RF EXPOSURE EVALUATION

FCC ID: 2ARWY-G100

According to KDB 447498 D01 General RF Exposure Guidance v06 and FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b):

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f_{\text{(GHz)}}}] \leq 3.0 \text{ for } 1\text{-g SAR} \text{ and } \leq 7.5 \text{ for } 10\text{-g extremity SAR,}^{16} \text{ where}$

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation¹⁷
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Routine SAR evaluation refers to that specifically required by §2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

909.5MHz worst case:

Channel (MHz)	Field Strength (dBµV/m)	Maximum output power (dBm)	•	Max Tune Up Power (dBm)	Distance (mm)	Calcul ation results	Limit
909.5	85.22	-10.04	-10.04±1	-9.04	5	0.024	3

EIRP=E-104.8+20logD=85.22-104.8+20log3=-10.04 dBm

Note: E=EIRP-20logD+104.8

Where:

E=electric field strength in dBµV/m

EIRP=equivalent isotropic radiated power in dBm

D=specified measurement distance in meters

Test Results: PASS.