <b>6</b>  |
| 3.1    General Description of EUT .....                              | 6         |
| 3.2    Description of Test Modes .....                               | 7         |
| 3.2.1 Test Mode Applicability and Tested Channel Detail.....         | 8         |
| 3.3    Description of Support Units .....                            | 9         |
| 3.3.1 Configuration of System under Test .....                       | 9         |
| 3.4    General Description of Applied Standards and References ..... | 10        |
| <b>4      Test Types and Results .....</b>                           | <b>11</b> |
| 4.1    Radiated Emission and Bandedge Measurement.....               | 11        |
| 4.1.1 Limits of Radiated Emission and Bandedge Measurement .....     | 11        |
| 4.1.2 Test Instruments .....                                         | 12        |
| 4.1.3 Test Procedures.....                                           | 13        |
| 4.1.4 Deviation from Test Standard .....                             | 13        |
| 4.1.5 Test Setup.....                                                | 14        |
| 4.1.6 EUT Operating Conditions.....                                  | 14        |
| 4.1.7 Test Results .....                                             | 15        |
| 4.2    Conducted Emission Measurement.....                           | 16        |
| 4.2.1 Limits of Conducted Emission Measurement .....                 | 16        |
| 4.2.2 Test Instruments .....                                         | 16        |
| 4.2.3 Test Procedures.....                                           | 17        |
| 4.2.4 Deviation from Test Standard .....                             | 17        |
| 4.2.5 Test Setup.....                                                | 17        |
| 4.2.6 EUT Operating Conditions.....                                  | 17        |
| 4.2.7 Test Results .....                                             | 18        |
| 4.3    Conducted Output Power Measurement.....                       | 22        |
| 4.3.1 Limits of Conducted Output Power Measurement .....             | 22        |
| 4.3.2 Test Setup.....                                                | 22        |
| 4.3.3 Test Instruments .....                                         | 22        |
| 4.3.4 Test Procedures.....                                           | 22        |
| 4.3.5 Deviation from Test Standard .....                             | 22        |
| 4.3.6 EUT Operating Conditions.....                                  | 22        |
| 4.3.7 Test Results .....                                             | 23        |
| <b>5      Pictures of Test Arrangements.....</b>                     | <b>24</b> |
| <b>Appendix – Information of the Testing Laboratories .....</b>      | <b>25</b> |

### Release Control Record

| Issue No.   | Description       | Date Issued   |
|-------------|-------------------|---------------|
| RF200424C06 | Original release. | Jun. 17, 2020 |

## 1 Certificate of Conformity

**Product:** veeaHub

**Brand:** 

**Test Model:** VHE09-4GL

**Series Model:** VHE09XXXX (X=A-Z, 0-9, blank or "-")

**Sample Status:** Engineering sample


**Applicant:** Veea Inc

**Test Date:** Jun. 02 ~ Jun. 11, 2020

**Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

**Prepared by :**   
Polly Chien / Specialist

**Approved by :**   
Bruce Chen / Senior Project Engineer

## 2 Summary of Test Results

| 47 CFR FCC Part 15, Subpart C (Section 15.247) |                                              |        |                                                                                    |
|------------------------------------------------|----------------------------------------------|--------|------------------------------------------------------------------------------------|
| FCC Clause                                     | Test Item                                    | Result | Remarks                                                                            |
| 15.207                                         | AC Power Conducted Emission                  | Pass   | Meet the requirement of limit.<br>Minimum passing margin is -0.65dB at 0.52155MHz. |
| 15.205 /<br>15.209 /<br>15.247(d)              | Radiated Emissions and Band Edge Measurement | Pass   | Meet the requirement of limit.<br>Minimum passing margin is -2.4dB at 12185.00MHz. |
| 15.247(d)                                      | Antenna Port Emission                        | N/A    | Refer to note 1                                                                    |
| 15.247(a)(2)                                   | 6dB bandwidth                                | N/A    | Refer to note 1                                                                    |
| 15.247(b)                                      | Conducted power                              | Pass   | Meet the requirement of limit.                                                     |
| 15.247(e)                                      | Power Spectral Density                       | N/A    | Refer to note 1                                                                    |
| 15.203                                         | Antenna Requirement                          | Pass   | No antenna connector is used.                                                      |

Note:

1. This report is a partial report. Therefore, only Output Power, AC Power Conducted Emission and Radiated Emissions above 1GHz were verified and recorded in this report. Other testing data please refer to the original BV CPS report no.: RF181115C24-3.
2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

### 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                        | Frequency      | Expanded Uncertainty (k=2) (±) |
|------------------------------------|----------------|--------------------------------|
| Conducted Emissions at mains ports | 150kHz ~ 30MHz | 2.79 dB                        |
| Radiated Emissions above 1 GHz     | 1GHz ~ 18GHz   | 2.29 dB                        |
|                                    | 18GHz ~ 40GHz  | 2.29 dB                        |

### 2.2 Modification Record

There were no modifications required for compliance.

### 3 General Information

#### 3.1 General Description of EUT

|                       |                                                                                        |
|-----------------------|----------------------------------------------------------------------------------------|
| Product               | veeaHub                                                                                |
| Brand                 | <b>veeaHub</b> ™                                                                       |
| Test Model            | VHE09-4GL                                                                              |
| Series Model          | VHE09XXXXX (X=A-Z, 0-9, blank or “ ”)                                                  |
| Model Difference      | Marketing purposes                                                                     |
| Sample Status         | Engineering sample                                                                     |
| Power Supply Rating   | 48Vdc (Adapter and PoE)                                                                |
| Modulation Type       | CCK, DQPSK, DBPSK for DSSS<br>64QAM, 16QAM, QPSK, BPSK for OFDM                        |
| Modulation Technology | DSSS, OFDM                                                                             |
| Transfer Rate         | 802.11b:11/5.5/2/1Mbps<br>802.11g: 54/48/36/24/18/12/9/6Mbps<br>802.11n: up to 300Mbps |
| Operating Frequency   | 2412~2462MHz                                                                           |
| Number of Channel     | 802.11b, 802.11g, 802.11n (HT20): 11<br>802.11n (HT40): 7                              |
| Output Power          | 516.579mW                                                                              |
| Antenna Type          | Chip antenna with 3.2dBi gain                                                          |
| Antenna Connector     | NA                                                                                     |
| Accessory Device      | Adapter                                                                                |
| Cable Supplied        | NA                                                                                     |

Note:

1. This report is a supplementary report to the original BV CPS report no.: RF181115C24-3. Exhibit prepared for FCC Spot Check Verification report, the format, test items and amount of spot-check test data are decided by applicant's engineering judgment, for more details please refer to declaration letter exhibit. Therefore, only Output Power, AC Power Conducted Emission and Radiated Emissions above 1GHz were verified and recorded in this report. AC Power Conducted Emission and Radiated Emission tests according to original report radiated emission worst channel.
2. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers.

| Band   | Modulation Mode | CDD Mode | Beamforming Mode | TX Function |
|--------|-----------------|----------|------------------|-------------|
| 2.4GHz | 802.11b         | Support  | Not Support      | 2TX         |
|        | 802.11g         | Support  | Not Support      | 2TX         |
|        | 802.11n (HT20)  | Support  | Not Support      | 2TX         |
|        | 802.11n (HT40)  | Support  | Not Support      | 2TX         |

\* For 802.11n, CDD mode and Beamforming mode are presented in power output test item. For other test items, CDD mode is the worst case for final tests after pretesting.

3. The EUT uses following adapter and PoE.

| Adapter      |                                  |
|--------------|----------------------------------|
| Brand        | EDAC Power Electronics Co., Ltd. |
| Model        | EA1062SGR-480                    |
| Input Power  | 100-240Vac ~2.5A, 50-60Hz        |
| Output Power | 48Vdc / 1.35A                    |
| Power Line   | 1.2m DC cable with one core      |

| PoE (Support unit) |           |
|--------------------|-----------|
| Model              | APOE02-WM |
| Output Power       | 48Vdc     |

4. WLAN, zigbee, Bluetooth and LoRa technology can transmit at same time.

5. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

### 3.2 Description of Test Modes

11 channels are provided for 802.11b, 802.11g and 802.11n (HT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 1       | 2412MHz   | 7       | 2442MHz   |
| 2       | 2417MHz   | 8       | 2447MHz   |
| 3       | 2422MHz   | 9       | 2452MHz   |
| 4       | 2427MHz   | 10      | 2457MHz   |
| 5       | 2432MHz   | 11      | 2462MHz   |
| 6       | 2437MHz   |         |           |

7 channels are provided for 802.11n (HT40):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 3       | 2422MHz   | 7       | 2442MHz   |
| 4       | 2427MHz   | 8       | 2447MHz   |
| 5       | 2432MHz   | 9       | 2452MHz   |
| 6       | 2437MHz   |         |           |

### 3.2.1 Test Mode Applicability and Tested Channel Detail

| EUT Configure Mode | Applicable to |     |   | Description        |
|--------------------|---------------|-----|---|--------------------|
|                    | RE $\geq$ 1G  | PLC | P |                    |
| A                  | ✓             | ✓   | ✓ | Power from adapter |
| B                  | -             | ✓   | - | Power from PoE     |

Where RE $\geq$ 1G: Radiated Emission above 1GHz & Bandedge P: Conducted Output Power Measurement

Measurement

PLC: Power Line Conducted Emission

Note: The antenna had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane.

#### Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT Configure Mode | Mode           | Available Channel | Tested Channel | Modulation Technology | Modulation Type | Data Rate (Mbps) | Remark |
|--------------------|----------------|-------------------|----------------|-----------------------|-----------------|------------------|--------|
| A                  | 802.11n (HT20) | 1 to 11           | 6              | OFDM                  | BPSK            | 6.5              | -      |

#### Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT Configure Mode | Mode           | Available Channel | Tested Channel | Modulation Technology | Modulation Type | Data Rate (Mbps) | Remark |
|--------------------|----------------|-------------------|----------------|-----------------------|-----------------|------------------|--------|
| A, B               | 802.11n (HT20) | 1 to 11           | 6              | OFDM                  | BPSK            | 6.5              | -      |

#### Conducted Output Power Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

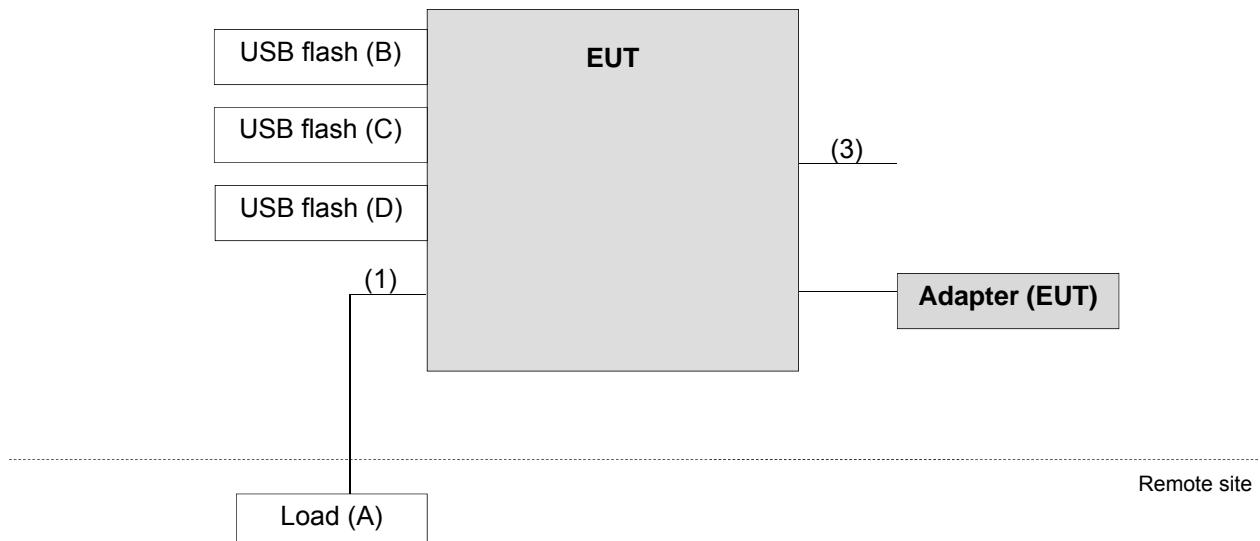
| EUT Configure Mode | Mode           | Available Channel | Tested Channel | Modulation Technology | Modulation Type | Data Rate (Mbps) | Remark |
|--------------------|----------------|-------------------|----------------|-----------------------|-----------------|------------------|--------|
| A                  | 802.11b        | 1 to 11           | 1, 6, 11       | DSSS                  | DBPSK           | 1.0              | -      |
|                    | 802.11g        | 1 to 11           | 1, 6, 11       | OFDM                  | BPSK            | 6.0              | -      |
|                    | 802.11n (HT20) | 1 to 11           | 1, 6, 11       | OFDM                  | BPSK            | 6.5              | -      |
|                    | 802.11n (HT40) | 3 to 9            | 3, 6, 9        | OFDM                  | BPSK            | 13.5             | -      |

#### Test Condition:

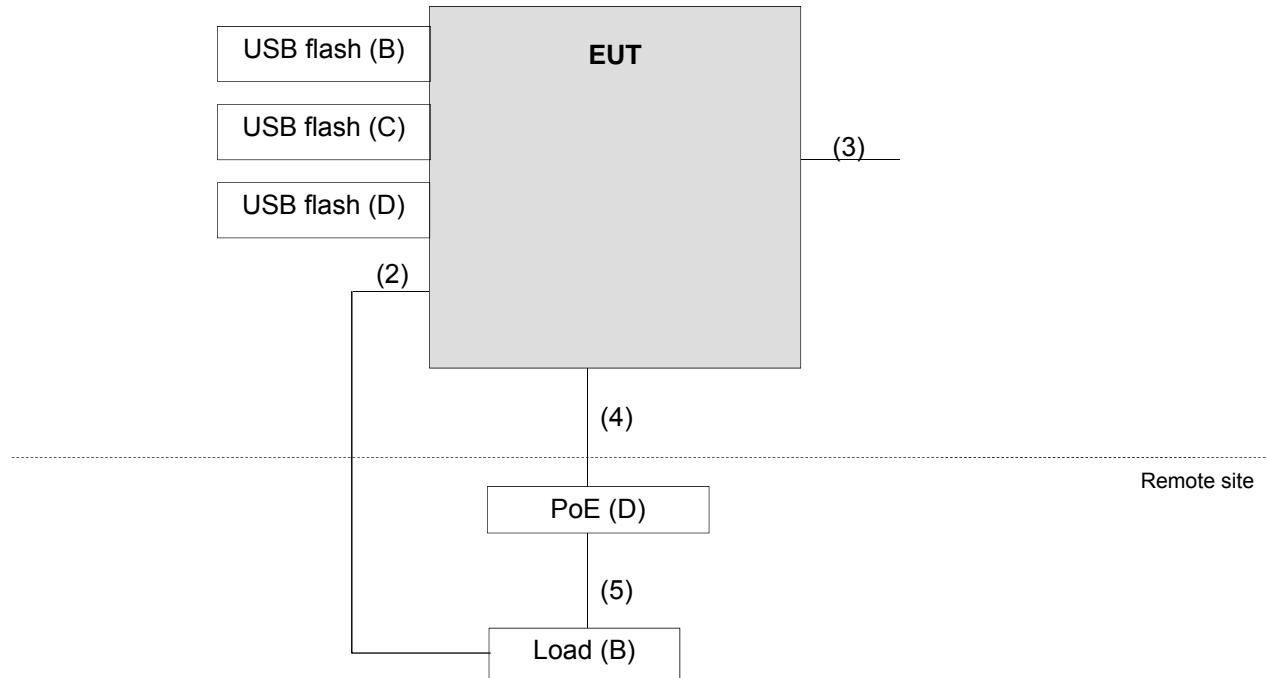
| Applicable to | Environmental Conditions | Input Power           | Tested by    |
|---------------|--------------------------|-----------------------|--------------|
| RE $\geq$ 1G  | 23 deg. C, 67% RH        | 120Vac, 60Hz          | Adair Peng   |
| PLC           | 25 deg. C, 68% RH        | 120Vac, 60Hz<br>48Vdc | Jones Chang  |
| P             | 25 deg. C, 60% RH        | 120Vac, 60Hz          | Jisyong Wang |

### 3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


| ID | Product   | Brand | Model No. | Serial No. | FCC ID | Remarks                  |
|----|-----------|-------|-----------|------------|--------|--------------------------|
| A. | Load      | NA    | NA        | NA         | NA     | -                        |
| B. | USB Flash | HP    | v250W     | 04         | NA     | -                        |
| C. | USB Flash | HP    | v250W     | 05         | NA     | -                        |
| D. | USB Flash | HP    | v250W     | 09         | NA     | -                        |
| E. | PoE       | NA    | APOE02-WM | NA         | NA     | Provided by manufacturer |

Note: All power cords of the above support units are non-shielded (1.8m).


| ID | Cable Descriptions | Qty. | Length (m) | Shielding (Yes/No) | Cores (Qty.) | Remarks     |
|----|--------------------|------|------------|--------------------|--------------|-------------|
| 1. | LAN cable          | 2    | 1.5        | N                  | 0            | RJ45, Cat5e |
| 2. | LAN cable          | 1    | 1.5        | N                  | 0            | RJ45, Cat5e |
| 3. | Console cable      | 1    | 2          | N                  | 0            | -           |
| 4. | LAN cable          | 1    | 1.5        | N                  | 0            | RJ45, Cat5e |
| 5. | LAN cable          | 1    | 1.5        | N                  | 0            | RJ45, Cat5e |

#### 3.3.1 Configuration of System under Test

Test Mode A



## Test Mode B



### 3.4 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

#### Test standard:

**FCC Part 15, Subpart C (15.247)**

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

#### References Test Guidance:

**KDB 558074 D01 15.247 Meas Guidance v05r02**

**KDB 662911 D01 Multiple Transmitter Output v02r01**

All test items have been performed as a reference to the above KDB test guidance.

## 4 Test Types and Results

### 4.1 Radiated Emission and Bandedge Measurement

#### 4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 30dB below the highest level of the desired power:

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009 ~ 0.490        | 2400/F(kHz)                          | 300                              |
| 0.490 ~ 1.705        | 24000/F(kHz)                         | 30                               |
| 1.705 ~ 30.0         | 30                                   | 30                               |
| 30 ~ 88              | 100                                  | 3                                |
| 88 ~ 216             | 150                                  | 3                                |
| 216 ~ 960            | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

Note:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB<sub>u</sub>V/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

#### 4.1.2 Test Instruments

| Description & Manufacturer                | Model No.                             | Serial No.                                          | Cal. Date     | Cal. Due      |
|-------------------------------------------|---------------------------------------|-----------------------------------------------------|---------------|---------------|
| Test Receiver<br>ROHDE & SCHWARZ          | ESCI                                  | 100424                                              | Dec. 31, 2019 | Dec. 30, 2020 |
| Spectrum Analyzer<br>ROHDE & SCHWARZ      | FSP40                                 | 100269                                              | Jun. 10, 2019 | Jun. 09, 2020 |
|                                           |                                       |                                                     | Jun. 09, 2020 | Jun. 08, 2021 |
| HORN Antenna<br>SCHWARZBECK               | 9120D                                 | 209                                                 | Nov. 24, 2019 | Nov. 23, 2020 |
| HORN Antenna<br>SCHWARZBECK               | BBHA 9170                             | BBHA9170241                                         | Nov. 24, 2019 | Nov. 23, 2020 |
| Loop Antenna<br>TESEQ                     | HLA 6121                              | 45745                                               | Jul. 01, 2019 | Jun. 30, 2020 |
| Preamplifier<br>Agilent<br>(Below 1GHz)   | 8447D                                 | 2944A10738                                          | Aug. 20, 2019 | Aug. 19, 2020 |
| Preamplifier<br>KEYSIGHT<br>(Above 1GHz)  | 8449B                                 | 3008A01976                                          | Aug. 20, 2019 | Aug. 19, 2020 |
| RF Coaxial Cable<br>WOKEN<br>With 5dB PAD | 8D-FB                                 | Cable-CH3-01                                        | Aug. 20, 2019 | Aug. 19, 2020 |
| RF signal cable<br>HUBER+SUHNER           | SUCOFLEX 104                          | Cable-CH3-03<br>(223653/4)                          | Aug. 20, 2019 | Aug. 19, 2020 |
| RF signal cable<br>HUBER+SUHNER&<br>EMCI  | SUCOFLEX<br>104&EMC104-SM-<br>SM-8000 | Cable-CH3-03<br>(309224+170907)                     | Aug. 20, 2019 | Aug. 19, 2020 |
| Software<br>BV ADT                        | ADT_Radiated_<br>V7.6.15.9.5          | NA                                                  | NA            | NA            |
| Antenna Tower<br>inn-co GmbH              | MA 4000                               | 013303                                              | NA            | NA            |
| Antenna Tower Controller<br>BV ADT        | AT100                                 | AT93021702                                          | NA            | NA            |
| Turn Table<br>BV ADT                      | TT100                                 | TT93021702                                          | NA            | NA            |
| Turn Table Controller<br>BV ADT           | SC100                                 | SC93021702                                          | NA            | NA            |
| Boresight Antenna Fixture                 | FBA-01                                | FBA-SIP01                                           | NA            | NA            |
| USB Wideband Power<br>Sensor<br>KEYSIGHT  | U2021XA                               | MY55050005/MY5519<br>0004/MY55190007/MY<br>55210005 | Jul. 15, 2019 | Jul. 14, 2020 |

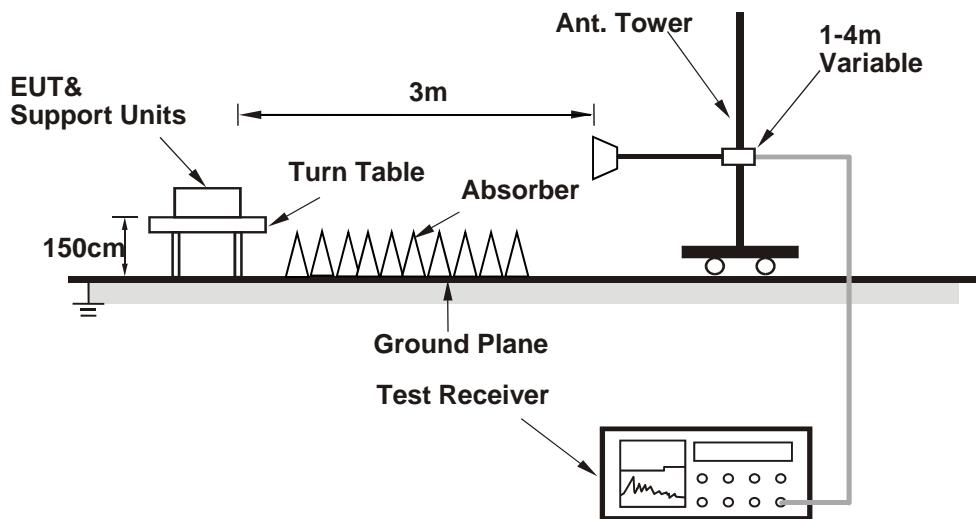
Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.  
 2. The test was performed in HwaYa Chamber 3.

#### 4.1.3 Test Procedures

##### For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

##### Note:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is  $\geq 1/T$  (Duty cycle < 98%) or 10Hz (Duty cycle  $\geq 98\%$ ) for Average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.

#### 4.1.4 Deviation from Test Standard

No deviation.

#### 4.1.5 Test Setup

##### For Radiated emission above 1GHz



For the actual test configuration, please refer to the attached file (Test Setup Photo).

#### 4.1.6 EUT Operating Conditions

- Set the EUT under transmission condition continuously at specific channel frequency.

#### 4.1.7 Test Results

Above 1GHz worst-Case data:

802.11n (HT20)

|                 |              |                   |              |
|-----------------|--------------|-------------------|--------------|
| CHANNEL         | TX Channel 6 | DETECTOR FUNCTION | Peak (PK)    |
| FREQUENCY RANGE | 1GHz ~ 25GHz |                   | Average (AV) |

| ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                 |                               |                   |                |                          |                            |                        |                                |
|-----------------------------------------------------|-----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
| NO.                                                 | FREQ.<br>(MHz)  | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1                                                   | *2437.00        | 117.3 PK                      |                   |                | 1.32 H                   | 302                        | 85.0                   | 32.3                           |
| 2                                                   | *2437.00        | 105.7 AV                      |                   |                | 1.32 H                   | 302                        | 73.4                   | 32.3                           |
| 3                                                   | 4874.00         | 63.4 PK                       | 74.0              | -10.6          | 1.24 H                   | 331                        | 59.7                   | 3.7                            |
| 4                                                   | 4874.00         | 48.4 AV                       | 54.0              | -5.6           | 1.24 H                   | 331                        | 44.7                   | 3.7                            |
| 5                                                   | 12185.00        | 68.9 PK                       | 74.0              | -5.1           | 1.24 H                   | 10                         | 51.8                   | 17.1                           |
| <b>6</b>                                            | <b>12185.00</b> | <b>51.6 AV</b>                | <b>54.0</b>       | <b>-2.4</b>    | <b>1.24 H</b>            | <b>10</b>                  | <b>34.5</b>            | <b>17.1</b>                    |
| ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M   |                 |                               |                   |                |                          |                            |                        |                                |
| NO.                                                 | FREQ.<br>(MHz)  | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1                                                   | *2437.00        | 117.5 PK                      |                   |                | 2.69 V                   | 358                        | 85.2                   | 32.3                           |
| 2                                                   | *2437.00        | 106.0 AV                      |                   |                | 2.69 V                   | 358                        | 73.7                   | 32.3                           |
| 3                                                   | 4874.00         | 62.0 PK                       | 74.0              | -12.0          | 1.82 V                   | 299                        | 58.3                   | 3.7                            |
| 4                                                   | 4874.00         | 46.8 AV                       | 54.0              | -7.2           | 1.82 V                   | 299                        | 43.1                   | 3.7                            |
| 5                                                   | 12185.00        | 70.3 PK                       | 74.0              | -3.7           | 1.18 V                   | 335                        | 53.2                   | 17.1                           |
| 6                                                   | 12185.00        | 51.5 AV                       | 54.0              | -2.5           | 1.18 V                   | 335                        | 34.4                   | 17.1                           |

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " \* ": Fundamental frequency.

## 4.2 Conducted Emission Measurement

### 4.2.1 Limits of Conducted Emission Measurement

| Frequency (MHz) | Conducted Limit (dBuV) |         |
|-----------------|------------------------|---------|
|                 | Quasi-peak             | Average |
| 0.15 - 0.5      | 66 - 56                | 56 - 46 |
| 0.50 - 5.0      | 56                     | 46      |
| 5.0 - 30.0      | 60                     | 50      |

**Note:** 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

### 4.2.2 Test Instruments

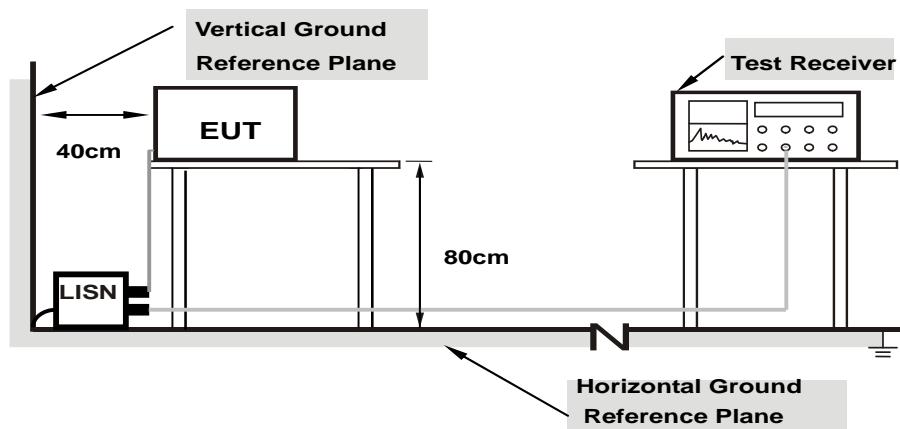
| Description & Manufacturer               | Model No.                | Serial No.     | Cal. Date     | Cal. Due      |
|------------------------------------------|--------------------------|----------------|---------------|---------------|
| Test Receiver<br>ROHDE & SCHWARZ         | ESR3                     | 102412         | Feb. 17, 2020 | Feb. 16, 2021 |
| RF signal cable (with 10dB PAD)<br>Woken | 5D-FB                    | Cable-cond2-01 | Sep. 05, 2019 | Sep. 04, 2020 |
| LISN<br>ROHDE & SCHWARZ<br>(EUT)         | ESH2-Z5                  | 100100         | Jan. 20, 2020 | Jan. 19, 2021 |
| LISN<br>ROHDE & SCHWARZ<br>(Peripheral)  | ESH3-Z5                  | 100312         | Aug. 13, 2019 | Aug. 12, 2020 |
| Software<br>ADT                          | BV ADT_Cond_<br>V7.3.7.4 | NA             | NA            | NA            |

**Note:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2 (Conduction 2).

3. The VCCI Site Registration No. is C-12047.

#### 4.2.3 Test Procedures


- The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

#### 4.2.4 Deviation from Test Standard

No deviation.

#### 4.2.5 Test Setup

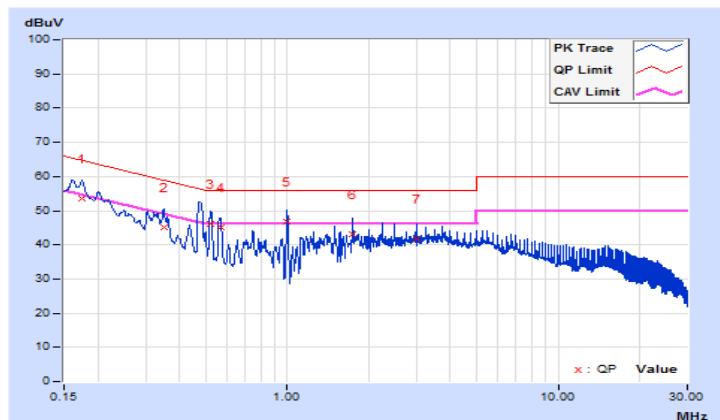


For the actual test configuration, please refer to the attached file (Test Setup Photo).

#### 4.2.6 EUT Operating Conditions

Same as 4.1.6.

#### 4.2.7 Test Results

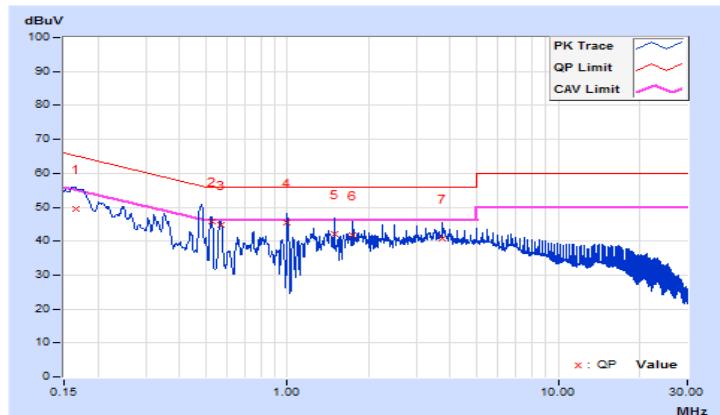

Worst-case data: 802.11n (HT20)

| Phase     | Line (L) | Detector Function | Quasi-Peak (QP) / Average (AV) |
|-----------|----------|-------------------|--------------------------------|
| Test Mode | A        |                   |                                |

| No | Freq.<br>[MHz] | Corr.<br>Factor<br>(dB) | Reading Value |       | Emission Level |       | Limit     |       | Margin |        |
|----|----------------|-------------------------|---------------|-------|----------------|-------|-----------|-------|--------|--------|
|    |                |                         | [dB (uV)]     |       | [dB (uV)]      |       | [dB (uV)] |       | (dB)   |        |
|    |                |                         | Q.P.          | AV.   | Q.P.           | AV.   | Q.P.      | AV.   | Q.P.   | AV.    |
| 1  | 0.17466        | 10.25                   | 43.43         | 34.18 | 53.68          | 44.43 | 64.74     | 54.74 | -11.06 | -10.31 |
| 2  | 0.34975        | 10.31                   | 34.78         | 29.23 | 45.09          | 39.54 | 58.97     | 48.97 | -13.88 | -9.43  |
| 3  | 0.52162        | 10.34                   | 35.82         | 34.34 | 46.16          | 44.68 | 56.00     | 46.00 | -9.84  | -1.32  |
| 4  | 0.56625        | 10.35                   | 34.62         | 32.92 | 44.97          | 43.27 | 56.00     | 46.00 | -11.03 | -2.73  |
| 5  | 0.99825        | 10.42                   | 36.52         | 33.69 | 46.94          | 44.11 | 56.00     | 46.00 | -9.06  | -1.89  |
| 6  | 1.74750        | 10.46                   | 32.80         | 31.10 | 43.26          | 41.56 | 56.00     | 46.00 | -12.74 | -4.44  |
| 7  | 2.99400        | 10.54                   | 31.19         | 27.51 | 41.73          | 38.05 | 56.00     | 46.00 | -14.27 | -7.95  |

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.

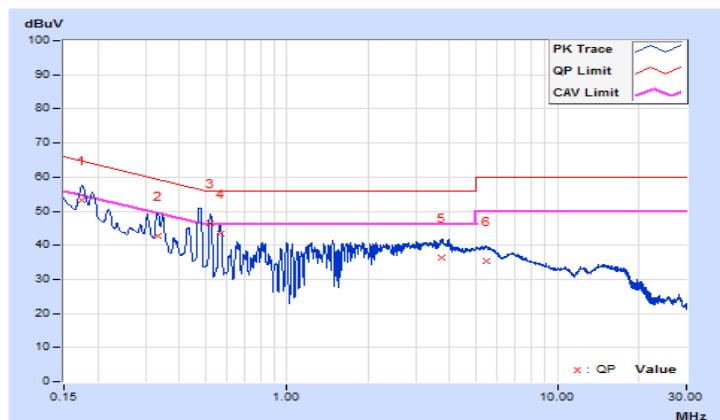



|           |             |                   |                                |
|-----------|-------------|-------------------|--------------------------------|
| Phase     | Neutral (N) | Detector Function | Quasi-Peak (QP) / Average (AV) |
| Test Mode | A           |                   |                                |

| No | Freq.<br>[MHz] | Corr.<br>Factor<br>(dB) | Reading Value<br>[dB (uV)] |       | Emission Level<br>[dB (uV)] |       | Limit<br>[dB (uV)] |       | Margin<br>(dB) |        |
|----|----------------|-------------------------|----------------------------|-------|-----------------------------|-------|--------------------|-------|----------------|--------|
|    |                |                         | Q.P.                       | AV.   | Q.P.                        | AV.   | Q.P.               | AV.   | Q.P.           | AV.    |
|    |                |                         |                            |       |                             |       |                    |       |                |        |
| 1  | 0.16575        | 10.23                   | 39.42                      | 27.37 | 49.65                       | 37.60 | 65.17              | 55.17 | -15.52         | -17.57 |
| 2  | 0.52467        | 10.32                   | 35.45                      | 34.67 | 45.77                       | 44.99 | 56.00              | 46.00 | -10.23         | -1.01  |
| 3  | 0.56625        | 10.33                   | 34.47                      | 32.77 | 44.80                       | 43.10 | 56.00              | 46.00 | -11.20         | -2.90  |
| 4  | 0.99825        | 10.42                   | 34.95                      | 32.94 | 45.37                       | 43.36 | 56.00              | 46.00 | -10.63         | -2.64  |
| 5  | 1.49775        | 10.44                   | 31.70                      | 27.23 | 42.14                       | 37.67 | 56.00              | 46.00 | -13.86         | -8.33  |
| 6  | 1.74750        | 10.46                   | 31.28                      | 28.55 | 41.74                       | 39.01 | 56.00              | 46.00 | -14.26         | -6.99  |
| 7  | 3.74526        | 10.60                   | 30.01                      | 24.43 | 40.61                       | 35.03 | 56.00              | 46.00 | -15.39         | -10.97 |

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.

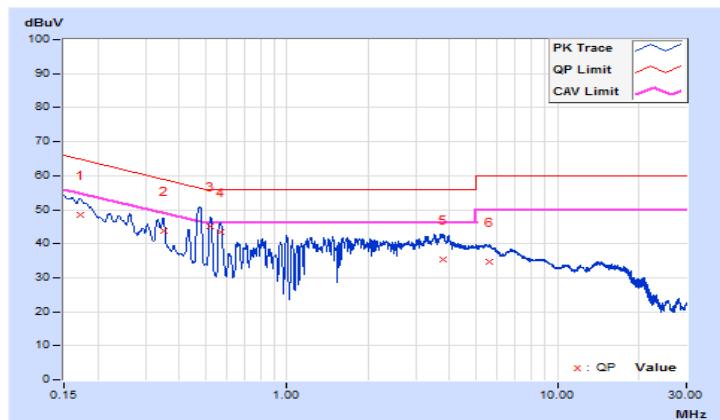



| Phase     | Line (L) | Detector Function | Quasi-Peak (QP) / Average (AV) |
|-----------|----------|-------------------|--------------------------------|
| Test Mode | B        |                   |                                |

| No       | Freq.<br>[MHz] | Corr.<br>Factor<br>(dB) | Reading Value |              | Emission Level |              | Limit        |              | Margin       |              |
|----------|----------------|-------------------------|---------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|
|          |                |                         | [dB (uV)]     |              | [dB (uV)]      |              | [dB (uV)]    |              | (dB)         |              |
|          |                |                         | Q.P.          | AV.          | Q.P.           | AV.          | Q.P.         | AV.          | Q.P.         | AV.          |
| 1        | 0.17420        | 10.25                   | 43.03         | 34.86        | 53.28          | 45.11        | 64.76        | 54.76        | -11.48       | -9.65        |
| 2        | 0.33264        | 10.30                   | 32.40         | 16.99        | 42.70          | 27.29        | 59.39        | 49.39        | -16.69       | -22.10       |
| <b>3</b> | <b>0.52155</b> | <b>10.34</b>            | <b>36.15</b>  | <b>35.01</b> | <b>46.49</b>   | <b>45.35</b> | <b>56.00</b> | <b>46.00</b> | <b>-9.51</b> | <b>-0.65</b> |
| 4        | 0.56625        | 10.35                   | 33.21         | 31.78        | 43.56          | 42.13        | 56.00        | 46.00        | -12.44       | -3.87        |
| 5        | 3.72975        | 10.58                   | 25.66         | 15.58        | 36.24          | 26.16        | 56.00        | 46.00        | -19.76       | -19.84       |
| 6        | 5.48700        | 10.63                   | 24.71         | 14.42        | 35.34          | 25.05        | 60.00        | 50.00        | -24.66       | -24.95       |

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.




|           |             |                   |                                |
|-----------|-------------|-------------------|--------------------------------|
| Phase     | Neutral (N) | Detector Function | Quasi-Peak (QP) / Average (AV) |
| Test Mode | B           |                   |                                |

| No | Freq.<br>[MHz] | Corr.<br>Factor<br>(dB) | Reading Value | Emission Level |           | Limit |           | Margin |        |        |
|----|----------------|-------------------------|---------------|----------------|-----------|-------|-----------|--------|--------|--------|
|    |                |                         | [dB (uV)]     |                | [dB (uV)] |       | [dB (uV)] |        | (dB)   |        |
|    |                |                         | Q.P.          | AV.            | Q.P.      | AV.   | Q.P.      | AV.    | Q.P.   | AV.    |
| 1  | 0.17146        | 10.23                   | 38.36         | 29.44          | 48.59     | 39.67 | 64.89     | 54.89  | -16.30 | -15.22 |
| 2  | 0.34975        | 10.29                   | 33.35         | 28.86          | 43.64     | 39.15 | 58.97     | 48.97  | -15.33 | -9.82  |
| 3  | 0.52246        | 10.32                   | 34.84         | 33.58          | 45.16     | 43.90 | 56.00     | 46.00  | -10.84 | -2.10  |
| 4  | 0.56625        | 10.33                   | 33.05         | 32.10          | 43.38     | 42.43 | 56.00     | 46.00  | -12.62 | -3.57  |
| 5  | 3.79950        | 10.60                   | 24.72         | 14.97          | 35.32     | 25.57 | 56.00     | 46.00  | -20.68 | -20.43 |
| 6  | 5.63100        | 10.67                   | 23.97         | 14.25          | 34.64     | 24.92 | 60.00     | 50.00  | -25.36 | -25.08 |

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.



### 4.3 Conducted Output Power Measurement

#### 4.3.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

Per KDB 662911 D01 Multiple Transmitter Output Method of conducted output power measurement on IEEE 802.11 devices,


Array Gain = 0 dB (i.e., no array gain) for  $N_{ANT} \leq 4$ ;

Array Gain = 0 dB (i.e., no array gain) for channel widths  $\geq 40$  MHz for any  $N_{ANT}$ ;

Array Gain =  $5 \log(N_{ANT}/N_{SS})$  dB or 3 dB, whichever is less for 20-MHz channel widths with  $N_{ANT} \geq 5$ .

For power measurements on all other devices: Array Gain =  $10 \log(N_{ANT}/N_{SS})$  dB.

#### 4.3.2 Test Setup



#### 4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

#### 4.3.4 Test Procedures

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

#### 4.3.5 Deviation from Test Standard

No deviation.

#### 4.3.6 EUT Operating Conditions

Same as item 4.3.6.

#### 4.3.7 Test Results

##### 802.11b

| Channel | Frequency (MHz) | Average Power (dBm) |         | Total Power (mW) | Total Power (dBm) | Limit (dBm) | Pass / Fail |
|---------|-----------------|---------------------|---------|------------------|-------------------|-------------|-------------|
|         |                 | Chain 0             | Chain 1 |                  |                   |             |             |
| 1       | 2412            | 13.94               | 14.34   | 51.938           | 17.15             | 30          | Pass        |
| 6       | 2437            | 16.55               | 17.53   | 101.810          | 20.08             | 30          | Pass        |
| 11      | 2462            | 14.66               | 14.97   | 60.647           | 17.83             | 30          | Pass        |

##### 802.11g

| Channel | Frequency (MHz) | Average Power (dBm) |         | Total Power (mW) | Total Power (dBm) | Limit (dBm) | Pass / Fail |
|---------|-----------------|---------------------|---------|------------------|-------------------|-------------|-------------|
|         |                 | Chain 0             | Chain 1 |                  |                   |             |             |
| 1       | 2412            | 18.83               | 19.75   | 170.790          | 22.32             | 30          | Pass        |
| 6       | 2437            | 22.66               | 23.26   | 396.338          | 25.98             | 30          | Pass        |
| 11      | 2462            | 21.09               | 21.45   | 268.166          | 24.28             | 30          | Pass        |

##### 802.11n (HT20)

| Channel | Frequency (MHz) | Average Power (dBm) |         | Total Power (mW) | Total Power (dBm) | Limit (dBm) | Pass / Fail |
|---------|-----------------|---------------------|---------|------------------|-------------------|-------------|-------------|
|         |                 | Chain 0             | Chain 1 |                  |                   |             |             |
| 1       | 2412            | 19.40               | 19.83   | 183.257          | 22.63             | 30          | Pass        |
| 6       | 2437            | 23.33               | 24.79   | 516.579          | 27.13             | 30          | Pass        |
| 11      | 2462            | 20.55               | 21.32   | 249.020          | 23.96             | 30          | Pass        |

##### 802.11n (HT40)

| Channel | Frequency (MHz) | Average Power (dBm) |         | Total Power (mW) | Total Power (dBm) | Limit (dBm) | Pass / Fail |
|---------|-----------------|---------------------|---------|------------------|-------------------|-------------|-------------|
|         |                 | Chain 0             | Chain 1 |                  |                   |             |             |
| 3       | 2422            | 16.13               | 16.76   | 88.444           | 19.47             | 30          | Pass        |
| 6       | 2437            | 20.56               | 20.95   | 238.214          | 23.77             | 30          | Pass        |
| 9       | 2452            | 20.33               | 20.54   | 221.135          | 23.45             | 30          | Pass        |

## 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

## Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

### **Lin Kou EMC/RF Lab**

Tel: 886-2-26052180

Fax: 886-2-26051924

### **Hsin Chu EMC/RF/Telecom Lab**

Tel: 886-3-6668565

Fax: 886-3-6668323

### **Hwa Ya EMC/RF/Safety Lab**

Tel: 886-3-3183232

Fax: 886-3-3270892

**Email:** [service.adt@tw.bureauveritas.com](mailto:service.adt@tw.bureauveritas.com)

**Web Site:** [www.bureauveritas-adt.com](http://www.bureauveritas-adt.com)

The address and road map of all our labs can be found in our web site also.

--- END ---