

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen,
Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com

Report No.: SZEM180200152405
Page : 1 of 56

FCC SAR TEST REPORT

Application No:	SZEM1802001524RG
Applicant:	INNO Communications LLC
Manufacturer:	INNO Communications LLC
Factory:	INNO Communications LLC
Product Name:	Smartphone
Model No.(EUT):	TE500
Trade Mark:	Pantech
FCC ID:	2ARV6-TE500
Standards:	FCC 47CFR §2.1093
Date of Receipt:	2018-09-20
Date of Test:	2018-09-21 to 2018-10-09
Date of Issue:	2018-10-17
Test Result :	PASS *

* In the configuration tested, the EUT detailed in this report complied with the standards specified above.

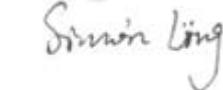
Authorized Signature:

Derek Yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


REVISION HISTORY

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2018-10-17		Original

TEST SUMMARY

Frequency Band	Maximum Reported SAR(W/kg)		
	Head	Body-worn	Hotspot
GSM850	0.57	0.52	1.11
GSM1900	0.49	0.31	0.66
LTE Band 4	0.53	0.53	0.78
LTE Band 13	0.45	0.63	0.74
WI-FI (2.4GHz)	1.04	0.06	0.21
SAR Limited(w/kg)	1.6		
Maximum Simultaneous Transmission SAR (W/kg)			
Scenario	Head	Body-worn	Hotspot
Sum SAR	1.58	0.72	1.32
SPLSR	N/A	N/A	N/A
SPLSR Limited	0.04		

Approved & Released by

Simon Ling

SAR Manager

Tested by

Jackson Li

SAR Engineer

CONTENTS

1 GENERAL INFORMATION.....	6
1.1 DETAILS OF CLIENT	6
1.2 TEST LOCATION.....	6
1.3 TEST FACILITY	7
1.4 GENERAL DESCRIPTION OF EUT.....	8
1.5 TEST SPECIFICATION.....	9
1.6 RF EXPOSURE LIMITS	9
2 SAR MEASUREMENTS SYSTEM CONFIGURATION.....	10
2.1 THE SAR MEASUREMENT SYSTEM	10
2.2 ISOTROPIC E-FIELD PROBE EX3DV4.....	11
2.3 DATA ACQUISITION ELECTRONICS (DAE).....	12
2.4 SAM TWIN PHANTOM	12
2.5 ELI PHANTOM.....	13
2.6 DEVICE HOLDER FOR TRANSMITTERS	14
2.7 MEASUREMENT PROCEDURE.....	15
2.7.1 Scanning procedure.....	15
2.7.2 Data Storage.....	17
2.7.3 Data Evaluation by SEMCAD.....	17
3 DESCRIPTION OF TEST POSITION.....	19
3.1 HEAD EXPOSURE CONDITION	19
3.1.1 SAM Phantom Shape.....	19
3.1.2 EUT constructions.....	20
3.1.3 Definition of the “cheek” position.....	20
3.1.4 Definition of the “tilted” position.....	21
3.2 BODY EXPOSURE CONDITION	22
3.2.1 Body-worn accessory exposure conditions.....	22
3.2.2 Wireless Router exposure conditions.....	23
4 SAR SYSTEM VERIFICATION PROCEDURE.....	24
4.1 TISSUE SIMULATE LIQUID.....	24
4.1.1 Recipes for Tissue Simulate Liquid.....	24
4.1.2 Measurement for Tissue Simulate Liquid	25
4.2 SAR SYSTEM CHECK.....	26
4.2.1 Justification for Extended SAR Dipole Calibrations	27

4.2.2	<i>Summary System Check Result(s)</i>	28
4.2.3	<i>Detailed System Check Results</i>	28
5	TEST RESULTS AND MEASUREMENT DATA	29
5.1	3G SAR TEST REDUCTION PROCEDURE	29
5.2	OPERATION CONFIGURATIONS	29
5.2.1	<i>GSM Test Configuration</i>	29
5.2.2	<i>WiFi Test Configuration</i>	30
5.2.3	<i>LTE Test Configuration</i>	33
5.2.4	<i>DUT Antenna Locations</i>	34
5.2.5	<i>EUT side for SAR Testing</i>	35
5.2.6	<i>Stand-alone SAR test evaluation</i>	36
5.3	MEASUREMENT OF RF CONDUCTED POWER	37
5.3.1	<i>Conducted Power Of GSM</i>	37
5.3.2	<i>Conducted Power Of LTE</i>	38
5.3.3	<i>Conducted Power Of WiFi and BT</i>	41
5.4	MEASUREMENT OF SAR DATA	43
5.4.1	<i>SAR Result Of GSM850</i>	43
5.4.2	<i>SAR Result Of GSM1900</i>	44
5.4.3	<i>SAR Result Of LTE Band 4</i>	45
5.4.4	<i>SAR Result Of LTE Band 13</i>	46
5.4.5	<i>SAR Result Of WiFi 2.4G</i>	47
5.5	MULTIPLE TRANSMITTER EVALUATION	49
5.5.1	<i>Simultaneous SAR SAR test evaluation</i>	49
5.5.2	<i>Estimated SAR</i>	49
6	EQUIPMENT LIST	53
7	MEASUREMENT UNCERTAINTY	55
8	CALIBRATION CERTIFICATE	55
9	PHOTOGRAPHS	55
APPENDIX A: DETAILED SYSTEM CHECK RESULTS		56
APPENDIX B: DETAILED TEST RESULTS		56
APPENDIX C: CALIBRATION CERTIFICATE		56
APPENDIX D: PHOTOGRAPHS		56

1 General Information

1.1 Details of Client

Applicant:	INNO Communications LLC
Address:	4501 W Roundstone Way, Waukegan IL 60085,USA
Manufacturer:	INNO Communications LLC
Address:	4501 W Roundstone Way, Waukegan IL 60085,USA
Factory:	INNO Communications LLC
Address:	4501 W Roundstone Way, Waukegan IL 60085,USA

1.2 Test Location

Company: SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab
Address: No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China
Post code: 518057
Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
E-mail: ee.shenzhen@sgs.com

1.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- **CNAS (No. CNAS L2929)**

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

- **A2LA (Certificate No. 3816.01)**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 3816.01.

- **VCCI**

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

- **FCC –Designation Number: CN1178**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

- **Industry Canada (IC)**

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

1.4 General Description of EUT

Product Name:	Smartphone
Model No.(EUT):	TE500
Trade Mark:	Pantech
Product Phase:	production unit
Device Type :	portable device
Exposure Category:	uncontrolled environment / general population
SN:	d99ad4f7/d7d9cc5d/d99ad411
FCC ID:	2ARV6-TE500
Hardware Version:	Q5002_V1.0
Software Version:	TE500_01.01.01.182712
Antenna Type:	Inner Antenna

Device Operating Configurations :

Modulation Mode:	GSM: GMSK, 8PSK; LTE: QPSK,16QAM; WIFI: DSSS; OFDM; BT: GFSK, $\pi/4$ DQPSK,8DPSK		
Device Class:	B		
GPRS Multi-slots Class:	33	EGPRS Multi-slots Class:	33
Power Class	4, tested with power level 5(GSM850)		
	1, tested with power level 0(GSM1900)		
	3, tested with power control Max Power(LTE Band 4/13)		
Frequency Bands:	Band	Tx (MHz)	Rx (MHz)
	GSM850	824 - 849	869 - 894
	GSM1900	1850-1910	1930-1990
	LTE Band 4	1710-1755	2110-2155
	LTE Band 13	777-787	746-756
	WIFI(2.4GHz)	2412-2462	2412-2462
	BT	2402-2480	2402-2480
Battery Information:	Model No.:	CX385864PN	
	Normal Voltage :	3.85V	
	Rated capacity :	2320mAh	
	Manufacturer:	Guoxia Electronic Technology Co., Ltd.	

1.5 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE Std C95.1 – 1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 941225 D01 3G SAR Procedures v03r01	3G SAR Measurement Procedures
KDB 941225 D05 SAR for LTE Devices v02r05	SAR EVALUATION CONSIDERATIONS FOR LTE DEVICES
KDB 248227 D01 802.11 Wi-Fi SAR v02r02	SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS
KDB 941225 D06 Hotspot Mode SAR v02r01	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities
KDB 648474 D04 Handset SAR v01r03	SAR Evaluation Considerations for Wireless Handsets
KDB447498 D01 General RF Exposure Guidance v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
KDB447498 D03 Supplement C Cross-Reference v01	OET Bulletin 65, Supplement C Cross-Reference
KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04	SAR Measurement Requirements for 100 MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting v01r02	RF Exposure Compliance Reporting and Documentation Considerations

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain*Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Notes:

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

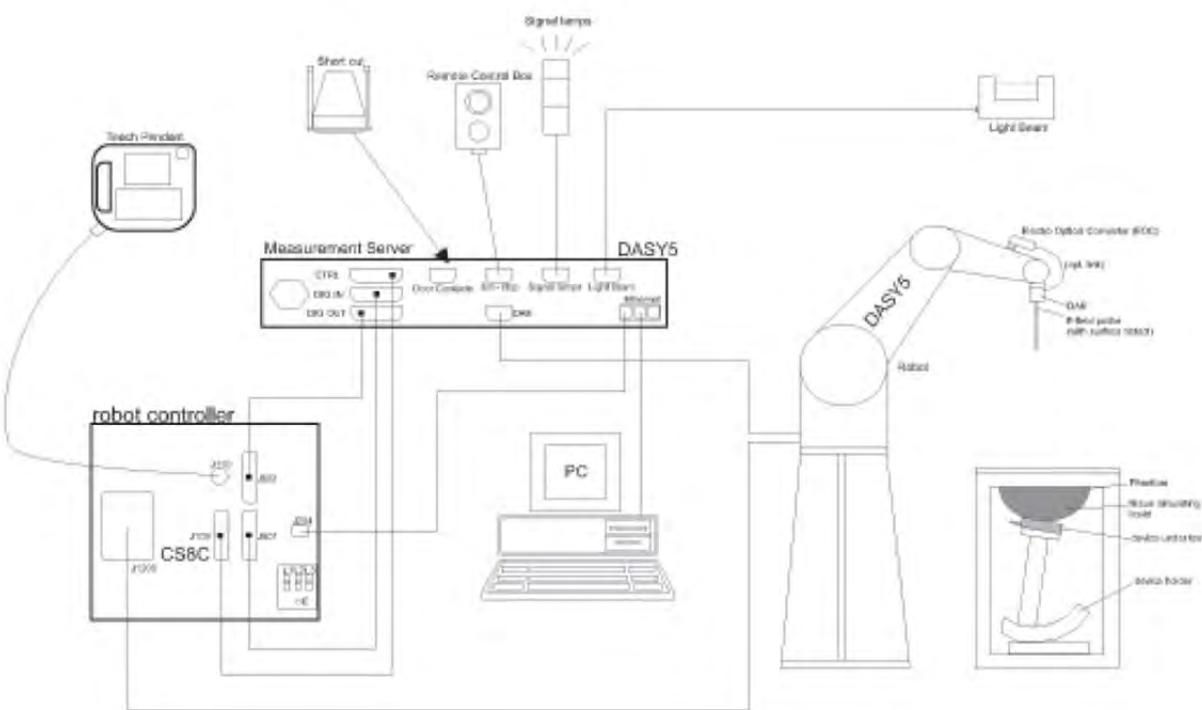
Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

2 SAR Measurements System Configuration

2.1 The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation $SAR = \sigma / (|E|/2) / \rho$ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

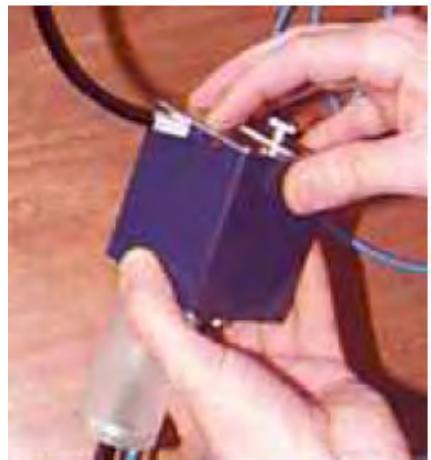

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

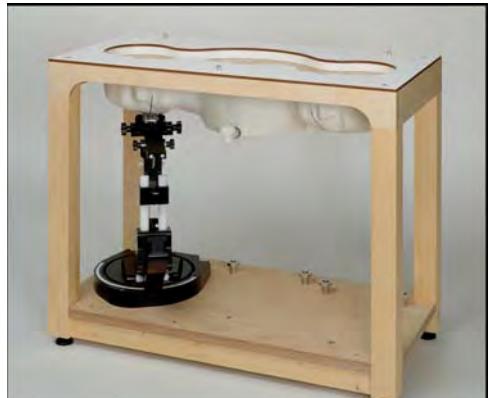
A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.


F-1. SAR Measurement System Configuration

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.


2.2 Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

2.3 Data Acquisition Electronics (DAE)

Model	DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)	
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 f A	
Dimensions	60 x 60 x 68 mm	

2.4 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	
Wooden Support	SPEAG standard phantom table	

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

2.5 ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	approx. 30 liters	
Wooden Support	SPEAG standard phantom table	
<p>Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.</p> <p>ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.</p>		

2.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.7 Measurement procedure

2.7.1 Scanning procedure

Step 1: Power reference measurement

The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5x5x7 points (\leq 2GHz) and 7x7x7 points (\geq 2GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
		≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm	$3 - 4$ GHz: ≤ 5 mm $4 - 6$ GHz: ≤ 4 mm
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$	≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	graded grid	$\Delta z_{\text{Zoom}}(1)$: between 1 st two points closest to phantom surface $\Delta z_{\text{Zoom}}(n>1)$: between subsequent points	≤ 4 mm $\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1)$
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

2.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi	
- Diode compression point	Dcp <i>i</i>	
Device parameters:	- Frequency	f
- Crest factor	cf	
Media parameters:	- Conductivity	ε
- Density	ρ	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf / dcp_i$$

With V_i = compensated signal of channel i ($i = x, y, z$)

U_i = input signal of channel i ($i = x, y, z$)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$$

H-field probes:

$$H_i = (V_i)^{1/2} \cdot (a_{0i} + a_{1i}f + a_{2i}f^2)/f$$

With V_i = compensated signal of channel i $(i = x, y, z)$

Norm $_i$ = sensor sensitivity of channel i $(i = x, y, z)$

[mV/(V/m) 2] for E-field Probes

ConvF = sensitivity enhancement in solution

a $_{ij}$ = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E $_i$ = electric field strength of channel i in V/m

H $_i$ = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\epsilon \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

E $_{tot}$ = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

ϵ = equivalent tissue density in g/cm 3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P $_{pwe}$ = equivalent power density of a plane wave in mW/cm 2

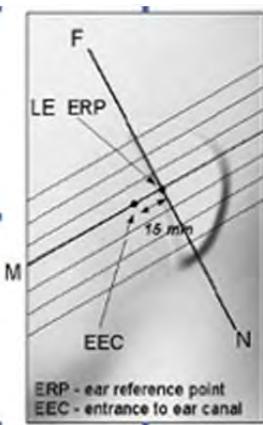
E $_{tot}$ = total electric field strength in V/m

H $_{tot}$ = total magnetic field strength in A/m

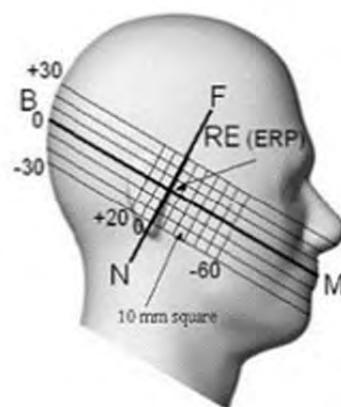
3 Description of Test Position

3.1 Head Exposure Condition

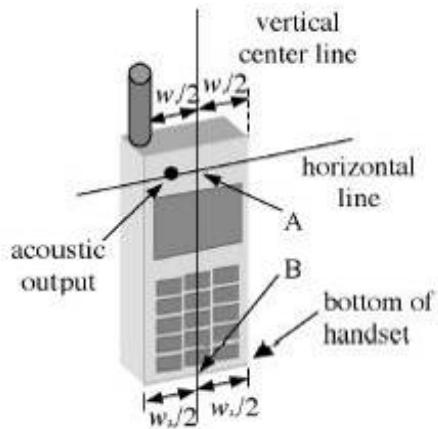
3.1.1 SAM Phantom Shape



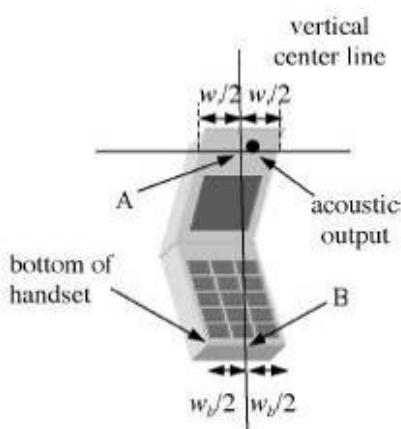
F-3. Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup.


Note: The centre strip including the nose region has a different thickness tolerance.

F-4. Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)



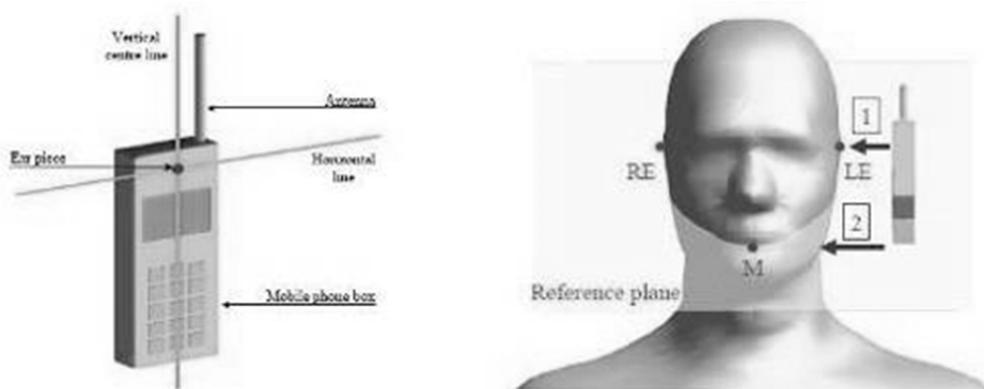
F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations



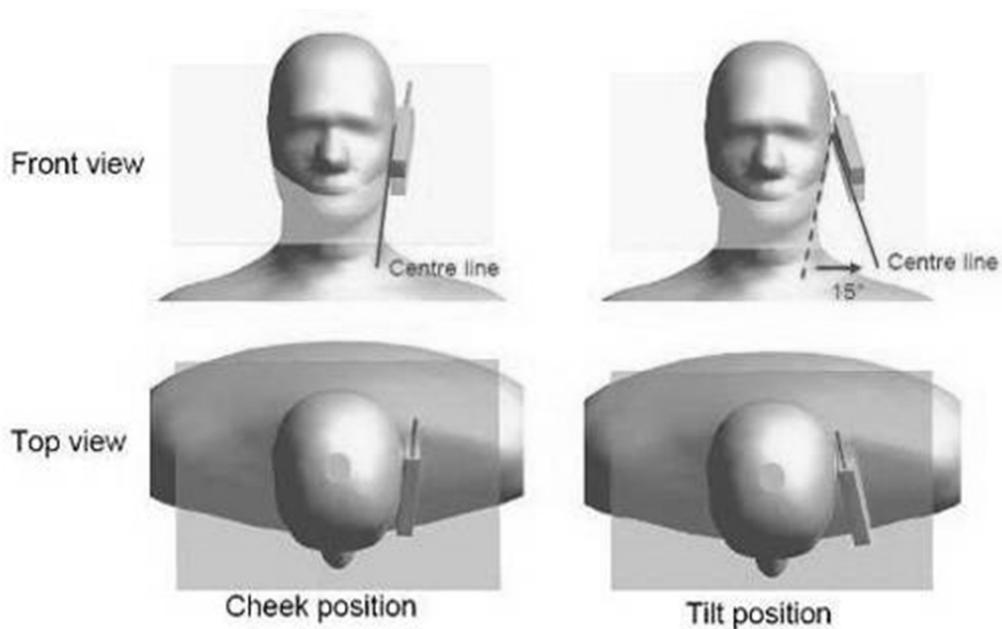
F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations

3.1.2 EUT constructions

F-7. Handset vertical and horizontal reference lines—"fixed case"


F-8. Handset vertical and horizontal reference lines—"clam-shell case"

3.1.3 Definition of the "cheek" position


- Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE.
- Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

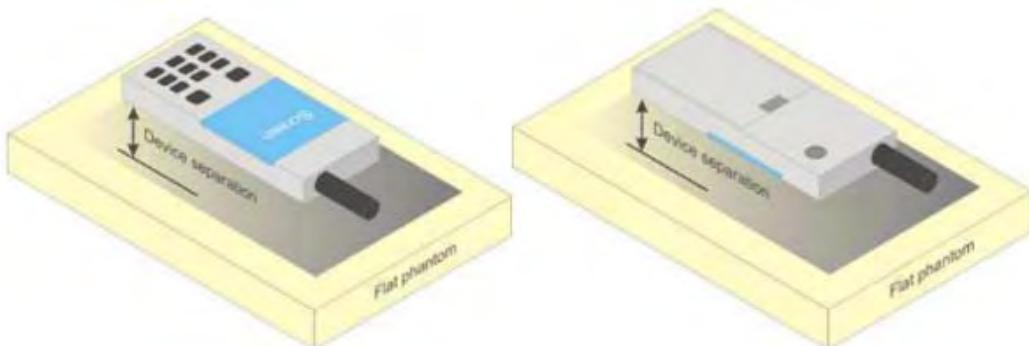
3.1.4 Definition of the “tilted” position

- Position the device in the “cheek” position described above;
- While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

F-9. Definition of the reference lines and points, on the phone and on the phantom and initial position

F-10. “Cheek” and “tilt” positions of the mobile phone on the left side

3.2 Body Exposure Condition


3.2.1 Body-worn accessory exposure conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is $> 1.2 \text{ W/kg}$, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

F-11. Test positions for body-worn devices

3.2.2 Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets ($L \times W \geq 9 \text{ cm} \times 5 \text{ cm}$) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

4 SAR System Verification Procedure

4.1 Tissue Simulate Liquid

4.1.1 Recipes for Tissue Simulate Liquid

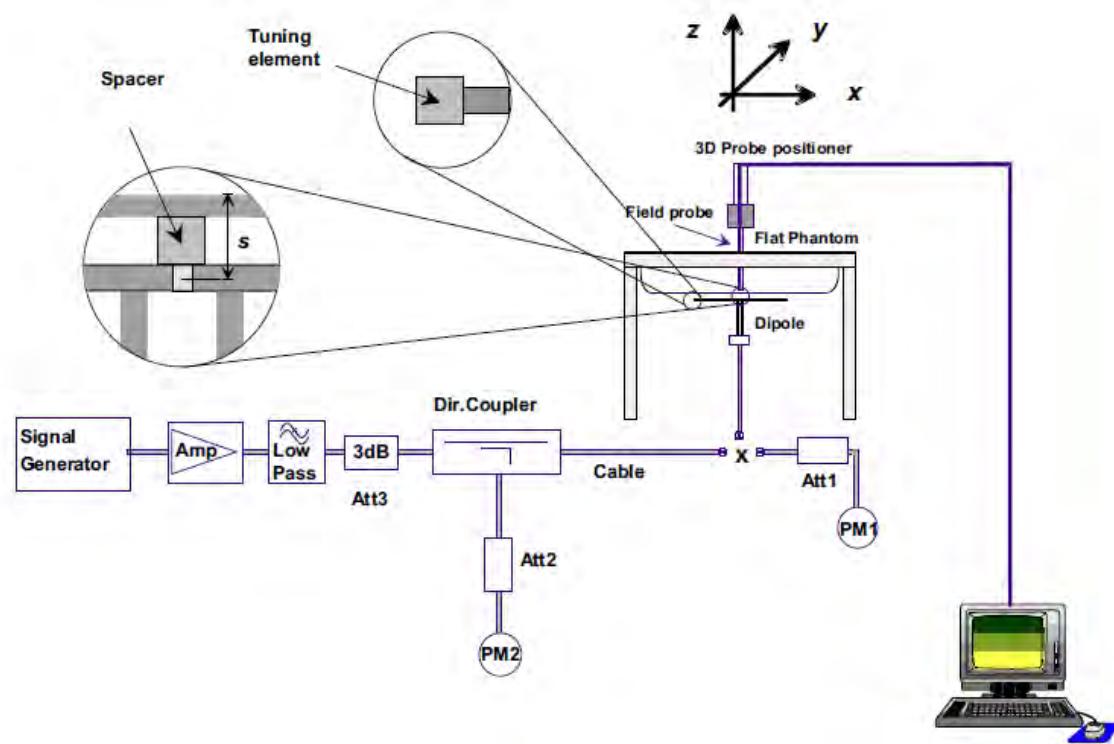
The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients (% by weight)	Frequency (MHz)							
	450		700-950		1700-2000		2300-2700	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	40.30	50.75	55.24	70.17	55.00	68.53
Salt (NaCl)	3.95	1.49	1.38	0.94	0.31	0.39	0.2	0.1
Sucrose	56.32	46.78	57.90	48.21	0	0	0	0
HEC	0.98	0.52	0.24	0	0	0	0	0
Bactericide	0.19	0.05	0.18	0.10	0	0	0	0
Tween	0	0	0	0	44.45	29.44	44.80	31.37

Salt: 99⁺% Pure Sodium Chloride **Sucrose:** 98⁺% Pure Sucrose
Water: De-ionized, 16 MΩ⁺ resistivity **HEC:** Hydroxyethyl Cellulose
Tween: Polyoxyethylene (20) sorbitan monolaurate

Table 1: Recipe of Tissue Simulate Liquid

4.1.2 Measurement for Tissue Simulate Liquid


The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ϵ_r) are listed in Table 2. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was $22\pm2^\circ\text{C}$.

Tissue Type	Measured Frequency (MHz)	Target Tissue ($\pm 5\%$)		Measured Tissue		Liquid Temp. (°C)	Measured Date
		ϵ_r	$\sigma(\text{S/m})$	ϵ_r	$\sigma(\text{S/m})$		
750 Head	750	41.90 (39.81~44)	0.89 (0.85~0.94)	43.089	0.878	22.1	2018/9/23
750 Body	750	55.5 (52.73~58.28)	0.96 (0.91~1.00)	55.223	0.955	22.1	2018/9/30
835 Head	835	41.50 (39.43~43.58)	0.90 (0.86~0.95)	42.605	0.929	22.1	2018/9/23
835 Body	835	55.20 (52.44~57.96)	0.97 (0.92~1.02)	54.871	1.011	22.1	2018/10/9
1750 Head	1750	40.10 (38.10~42.11)	1.37 (1.30~1.44)	40.413	1.318	22.2	2018/9/21
1750 Body	1750	53.40 (50.73~56.07)	1.49 (1.42~1.56)	52.159	1.493	22.2	2018/10/1
1900 Head	1900	40.00 (38.00~42.00)	1.40 (1.33~1.47)	41.171	1.437	22.3	2018/10/1
1900 Body	1900	53.30 (50.64~55.97)	1.52 (1.44~1.60)	53.897	1.523	22.3	2018/10/9
2450 Head	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	41.039	1.811	22.0	2018/9/29
2450 Body	2450	52.70 (50.07~55.34)	1.95 (1.85~2.05)	52.683	1.969	22.0	2018/10/1

Table 2: Measurement result of Tissue electric parameters

4.2 SAR System Check

The microwave circuit arrangement for system Check is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within $\pm 10\%$ from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mw (below 3GHz) or 100mw (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range $22 \pm 2^\circ\text{C}$, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 ± 0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-12. the microwave circuit arrangement used for SAR system check

4.2.1 Justification for Extended SAR Dipole Calibrations

- 1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
 - a) There is no physical damage on the dipole;
 - b) System check with specific dipole is within 10% of calibrated value;
 - c) Return-loss is within 10% of calibrated measurement;
 - d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

4.2.2 Summary System Check Result(s)

Validation Kit		Measured SAR 250mW	Measured SAR 250mW	Measured SAR (normalized to 1W)	Measured SAR (normalized to 1W)	Target SAR (normalized to 1W) ($\pm 10\%$)	Target SAR (normalized to 1W) ($\pm 10\%$)	Liquid Temp. (°C)	Measured Date
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)		
D750V2	Head	1.95	1.29	7.80	5.16	8.17 (7.35~8.99)	5.36 (4.82~5.9)	22.1	2018/9/23
	Body	2.11	1.41	8.44	5.64	8.57 (7.71~9.43)	5.66 (5.09~6.23)	22.1	2018/9/30
D835V2	Head	2.55	1.66	10.20	6.64	9.59 (8.63~10.55)	6.29 (5.66~6.92)	22.1	2018/9/23
	Body	2.54	1.68	10.16	6.72	9.65 (8.69~10.62)	6.46 (5.81~7.11)	22.1	2018/10/9
D1750V2	Head	8.74	4.69	34.96	18.76	36.7 (33.03~40.37)	19.5 (17.55~21.45)	22.2	2018/9/21
	Body	9.50	5.05	38.00	20.20	37 (33.30~40.70)	19.7 (17.73~21.67)	22.2	2018/10/1
D1900V2	Head	10.60	5.51	42.40	22.04	40.7 (36.63~44.77)	21.1 (18.99~23.21)	22.3	2018/10/1
	Body	10.40	5.48	41.60	21.92	41.6 (37.44~45.76)	21.4 (19.26~23.54)	22.3	2018/10/9
D2450V2	Head	13.20	6.11	52.80	24.44	53.1 (47.79~58.41)	24.9 (22.41~27.39)	22.0	2018/9/29
	Body	12.60	5.93	50.40	23.72	51.0 (45.9~56.1)	23.5 (21.15~25.85)	22.0	2018/10/1

Table 3: SAR System Check Result

4.2.3 Detailed System Check Results

Please see the Appendix A

5 Test results and Measurement Data

5.1 3G SAR Test Reduction Procedure

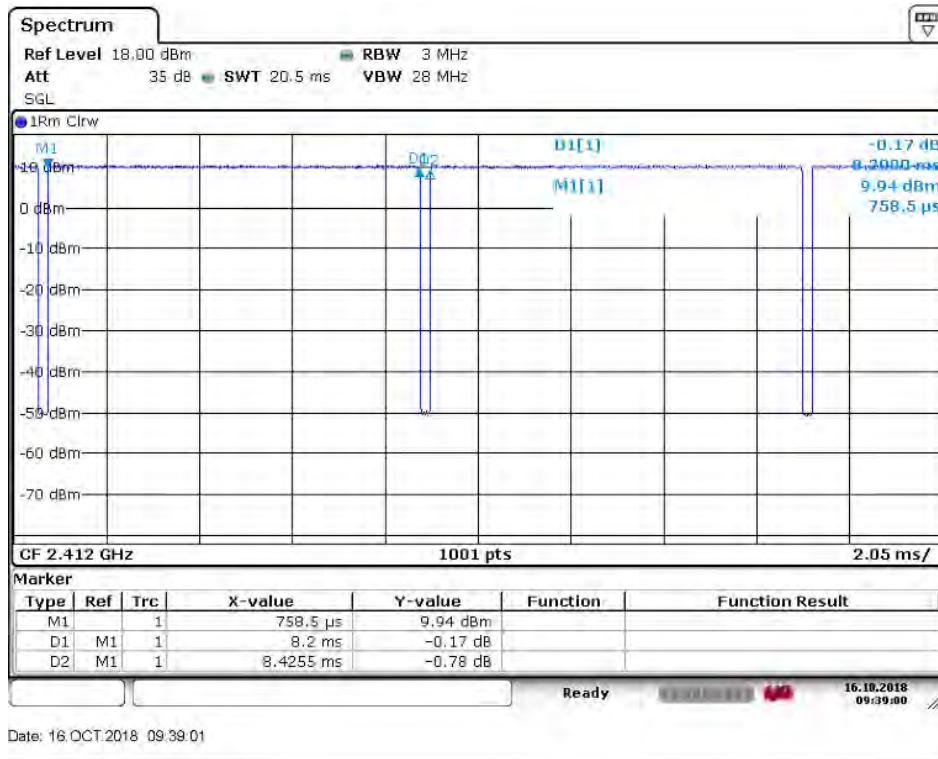
According to KDB 941225D01, in the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

5.2 Operation Configurations

5.2.1 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM 850 and GSM 1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 33 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 33 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.


When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode

5.2.2 WiFi Test Configuration

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

- 2.4G WIFI
Duty cycle= $8.3/8.4255 = 97.32\%$

5.2.2.1 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1) . When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) . When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

5.2.2.2 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.

5.2.2.3 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- 1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2) . When the highest *reported* SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

- 3) . The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
 - a) SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
 - b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is $> 1.2 \text{ W/kg}$ or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - a) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - b) replace "initial test configuration" with "all tested higher output power configurations"

5.2.2.4 2.4 GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

- **802.11b DSSS SAR Test Requirements**

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is $\leq 0.8 \text{ W/kg}$, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is $> 0.8 \text{ W/kg}$, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is $> 1.2 \text{ W/kg}$, SAR is required for the third channel; i.e., all channels require testing.

- **2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements**

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

5.2.3 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The Anritsu MT8821C was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

C) A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

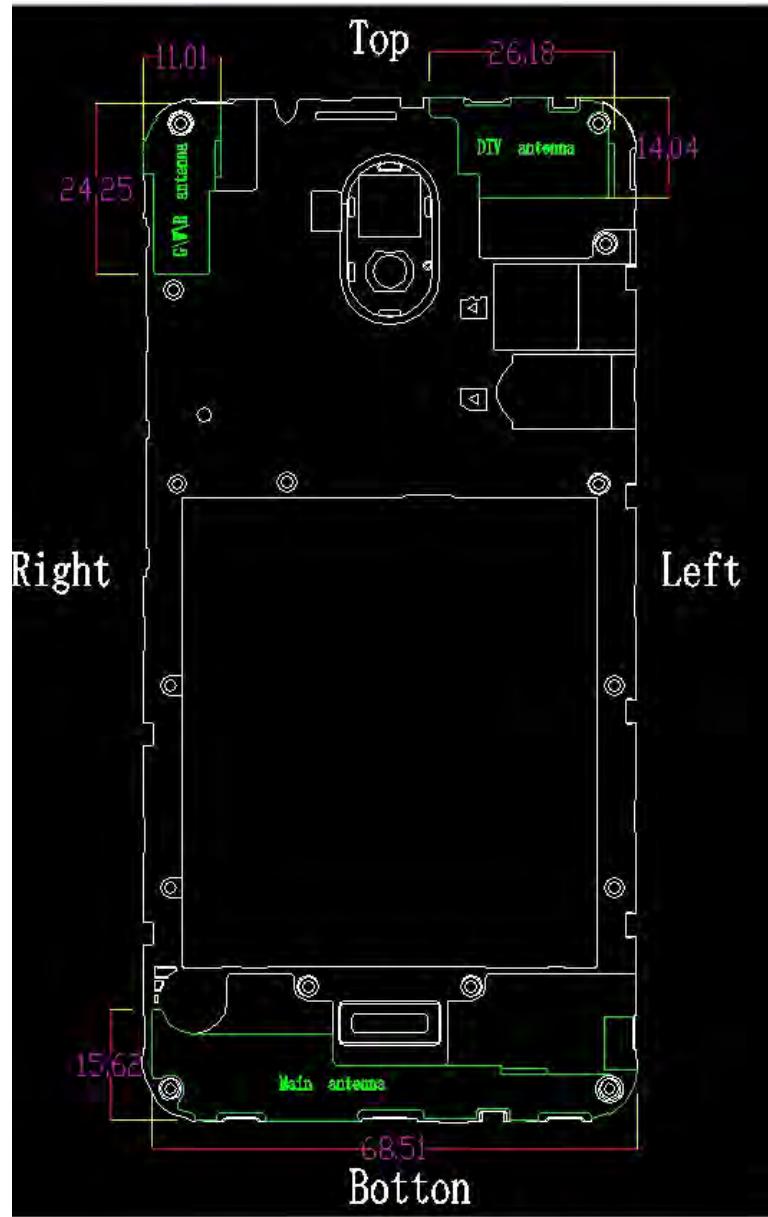
Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.


4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

5.2.4 DUT Antenna Locations

Note:

The test device is a mobile phone. The display diagonal dimension is 12.8 cm and the overall diagonal dimension of this device is 15.8 cm.

- 1) The diversity Antenna does not support transmitter function.

5.2.5 EUT side for SAR Testing

According to the distance between LTE/WCDAM/GSM&WIFI antennas and the sides of the EUT we can draw the conclusion that:

EUT Sides for SAR Testing						
Mode	Front	Back	Left	Right	Top	Bottom
GSM	Yes	Yes	Yes	Yes	No	Yes
LTE	Yes	Yes	Yes	Yes	No	Yes
Wi-Fi (2.4GHz)	Yes	Yes	Yes	Yes	Yes	No

Table 4: EUT Sides for SAR Testing

Note: When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

5.2.6 Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Freq. Band	Frequency (GHz)	Position	Average Power		Test Separation (mm)	Calculate Value	Exclusion Threshold	Exclusion (Y/N)
			dBm	mW				
Wi-Fi	2.45	Head	17.00	50.12	0	15.79	3.0	N
		Body-worn	17.00	50.12	15	5.26	3.0	N
		hotspot	17.00	50.12	10	7.89	3.0	N
Bluetooth	2.48	Head	8.00	6.31	0	1.99	3.0	Y
		Body-worn	8.00	6.31	15	0.66	3.0	Y
		hotspot	8.00	6.31	10	0.99	3.0	Y

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is $<$ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

5.3 Measurement of RF conducted Power

5.3.1 Conducted Power Of GSM

GSM 850										
Burst Output Power(dBm)					Tune up	Division Factors	Frame-Average Output Power(dBm)			Tune up
Channel		128	190	251			128	190	251	
GSM(GMSK)	GSM	32.94	32.99	32.97	33.00	-9.19	23.75	23.80	23.78	23.81
GPRS/ EGPRS (GMSK)	1 TX Slot	32.99	32.98	32.97	33.00	-9.19	23.80	23.79	23.78	23.81
	2 TX Slots	31.22	31.25	31.23	32.50	-6.18	25.04	25.07	25.05	26.32
	3 TX Slots	28.87	28.86	28.84	29.00	-4.42	24.45	24.44	24.42	24.58
	4 TX Slots	26.53	26.65	26.65	27.00	-3.17	23.36	23.48	23.48	23.83
EGPRS (8PSK)	1 TX Slot	27.29	27.27	27.26	28.00	-9.19	18.10	18.08	18.07	18.81
	2 TX Slots	25.20	25.19	25.18	27.00	-6.18	19.02	19.01	19.00	20.82
	3 TX Slots	22.97	22.99	23.01	24.00	-4.42	18.55	18.57	18.59	19.58
	4 TX Slots	21.13	21.11	21.14	23.00	-3.17	17.96	17.94	17.97	19.83
GSM 1900										
Burst Output Power(dBm)					Tune up	Division Factors	Frame-Average Output Power(dBm)			Tune up
Channel		512	661	810			512	661	810	
GSM(GMSK)	GSM	30.97	30.98	30.96	31.00	-9.19	21.78	21.79	21.77	21.81
GPRS/ EGPRS (GMSK)	1 TX Slot	30.93	30.95	30.97	31.00	-9.19	21.74	21.76	21.78	21.81
	2 TX Slots	28.11	28.13	28.12	29.00	-6.18	21.93	21.95	21.94	22.82
	3 TX Slots	26.49	26.52	26.43	28.00	-4.42	22.07	22.10	22.01	23.58
	4 TX Slots	24.81	24.85	24.84	26.00	-3.17	21.64	21.68	21.67	22.83
EGPRS (8PSK)	1 TX Slot	26.61	26.59	26.57	28.00	-9.19	17.42	17.40	17.38	18.81
	2 TX Slots	24.03	24.05	24.02	26.00	-6.18	17.85	17.87	17.84	19.82
	3 TX Slots	22.41	22.39	22.33	24.00	-4.42	17.99	17.97	17.91	19.58
	4 TX Slots	21.26	21.25	21.23	23.00	-3.17	18.09	18.08	18.06	19.83

Table 5: Conducted Power Of GSM.

Note:

- CMU200 measures GSM peak and average output power for active timeslots. For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.15	1:2.77	1:2.075
Time based avg. power compared to slotted avg. power	-9.19	-6.18	-4.42	-3.17
- The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below:

$$\text{Frame-averaged power} = 10 \times \log (\text{Burst-averaged power mW} \times \text{Slot used} / 8)$$
- When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used

5.3.2 Conducted Power Of LTE

LTE Band 4				Conducted Power(dBm)			
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
				19957	20175	20393	
1.4MHz	QPSK	1	0	22.55	22.46	22.43	23.50
		1	2	22.57	22.67	22.67	23.50
		1	5	22.59	22.66	22.66	23.50
		3	0	22.57	22.60	22.74	23.00
		3	2	22.60	22.77	22.74	23.00
		3	3	22.52	22.84	22.74	23.00
		6	0	21.55	21.64	21.76	23.00
	16QAM	1	0	21.36	21.09	21.30	22.00
		1	2	21.32	21.15	21.31	22.00
		1	5	20.98	20.99	21.16	22.00
		3	0	21.23	21.65	21.43	22.00
		3	2	21.20	21.59	21.63	22.00
		3	3	21.32	21.69	21.59	22.00
		6	0	20.18	20.47	20.50	21.50
3MHz	QPSK	1	0	22.31	22.45	22.63	23.50
		1	7	22.33	22.48	22.42	23.50
		1	14	22.17	22.58	22.45	23.50
		8	0	21.52	21.66	21.61	23.00
		8	4	21.51	21.75	21.73	23.00
		8	7	21.52	21.73	21.67	23.00
		15	0	21.57	21.68	21.67	23.00
	16QAM	1	0	20.79	21.77	21.64	22.00
		1	7	20.81	21.47	21.20	22.00
		1	14	20.65	21.07	21.56	22.00
		8	0	20.66	20.63	20.38	21.50
		8	4	20.36	20.84	20.41	21.50
		8	7	20.57	20.70	20.29	21.50
		15	0	20.66	20.72	20.71	21.50
5MHz	QPSK	1	0	22.47	22.46	22.36	23.50
		1	13	22.44	22.48	22.37	23.50
		1	24	22.11	22.36	22.47	23.50
		12	0	21.55	21.68	21.80	23.00
		12	6	21.53	21.82	21.79	23.00
		12	13	21.56	21.73	21.79	23.00
		25	0	21.53	21.63	21.82	23.00
	16QAM	1	0	21.24	21.76	20.90	22.00
		1	13	20.84	21.93	20.97	22.00
		1	24	20.54	21.97	21.26	22.00
		12	0	20.41	20.65	20.55	21.50
		12	6	20.26	20.54	20.63	21.50
		12	13	20.24	20.53	20.64	21.50
		25	0	20.65	20.60	20.92	21.50

Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
				20000	20175	20350	
10MHz	QPSK	1	0	22.26	22.44	22.75	23.50
		1	25	22.46	22.78	22.88	23.50
		1	49	22.30	22.49	22.42	23.50
		25	0	21.67	21.75	22.00	23.00
		25	13	21.69	21.72	21.87	23.00
		25	25	21.65	21.70	21.87	23.00
		50	0	21.63	21.78	21.80	23.00
	16QAM	1	0	21.57	21.36	21.57	22.00
		1	25	21.20	21.40	21.35	22.00
		1	49	21.11	21.50	21.60	22.00
		25	0	20.52	20.77	20.99	21.50
		25	13	20.57	20.80	21.06	21.50
		25	25	20.62	20.67	21.01	21.50
		50	0	20.70	20.60	20.85	21.50
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
				20025	20175	20325	
15MHz	QPSK	1	0	22.40	22.73	22.83	23.50
		1	38	22.71	22.53	22.82	23.50
		1	74	22.62	22.66	22.41	23.50
		36	0	21.58	21.77	22.10	23.00
		36	18	21.65	21.71	21.90	23.00
		36	39	21.66	21.78	21.84	23.00
		75	0	21.62	21.76	21.99	23.00
	16QAM	1	0	21.40	21.28	21.19	22.00
		1	38	21.43	21.75	21.71	22.00
		1	74	21.36	21.05	21.39	22.00
		36	0	20.59	20.64	21.04	21.50
		36	18	20.61	20.79	21.03	21.50
		36	39	20.68	20.78	20.95	21.50
		75	0	20.73	20.83	20.95	21.50
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
				20050	20175	20300	
20MHz	QPSK	1	0	22.30	22.29	22.48	23.50
		1	50	22.50	22.78	23.02	23.50
		1	99	22.36	22.41	22.68	23.50
		50	0	21.74	21.72	22.05	23.00
		50	25	21.81	21.76	21.95	23.00
		50	50	21.70	21.82	21.98	23.00
		100	0	21.66	21.77	22.02	23.00
	16QAM	1	0	21.68	20.71	21.35	22.00
		1	50	21.95	21.34	21.39	22.00
		1	99	21.53	21.12	21.50	22.00
		50	0	20.72	20.59	20.88	21.50
		50	25	20.80	20.94	21.15	21.50
		50	50	20.67	20.79	21.14	21.50
		100	0	20.62	20.71	21.06	21.50

LTE FDD Band 13				Conducted Power(dBm)			
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
				23205	23230	23255	
5MHz	QPSK	1	0	22.55	22.65	22.33	24.00
		1	13	22.84	22.34	22.41	24.00
		1	24	22.42	22.37	22.54	24.00
		12	0	21.69	21.68	21.73	23.50
		12	6	21.93	21.75	21.72	23.50
		12	13	21.83	21.69	21.79	23.50
		25	0	21.72	21.70	21.69	23.50
	16QAM	1	0	21.24	21.87	21.12	22.50
		1	13	21.52	21.52	21.66	22.50
		1	24	20.89	21.27	21.83	22.50
		12	0	20.56	20.59	20.47	22.00
		12	6	20.96	20.48	20.59	22.00
		12	13	20.85	20.48	20.57	22.00
		25	0	20.77	20.63	20.82	22.00
10MHz	QPSK	1	0	NA	Channel	Channel	Tune up
		1	25	NA	23230	NA	
		1	49	NA	22.42	NA	24.00
		25	0	NA	22.58	NA	24.00
		25	13	NA	21.62	NA	23.50
		25	25	NA	21.62	NA	23.50
		50	0	NA	21.70	NA	23.50
	16QAM	1	0	NA	21.45	NA	22.50
		1	25	NA	21.99	NA	22.50
		1	49	NA	21.71	NA	22.50
		25	0	NA	20.75	NA	22.00
		25	13	NA	20.64	NA	22.00
		25	25	NA	20.48	NA	22.00
		50	0	NA	20.61	NA	22.00

Table 6: Conducted Power Of LTE.

5.3.3 Conducted Power Of WIFI and BT

Mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Tune up	Average Power (dBm)	SAR Test
802.11b	1	2412	1	17.00	16.62	Yes
	6	2437		17.00	16.93	Yes
	11	2462		17.00	16.34	NO
802.11g	1	2412	6	14.50	14.01	NO
	6	2437		14.50	14.15	NO
	11	2462		14.50	14.14	NO
802.11n HT20	1	2412	6.5	14.00	13.38	NO
	6	2437		14.00	13.06	NO
	11	2462		14.00	13.13	NO

Table 7: Conducted Power Of WIFI.

Note:

- a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
 - 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
 - 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

BT			Tune up (dBm)	Average Conducted Power(dBm)
Modulation	Channel	Frequency(MHz)		
GFSK	0	2402	8.00	7.81
	39	2441	8.00	7.98
	78	2480	8.00	7.12
$\pi/4$ DQPSK	0	2402	8.00	6.38
	39	2441	8.00	6.54
	78	2480	8.00	5.71
8DPSK	0	2402	8.00	6.37
	39	2441	8.00	6.58
	78	2480	8.00	5.66

BLE			Tune up (dBm)	Average Conducted Power(dBm)
Modulation	Channel	Frequency(MHz)		
GFSK	0	2402	-0.50	-2.02
	19	2440	-0.50	-1.69
	39	2480	-0.50	-2.34

Table 8: Conducted Power Of BT.

5.4 Measurement of SAR Data

5.4.1 SAR Result Of GSM850

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1-g	Power Drift(dB)	Conducted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp (°C)
Head Test data										
Left cheek	GSM	190/836.6	1:8.3	0.489	0.09	32.99	33.00	1.002	0.490	22.1
Left tilted	GSM	190/836.6	1:8.3	0.318	0.18	32.99	33.00	1.002	0.319	22.1
Right cheek	GSM	190/836.6	1:8.3	0.570	0.05	32.99	33.00	1.002	0.571	22.1
Right tilted	GSM	190/836.6	1:8.3	0.264	0.10	32.99	33.00	1.002	0.265	22.1
Body worn Test data(Separate 15mm)										
Front side	GSM	190/836.6	1:8.3	0.465	-0.08	32.99	33.00	1.002	0.466	22.1
Back side	GSM	190/836.6	1:8.3	0.521	0.14	32.99	33.00	1.002	0.522	22.1
Hotspot Test data(Separate 10mm)										
Front side	GPRS 2TS	190/836.6	1:4.15	0.684	-0.01	31.25	32.50	1.334	0.912	22.1
Back side	GPRS 2TS	190/836.6	1:4.15	0.799	-0.03	31.25	32.50	1.334	1.065	22.1
Left side	GPRS 2TS	190/836.6	1:4.15	0.558	-0.02	31.25	32.50	1.334	0.744	22.1
Right side	GPRS 2TS	190/836.6	1:4.15	0.693	0.00	31.25	32.50	1.334	0.924	22.1
Bottom side	GPRS 2TS	190/836.6	1:4.15	0.091	-0.03	31.25	32.50	1.334	0.122	22.1
Front side	GPRS 2TS	128/824.2	1:4.15	0.617	-0.02	31.22	32.50	1.343	0.828	22.1
Front side	GPRS 2TS	251/848.8	1:4.15	0.694	-0.01	31.23	32.50	1.340	0.930	22.1
Back side	GPRS 2TS	128/824.2	1:4.15	0.719	-0.01	31.22	32.50	1.343	0.965	22.1
Back side	GPRS 2TS	251/848.8	1:4.15	0.831	0.02	31.23	32.50	1.340	1.113	22.1
Right side	GPRS 2TS	128/824.2	1:4.15	0.595	0.03	31.22	32.50	1.343	0.799	22.1
Right side	GPRS 2TS	251/848.8	1:4.15	0.778	-0.02	31.23	32.50	1.340	1.042	22.1
Back side-repeat	GPRS 2TS	251/848.8	1:4.15	0.826	0.03	31.23	32.50	1.340	1.107	22.1

Table 9: SAR of GSM850 for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3) When multiple slots can be used, SAR should be tested to account for the maximum source-based time-averaged output power.

5.4.2 SAR Result Of GSM1900

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1-g	Power Drift (dB)	Conducted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp (°C)
Head Test data										
Left cheek	GSM	661/1880	1:8.3	0.485	-0.04	30.98	31.00	1.005	0.487	22.3
Left tilted	GSM	661/1880	1:8.3	0.283	-0.08	30.98	31.00	1.005	0.284	22.3
Right cheek	GSM	661/1880	1:8.3	0.341	0.00	30.98	31.00	1.005	0.343	22.3
Right tilted	GSM	661/1880	1:8.3	0.258	0.04	30.98	31.00	1.005	0.259	22.3
Body worn Test data(Separate 15mm)										
Front side	GSM	661/1880	1:8.3	0.310	-0.06	30.98	31.00	1.005	0.311	22.3
Back side	GSM	661/1880	1:8.3	0.310	0.08	30.98	31.00	1.005	0.311	22.3
Hotspot Test data(Separate 10mm)										
Front side	GPRS 3TS	661/1880	1:2.77	0.388	0.03	26.52	28.00	1.406	0.546	22.3
Back side	GPRS 3TS	661/1880	1:2.77	0.470	0.06	26.52	28.00	1.406	0.661	22.3
Left side	GPRS 3TS	661/1880	1:2.77	0.368	0.08	26.52	28.00	1.406	0.517	22.3
Right side	GPRS 3TS	661/1880	1:2.77	0.221	0.01	26.52	28.00	1.406	0.311	22.3
Bottom side	GPRS 3TS	661/1880	1:2.77	0.252	0.01	26.52	28.00	1.406	0.354	22.3

Table 10: SAR of GSM1900 for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3) When multiple slots can be used, SAR should be tested to account for the maximum source-based time-averaged output power.

5.4.3 SAR Result Of LTE Band 4

Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift(dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp (°C)
Head Test data(1RB)											
Left cheek	20	QPSK 1RB_50	20300/1745	1:1	0.477	-0.01	23.02	23.50	1.117	0.533	22.2
Left tilted	20	QPSK 1RB_50	20300/1745	1:1	0.237	-0.07	23.02	23.50	1.117	0.265	22.2
Right cheek	20	QPSK 1RB_50	20300/1745	1:1	0.246	0.16	23.02	23.50	1.117	0.275	22.2
Right tilted	20	QPSK 1RB_50	20300/1745	1:1	0.239	0.02	23.02	23.50	1.117	0.267	22.2
Head Test data(50%RB)											
Left cheek	20	QPSK 50RB_0	20300/1745	1:1	0.384	0.16	22.05	23.00	1.245	0.478	22.2
Left tilted	20	QPSK 50RB_0	20300/1745	1:1	0.190	0.11	22.05	23.00	1.245	0.236	22.2
Right cheek	20	QPSK 50RB_0	20300/1745	1:1	0.244	-0.05	22.05	23.00	1.245	0.304	22.2
Right tilted	20	QPSK 50RB_0	20300/1745	1:1	0.189	0.06	22.05	23.00	1.245	0.235	22.2
Body worn Test data(Separate 15mm 1RB)											
Front side	20	QPSK 1RB_50	20300/1745	1:1	0.364	0.02	23.02	23.50	1.117	0.407	22.2
Back side	20	QPSK 1RB_50	20300/1745	1:1	0.478	0.16	23.02	23.50	1.117	0.534	22.2
Body worn Test data (Separate 15mm 50%RB)											
Front side	20	QPSK 50RB_0	20300/1745	1:1	0.288	0.09	22.05	23.00	1.245	0.358	22.2
Back side	20	QPSK 50RB_0	20300/1745	1:1	0.394	0.04	22.05	23.00	1.245	0.490	22.2
Hotspot Test data(Separate 10mm 1RB)											
Front side	20	QPSK 1RB_50	20300/1745	1:1	0.593	0.05	23.02	23.50	1.117	0.662	22.2
Back side	20	QPSK 1RB_50	20300/1745	1:1	0.699	-0.18	23.02	23.50	1.117	0.781	22.2
Left side	20	QPSK 1RB_50	20300/1745	1:1	0.447	0.05	23.02	23.50	1.117	0.499	22.2
Right side	20	QPSK 1RB_50	20300/1745	1:1	0.196	0.09	23.02	23.50	1.117	0.219	22.2
Bottom side	20	QPSK 1RB_50	20300/1745	1:1	0.427	0.05	23.02	23.50	1.117	0.477	22.2
Hotspot Test data (Separate 10mm 50%RB)											
Front side	20	QPSK 50RB_0	20300/1745	1:1	0.456	0.08	22.05	23.00	1.245	0.567	22.2
Back side	20	QPSK 50RB_0	20300/1745	1:1	0.567	0.11	22.05	23.00	1.245	0.706	22.2
Left side	20	QPSK 50RB_0	20300/1745	1:1	0.358	0.13	22.05	23.00	1.245	0.446	22.2
Right side	20	QPSK 50RB_0	20300/1745	1:1	0.153	0.09	22.05	23.00	1.245	0.190	22.2
Bottom side	20	QPSK 50RB_0	20300/1745	1:1	0.342	0.08	22.05	23.00	1.245	0.426	22.2

Table 11: SAR of LTE Band 4 for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

5.4.4 SAR Result Of LTE Band 13

Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power Drift(dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp (°C)
Head Test data(1RB)											
Left cheek	10	QPSK 1RB_25	23230/782	1:1	0.327	0.02	22.58	24.00	1.387	0.453	22.1
Left tilted	10	QPSK 1RB_25	23230/782	1:1	0.214	0.03	22.58	24.00	1.387	0.297	22.1
Right cheek	10	QPSK 1RB_25	23230/782	1:1	0.325	0.07	22.58	24.00	1.387	0.451	22.1
Right tilted	10	QPSK 1RB_25	23230/782	1:1	0.212	0.05	22.58	24.00	1.387	0.294	22.1
Head Test data(50%RB)											
Left cheek	10	QPSK 25RB_0	23230/782	1:1	0.252	0.02	21.86	23.50	1.459	0.368	22.1
Left tilted	10	QPSK 25RB_0	23230/782	1:1	0.169	0.05	21.86	23.50	1.459	0.247	22.1
Right cheek	10	QPSK 25RB_0	23230/782	1:1	0.242	0.01	21.86	23.50	1.459	0.353	22.1
Right tilted	10	QPSK 25RB_0	23230/782	1:1	0.167	0.03	21.86	23.50	1.459	0.244	22.1
Body worn Test data(Separate 15mm 1RB)											
Front side	10	QPSK 1RB_25	23230/782	1:1	0.394	-0.19	22.58	24.00	1.387	0.546	22.1
Back side	10	QPSK 1RB_25	23230/782	1:1	0.454	-0.01	22.58	24.00	1.387	0.630	22.1
Body worn Test data (Separate 15mm 50%RB)											
Front side	10	QPSK 25RB_0	23230/782	1:1	0.314	0.01	21.86	23.50	1.459	0.458	22.1
Back side	10	QPSK 25RB_0	23230/782	1:1	0.374	0.03	21.86	23.50	1.459	0.546	22.1
Hotspot Test data(Separate 10mm 1RB)											
Front side	10	QPSK 1RB_25	23230/782	1:1	0.418	0.01	22.58	24.00	1.387	0.580	22.1
Back side	10	QPSK 1RB_25	23230/782	1:1	0.530	0.04	22.58	24.00	1.387	0.735	22.1
Left side	10	QPSK 1RB_25	23230/782	1:1	0.329	0.12	22.58	24.00	1.387	0.456	22.1
Right side	10	QPSK 1RB_25	23230/782	1:1	0.328	0.13	22.58	24.00	1.387	0.455	22.1
Bottom side	10	QPSK 1RB_25	23230/782	1:1	0.021	-0.06	22.58	24.00	1.387	0.029	22.1
Hotspot Test data (Separate 10mm 50%RB)											
Front side	10	QPSK 25RB_0	23230/782	1:1	0.328	-0.04	21.86	23.50	1.459	0.478	22.1
Back side	10	QPSK 25RB_0	23230/782	1:1	0.420	0.19	21.86	23.50	1.459	0.613	22.1
Left side	10	QPSK 25RB_0	23230/782	1:1	0.244	0.01	21.86	23.50	1.459	0.356	22.1
Right side	10	QPSK 25RB_0	23230/782	1:1	0.250	0.04	21.86	23.50	1.459	0.365	22.1
Bottom side	10	QPSK 25RB_0	23230/782	1:1	0.016	-0.16	21.86	23.50	1.459	0.023	22.1

Table 12: SAR of LTE Band 13 for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

5.4.5 SAR Result Of WIFI 2.4G

Test position	Test mode	Test Ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp (°C)
Head Test data											
Left cheek	802.11b	6/2437	97.32%	1.028	0.998	0.09	16.93	17.00	1.02	1.042	22.00
Left cheek	802.11b	1/2412	97.32%	1.028	0.825	0.03	16.62	17.00	1.09	0.925	22.00
Left tilted	802.11b	6/2437	97.32%	1.028	0.735	-0.06	16.93	17.00	1.02	0.767	22.00
Right cheek	802.11b	6/2437	97.32%	1.028	0.458	-0.03	16.93	17.00	1.02	0.478	22.00
Right tilted	802.11b	6/2437	97.32%	1.028	0.502	-0.04	16.93	17.00	1.02	0.524	22.00
Left cheek-repeat	802.11b	6/2437	97.32%	1.028	0.849	-0.09	16.93	17.00	1.02	0.887	22.00
Body worn Test data (Separate 15mm)											
Front side	802.11b	6/2437	97.32%	1.028	0.057	0.06	16.93	17.00	1.02	0.059	22.00
Back side	802.11b	6/2437	97.32%	1.028	0.050	0.03	16.93	17.00	1.02	0.052	22.00
Hotspot Test data (Separate 10mm)											
Front side	802.11b	6/2437	97.32%	1.028	0.167	0.05	16.93	17.00	1.02	0.174	22.00
Back side	802.11b	6/2437	97.32%	1.028	0.198	0.18	16.93	17.00	1.02	0.207	22.00
Left side	802.11b	6/2437	97.32%	1.028	0.029	-0.03	16.93	17.00	1.02	0.030	22.00
Right side	802.11b	6/2437	97.32%	1.028	0.193	-0.10	16.93	17.00	1.02	0.202	22.00
Top side	802.11b	6/2437	97.32%	1.028	0.142	0.01	16.93	17.00	1.02	0.148	22.00

Table 13: SAR of WIFI 2.4G for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3) Per KDB248227D01, for Body SAR test of WiFi 2.4G, SAR is measured for 2.4 GHz 802.11b DSSS using the initial test position procedure. The highest reported SAR for DSSS is adjusted by the ratio of OFDM 802.11g/n to DSSS specified maximum output power and the adjusted SAR is < 1.2 W/kg, so SAR for 802.11g/n is not required.

Mode	tune up (dBm)	tune up (mW)	Max report SAR(W/Kg)	Adjusted SAR(W/Kg)	SAR Test (Yes/No)
Head					
802.11b	17.00	50.12	1.042	/	Yes
802.11g	13.50	22.39	/	0.465	No
802.11n-HT20	14.00	25.12	/	0.522	No
Body worn 15mm					
802.11b	17.00	50.12	0.059	/	Yes
802.11g	13.50	22.39	/	0.026	No
802.11n-HT20	14.00	25.12	/	0.030	No
Hotspot 10mm					
802.11b	17.00	50.12	0.207	/	Yes
802.11g	13.50	22.39	/	0.092	No
802.11n-HT20	14.00	25.12	/	0.104	No

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated
			SAR (1g)		SAR (1g)	SAR (1g)
Back Side	6/2437	0.998	0.849	1.176	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .
4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 14: SAR Measurement Variability Results.

5.5 Multiple Transmitter Evaluation

5.5.1 Simultaneous SAR SAR test evaluation

1) Simultaneous Transmission

NO.	Simultaneous Transmission Configuration	Head	Body worn	Hotspot
1	GSM(Voice) + WiFi	Yes	Yes	No
2	GSM(Voice) + BT	Yes	Yes	No
3	GPRS / EDGE(Data) + WiFi	No	No	Yes
4	GPRS / EDGE(Data) + BT	No	No	Yes
5	LTE(Data) + WiFi	Yes	Yes	Yes
6	LTE(Data) + BT	Yes	Yes	Yes
7	BT+WIFI (They share the same antenna and cannot transmit at the same time by design.)	No	No	No

5.5.2 Estimated SAR

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)].[$\sqrt{f(\text{GHz})/x}$] W/kg for test separation distances \leq 50 mm;

Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is $>$ 50 mm.

Estimated SAR Result

Freq. Band	Frequency (GHz)	Test Position	max. power(dBm)	Test Separation (mm)	Estimated	
					1g SAR (W/kg)	
Bluetooth	2.48	Head	8.0	0	0.265	
		Body-worn	8.0	15	0.088	
		hotspot	8.0	10	0.132	

2) Simultaneous Transmission SAR Summation Scenario for head

WWAN Band	Exposure position	① MAX.WWAN SAR(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	Summed SAR①+②	Summed SAR①+③	Case NO.
GSM850	Left Touch	0.490	1.042	0.265	1.532	0.755	No
	Left Tilt	0.319	0.767	0.265	1.086	0.584	No
	Right Touch	0.571	0.478	0.265	1.049	0.836	No
	Right Tilt	0.265	0.524	0.265	0.789	0.530	No
GSM1900	Left Touch	0.487	1.042	0.265	1.529	0.752	No
	Left Tilt	0.284	0.767	0.265	1.051	0.549	No
	Right Touch	0.343	0.478	0.265	0.821	0.608	No
	Right Tilt	0.259	0.524	0.265	0.783	0.524	No
LTE Band 4	Left Touch	0.533	1.042	0.265	1.575	0.798	No
	Left Tilt	0.265	0.767	0.265	1.032	0.530	No
	Right Touch	0.304	0.478	0.265	0.782	0.569	No
	Right Tilt	0.267	0.524	0.265	0.791	0.532	No
LTE Band 13	Left Touch	0.453	1.042	0.265	1.495	0.718	No
	Left Tilt	0.297	0.767	0.265	1.064	0.562	No
	Right Touch	0.451	0.478	0.265	0.929	0.716	No
	Right Tilt	0.294	0.524	0.265	0.818	0.559	No

3) Simultaneous Transmission SAR Summation Scenario for body worn

WWAN Band	Exposure position	① MAX.WWAN SAR(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	Summed SAR①+②	Summed SAR①+③	Case NO.
GSM850	Front	0.466	0.059	0.088	0.525	0.554	No
	Back	0.522	0.052	0.088	0.574	0.610	No
GSM1900	Front	0.311	0.059	0.088	0.370	0.399	No
	Back	0.311	0.052	0.088	0.363	0.399	No
LTE Band 4	Front	0.407	0.059	0.088	0.466	0.495	No
	Back	0.534	0.052	0.088	0.586	0.622	No
LTE Band 13	Front	0.546	0.059	0.088	0.605	0.634	No
	Back	0.630	0.052	0.088	0.682	0.718	No

4) Simultaneous Transmission SAR Summation Scenario for hotspot

WWAN Band	Exposure position	① MAX.WWAN SAR(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	Summed SAR①+②	Summed SAR①+③	Case NO.
GSM850	Front	0.930	0.174	0.132	1.104	1.062	No
	Back	1.113	0.207	0.132	1.320	1.245	No
	Left	0.744	0.030	0.132	0.774	0.876	No
	Right	1.042	0.202	0.132	1.244	1.174	No
	Top	0.000	0.148	0.132	0.148	0.132	No
	Bottom	0.122	0.000	0.132	0.122	0.254	No
GSM1900	Front	0.546	0.174	0.132	0.720	0.678	No
	Back	0.661	0.207	0.132	0.868	0.793	No
	Left	0.517	0.030	0.132	0.547	0.649	No
	Right	0.311	0.202	0.132	0.513	0.443	No
	Top	0.000	0.148	0.132	0.148	0.132	No
	Bottom	0.354	0.000	0.132	0.354	0.486	No
LTE Band 4	Front	0.662	0.174	0.132	0.836	0.794	No
	Back	0.781	0.207	0.132	0.988	0.913	No
	Left	0.499	0.030	0.132	0.529	0.631	No
	Right	0.219	0.202	0.132	0.421	0.351	No
	Top	0.000	0.148	0.132	0.148	0.132	No
	Bottom	0.477	0.000	0.132	0.477	0.609	No
LTE Band 13	Front	0.580	0.174	0.132	0.754	0.712	No
	Back	0.735	0.207	0.132	0.942	0.867	No
	Left	0.456	0.030	0.132	0.486	0.588	No
	Right	0.455	0.202	0.132	0.657	0.587	No
	Top	0.000	0.148	0.132	0.148	0.132	No
	Bottom	0.029	0.000	0.132	0.029	0.161	No

6 Equipment list

Test Platform	SPEAG DASY5 Professional					
Location	SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch					
Description	SAR Test System (Frequency range 300MHz-6GHz)					
Software Reference	DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)					
Hardware Reference						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Due date of calibration	
<input checked="" type="checkbox"/> Twin Phantom	SPEAG	SAM 2	1913	NCR	NCR	
<input checked="" type="checkbox"/> Twin Phantom	SPEAG	SAM 1	1912	NCR	NCR	
<input checked="" type="checkbox"/> Twin Phantom	SPEAG	SAM 2	1640	NCR	NCR	
<input checked="" type="checkbox"/> DAE	SPEAG	DAE4	1428	2018-01-17	2019-01-16	
<input checked="" type="checkbox"/> E-Field Probe	SPEAG	EX3DV4	3962	2018-01-11	2019-01-10	
<input checked="" type="checkbox"/> E-Field Probe	SPEAG	EX3DV4	3789	2018-02-08	2019-02-07	
<input checked="" type="checkbox"/> Validation Kits	SPEAG	D750V3	1160	2016-06-22	2019-06-21	
<input checked="" type="checkbox"/> Validation Kits	SPEAG	D835V2	4d105	2016-12-08	2019-12-07	
<input checked="" type="checkbox"/> Validation Kits	SPEAG	D1750V2	1149	2016-06-23	2019-06-22	
<input checked="" type="checkbox"/> Validation Kits	SPEAG	D1900V2	5d028	2016-12-07	2019-12-06	
<input checked="" type="checkbox"/> Validation Kits	SPEAG	D2450V2	733	2016-12-07	2019-12-06	
<input type="checkbox"/> Validation Kits	SPEAG	D2600V2	1125	2016-06-22	2019-06-21	
<input checked="" type="checkbox"/> Agilent Network Analyzer	Agilent	E5071C	MY46523590	2018-03-13	2019-03-12	
<input checked="" type="checkbox"/> Dielectric Probe Kit	Agilent	85070E	US01440210	NCR	NCR	
<input checked="" type="checkbox"/> Universal Radio Communication Tester	R&S	CMU200	123090	2018-06-21	2019-06-20	
<input checked="" type="checkbox"/> Radio Communication Analyzer	Anritsu Corporation	MT8821C	6201502984	2018-05-02	2019-05-01	
<input checked="" type="checkbox"/> RF Bi-Directional Coupler	Agilent	86205-60001	MY31400031	NCR	NCR	
<input checked="" type="checkbox"/> Signal Generator	Agilent	N5171B	MY53050736	2018-03-13	2019-03-12	
<input checked="" type="checkbox"/> Preamplifier	Mini-Circuits	ZHL-42W	15542	NCR	NCR	
<input checked="" type="checkbox"/> Preamplifier	Compliance Directions Systems Inc.	AMP28-3W	073501433	NCR	NCR	
<input checked="" type="checkbox"/> Power Meter	Agilent	E4416A	GB41292095	2018-03-13	2019-03-12	
<input checked="" type="checkbox"/> Power Sensor	Agilent	8481H	MY41091234	2018-03-13	2019-03-12	
<input checked="" type="checkbox"/> Power Sensor	R&S	NRP-Z92	100025	2018-03-13	2019-03-12	
<input checked="" type="checkbox"/> Attenuator	SHX	TS2-3dB	30704	NCR	NCR	
<input checked="" type="checkbox"/> Coaxial low pass filter	Mini-Circuits	VLF-2500(+)	NA	NCR	NCR	
<input checked="" type="checkbox"/> Coaxial low pass filter	Microlab Fxr	LA-F13	NA	NCR	NCR	
<input checked="" type="checkbox"/> 50 Ω coaxial load	Mini-Circuits	KARN-50+	00850	NCR	NCR	
<input checked="" type="checkbox"/> DC POWER SUPPLY	SAKO	SK1730SL5A	NA	NCR	NCR	

**SGS-CSTC Standards Technical Services Co., Ltd.
Shenzhen Branch**

Report No.: SZEM180200152405
Page: 54 of 56

<input checked="" type="checkbox"/>	Speed reading thermometer	MingGao	T809	NA	2018-03-19	2019-03-18
<input checked="" type="checkbox"/>	Humidity and Temperature Indicator	KIMTOKA	KIMTOKA	NA	2018-03-19	2019-03-18

7 Measurement Uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

8 Calibration certificate

Please see the Appendix C

9 Photographs

Please see the Appendix D

Appendix A: Detailed System Check Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

---END---

Appendix A

Detailed System Validation Results

1. System Performance Check for Head
System Performance Check 750 MHz Head
System Performance Check 750 MHz Body
System Performance Check 835 MHz Head
System Performance Check 835 MHz Body
System Performance Check 1750 MHz Head
System Performance Check 1750 MHz Body
System Performance Check 1900 MHz Head
System Performance Check 1900 MHz Body
System Performance Check 2450 MHz Head
System Performance Check 2450 MHz Body

Test Laboratory: SGS-SAR Lab

System Performance Check 750 MHz Head

DUT: D750V3; Type: D750V3; Serial: 1160

Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

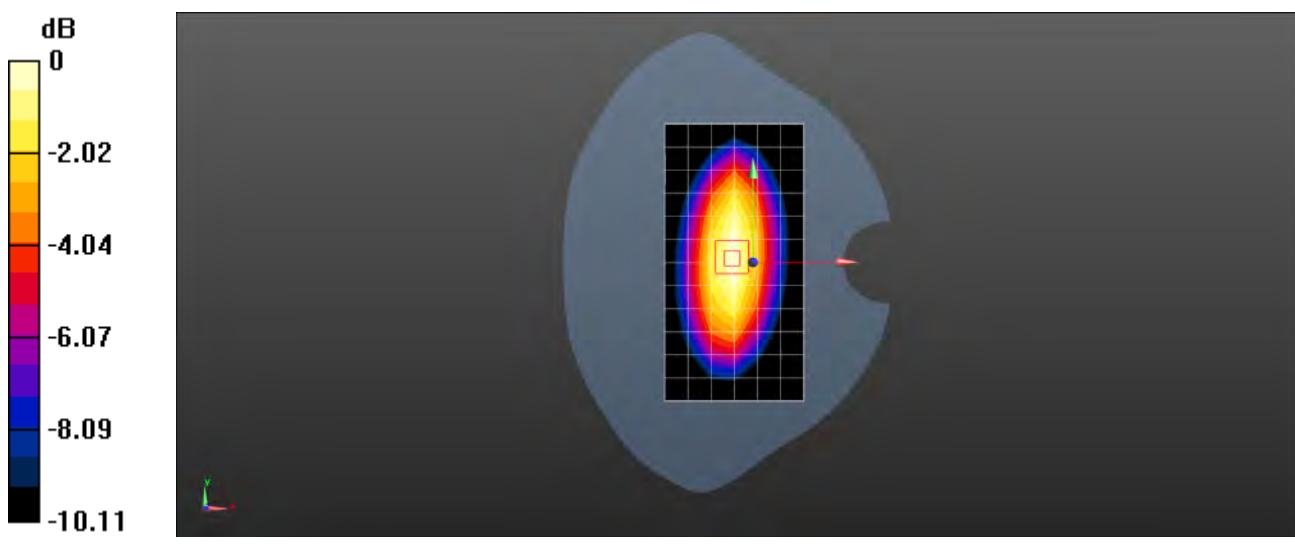
Medium: HSL750; Medium parameters used: $f = 750$ MHz; $\sigma = 0.878$ S/m; $\epsilon_r = 43.089$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(10.19, 10.19, 10.19); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 2.08 W/kg


Body/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 48.68 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 1.95 W/kg; SAR(10 g) = 1.29 W/kg

Maximum value of SAR (measured) = 2.10 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 750 MHz Body

DUT: D750V3; Type: D750V3; Serial: 1160

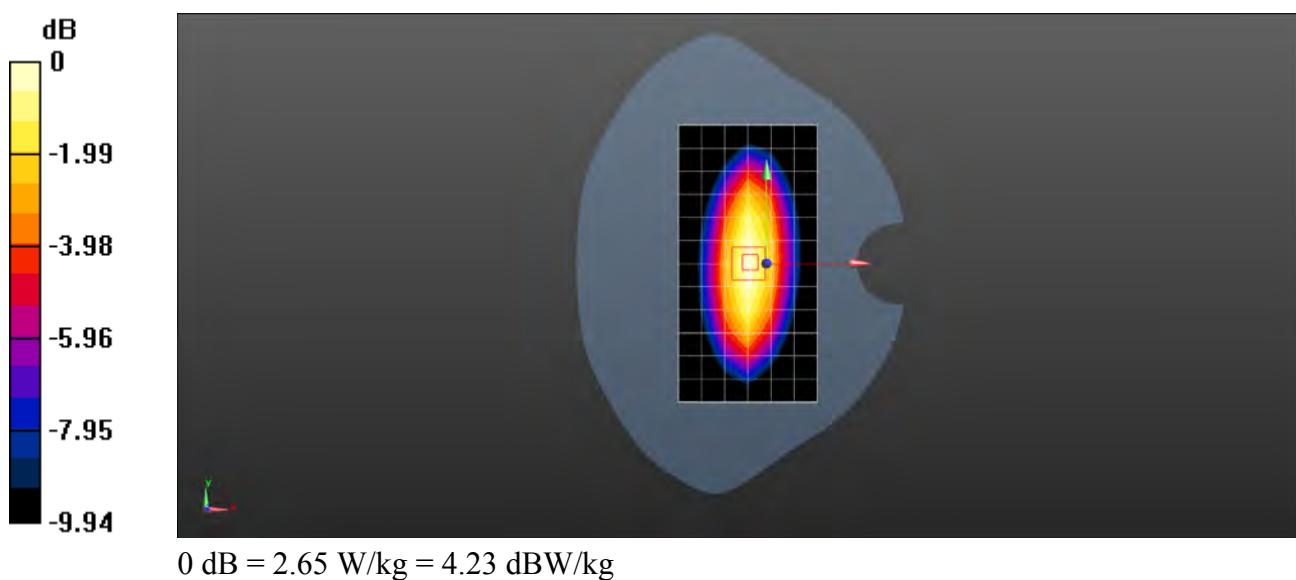
Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

Medium: MSL750; Medium parameters used: $f = 750$ MHz; $\sigma = 0.955$ S/m; $\epsilon_r = 55.223$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3789; ConvF(9.27, 9.27, 9.27); Calibrated: 2018-02-08;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 2.65 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 46.96 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.13 W/kg

SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.41 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Head

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

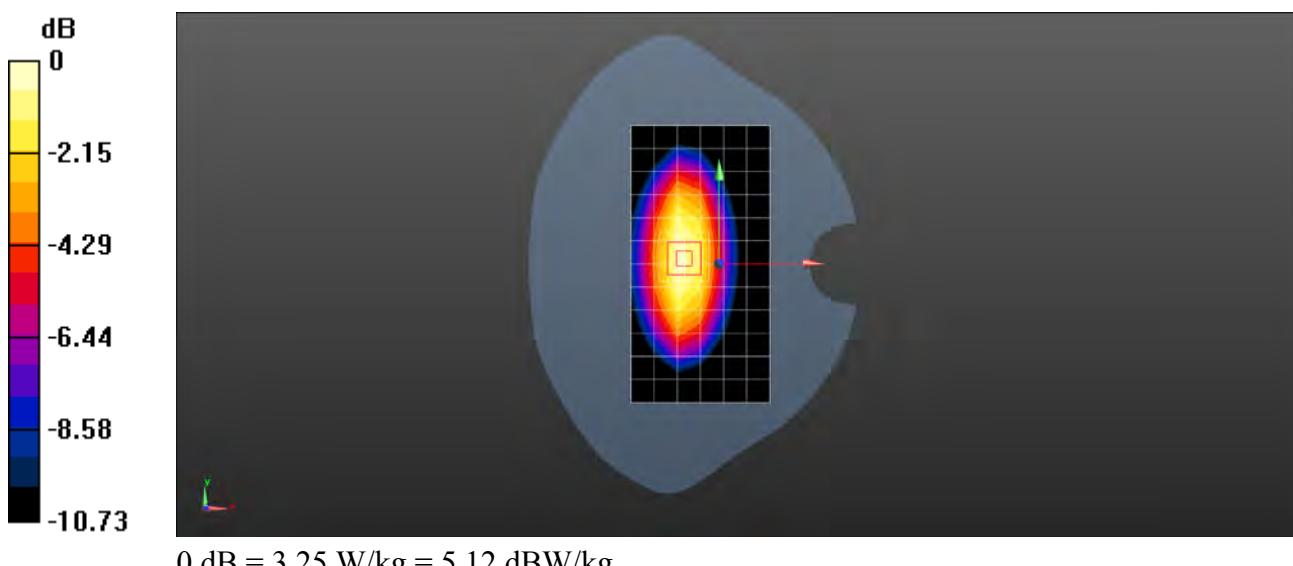
Medium: HSL835; Medium parameters used: $f = 835$ MHz; $\sigma = 0.929$ S/m; $\epsilon_r = 42.605$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(9.96, 9.96, 9.96); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 3.08 W/kg


Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 52.11 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 3.84 W/kg

SAR(1 g) = 2.55 W/kg; SAR(10 g) = 1.66 W/kg

Maximum value of SAR (measured) = 3.25 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Body

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

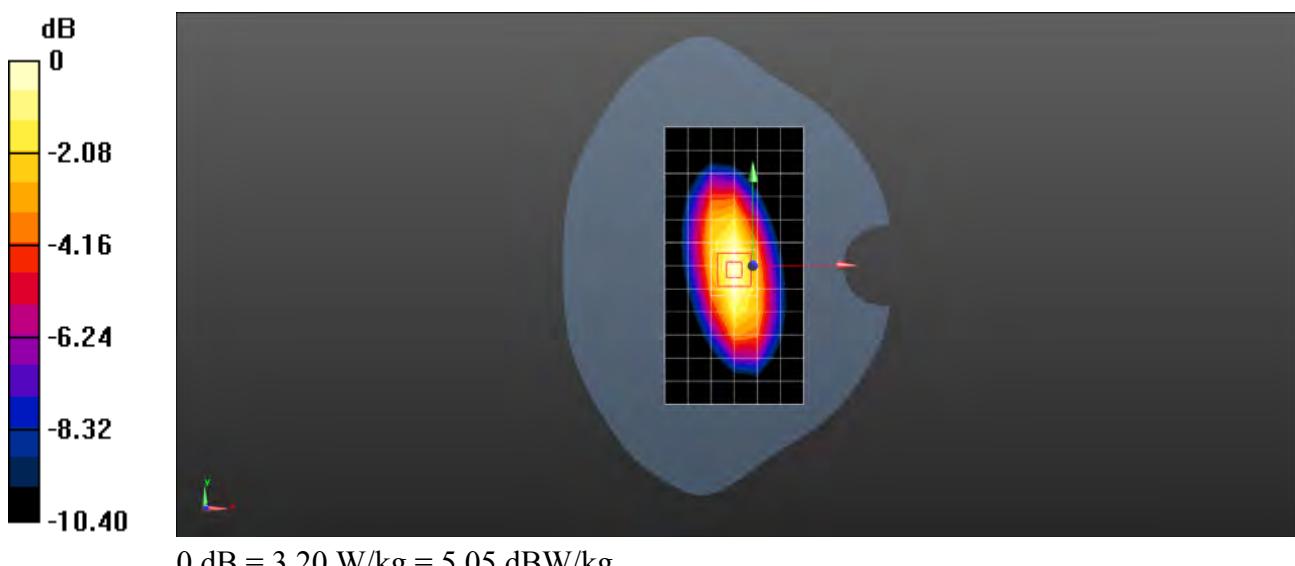
Medium: MSL835; Medium parameters used: $f = 835$ MHz; $\sigma = 1.011$ S/m; $\epsilon_r = 54.871$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3789; ConvF(8.84, 8.84, 8.84); Calibrated: 2018-02-08;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 3.19 W/kg


Body/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 50.78 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.73 W/kg

SAR(1 g) = 2.54 W/kg; SAR(10 g) = 1.68 W/kg

Maximum value of SAR (measured) = 3.20 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1750 MHz Head

DUT: D1750V2; Type: D1750V2; Serial: 1149

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

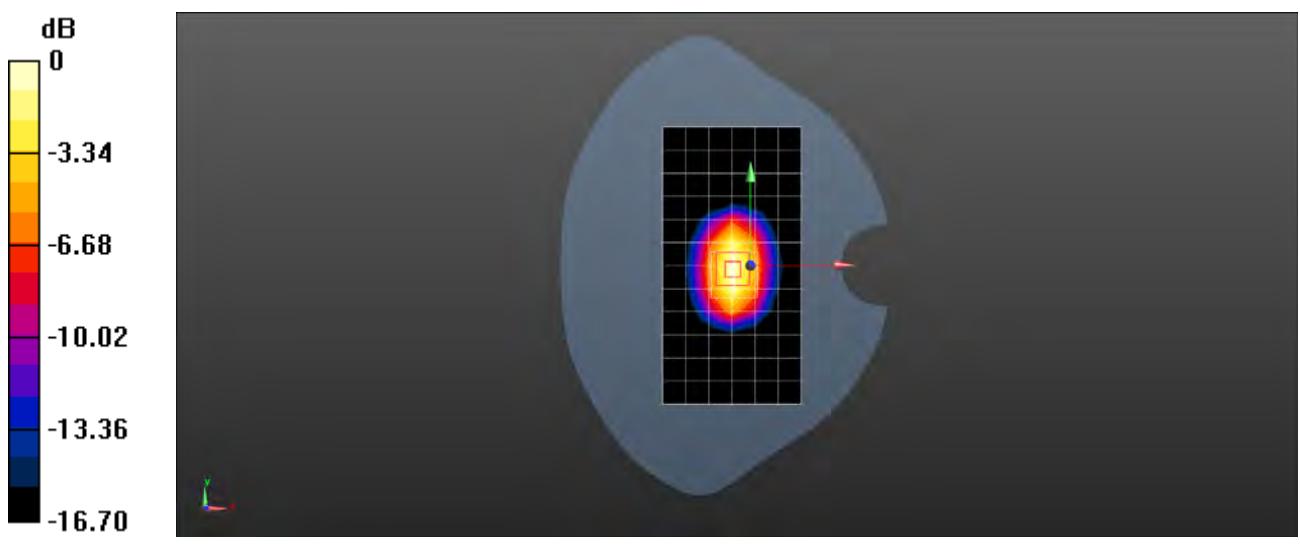
Medium: HSL1750; Medium parameters used: $f = 1750$ MHz; $\sigma = 1.318$ S/m; $\epsilon_r = 40.413$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.54, 8.54, 8.54); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 2; Type: SAM V4.0; Serial: 1640
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 9.74 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 77.61 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 15.9 W/kg

SAR(1 g) = 8.74 W/kg; SAR(10 g) = 4.69 W/kg

Maximum value of SAR (measured) = 9.79 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1750 MHz Body

DUT: D1750V2; Type: D1750V2; Serial: 1149

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

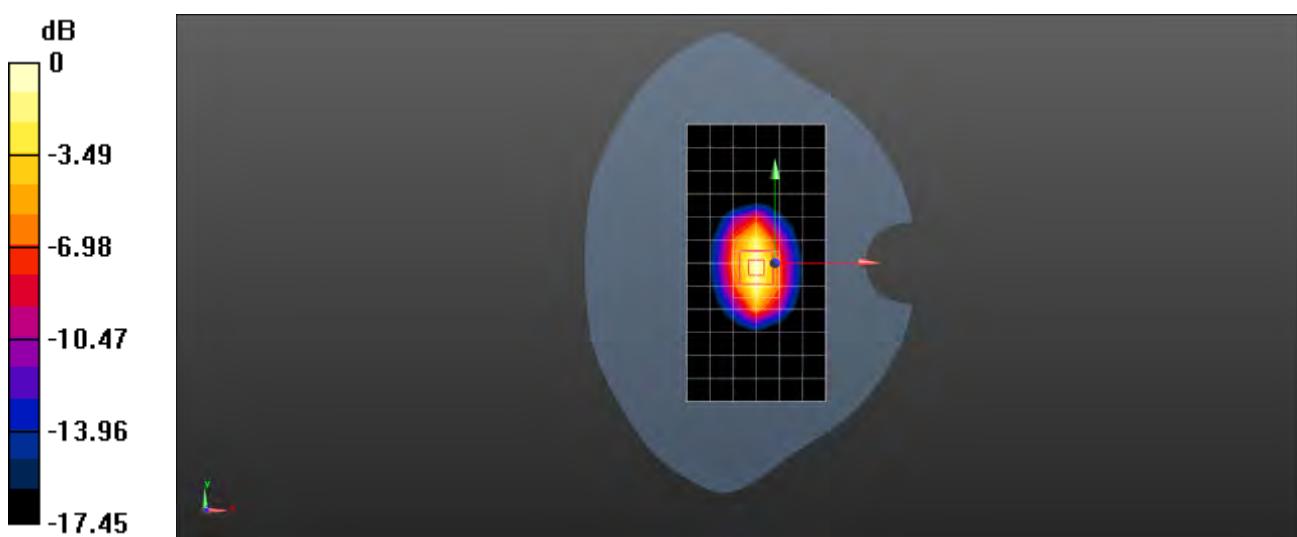
Medium: MSL1750; Medium parameters used: $f = 1750$ MHz; $\sigma = 1.493$ S/m; $\epsilon_r = 52.159$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.49, 8.49, 8.49); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 2; Type: SAM V4.0; Serial: 1640
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 13.1 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 79.30 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.5 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 13.6 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Head

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

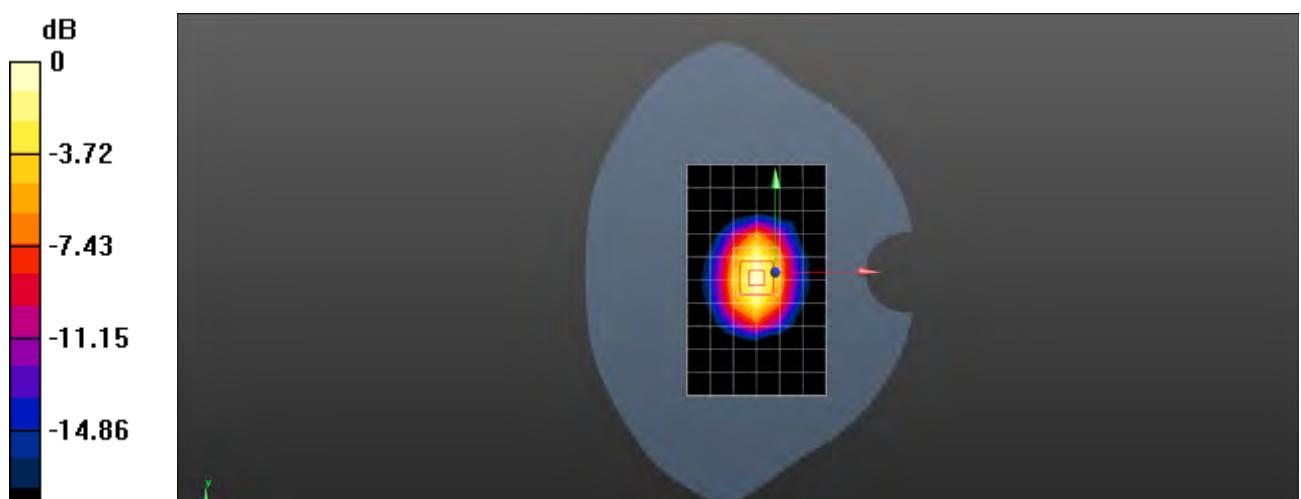
Medium: HSL1900; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.437$ S/m; $\epsilon_r = 41.171$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3789; ConvF(7.35, 7.35, 7.35); Calibrated: 2018-02-08;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 11.9 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

$dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 84.20 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 20.2 W/kg

SAR(1 g) = 10.6 W/kg; SAR(10 g) = 5.51 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Body

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

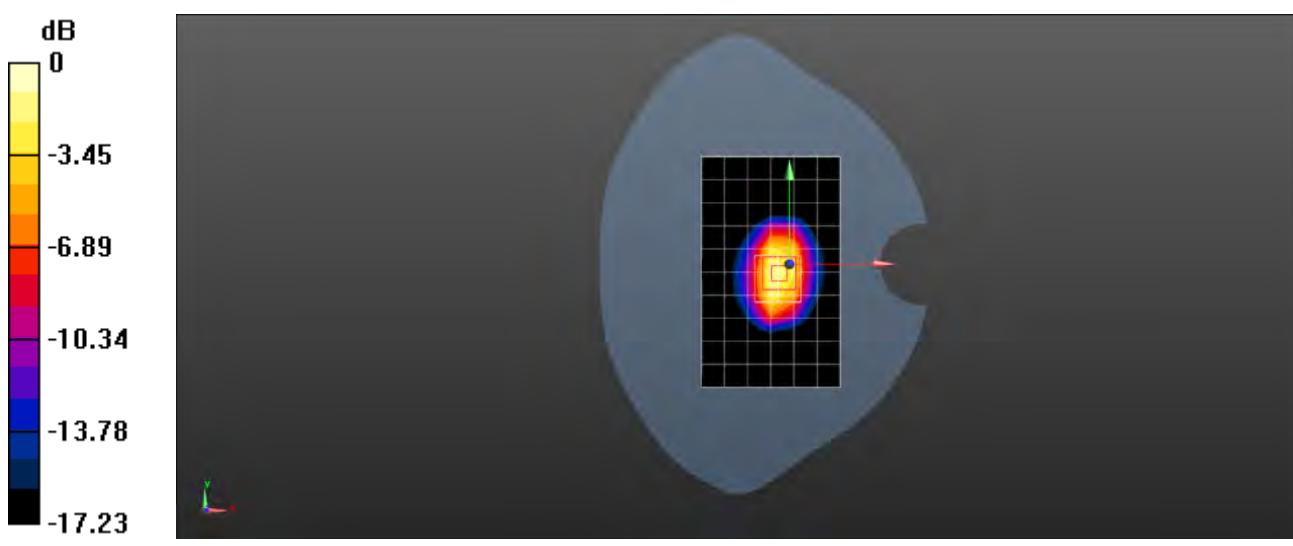
Medium: MSL1900; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.523$ S/m; $\epsilon_r = 53.897$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.09, 8.09, 8.09); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 11.6 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 60.09 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.48 W/kg

Maximum value of SAR (measured) = 14.6 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Head

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

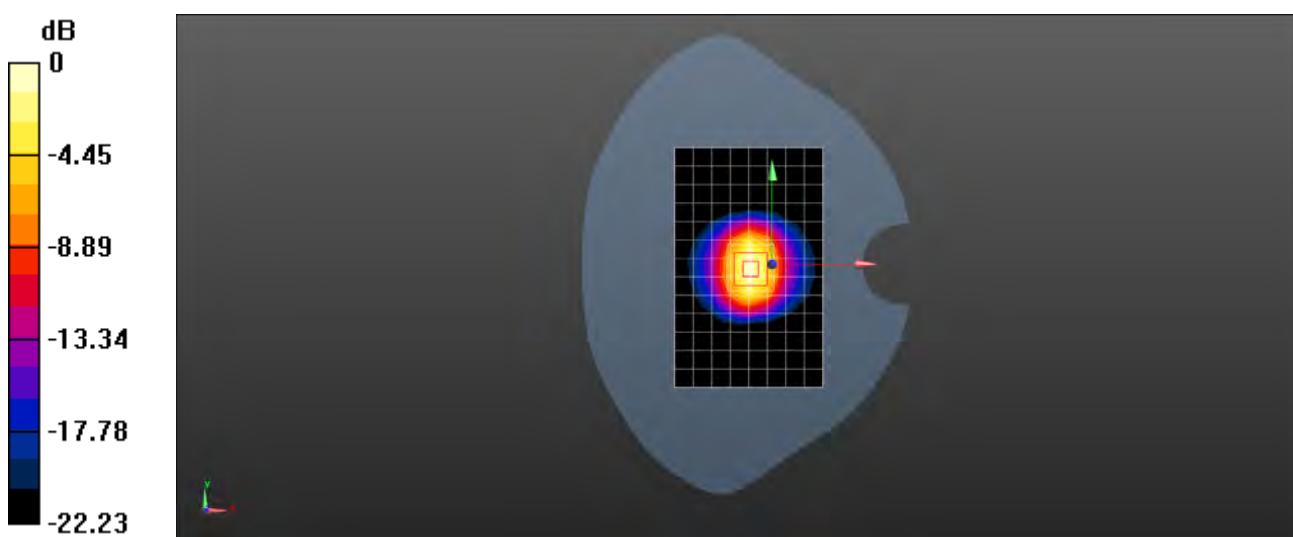
Medium: HSL2450; Medium parameters used: $f = 2450$ MHz; $\sigma = 1.811$ S/m; $\epsilon_r = 41.039$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.62, 7.62, 7.62); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (9x14x1): Measurement grid: $dx=12$ mm, $dy=12$ mm
Maximum value of SAR (measured) = 13.8 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 86.57 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 15.1 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Body

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: $f = 2450$ MHz; $\sigma = 1.969$ S/m; $\epsilon_r = 52.683$; $\rho = 1000$ kg/m³

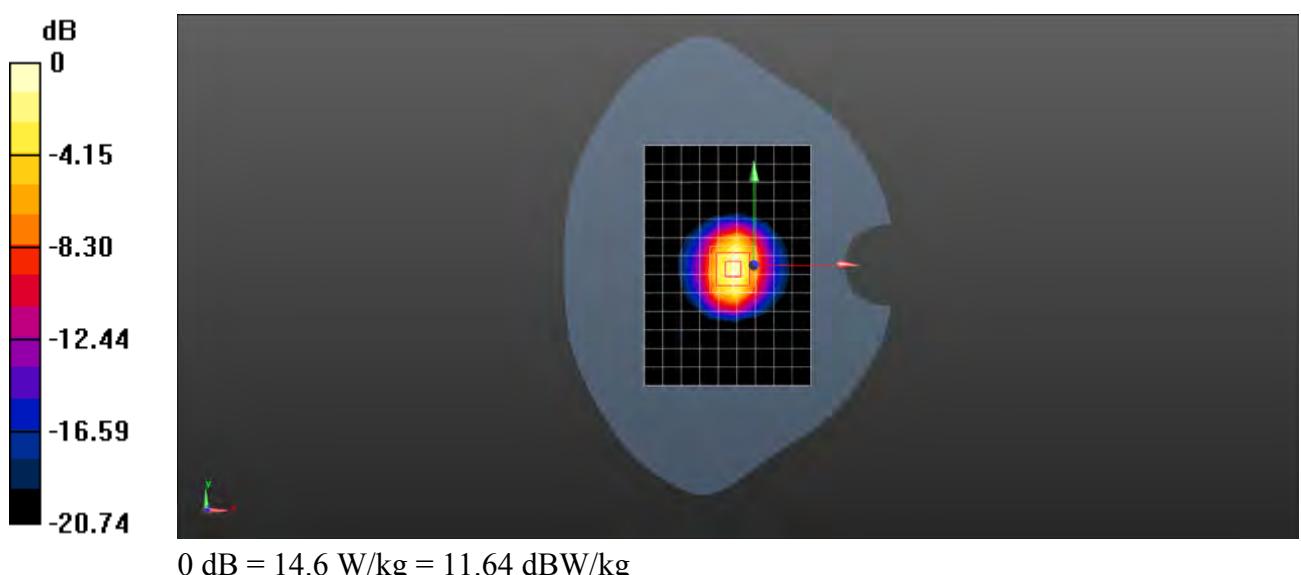
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.78, 7.78, 7.78); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 2; Type: SAM V4.0; Serial: 1640
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (10x14x1): Measurement grid: $dx=12$ mm, $dy=12$ mm

Maximum value of SAR (measured) = 13.5 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 79.74 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 25.3 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.93 W/kg

Maximum value of SAR (measured) = 14.6 W/kg

Appendix B

Detailed Test Results

1. GSM
GSM850 for Head & Body
GSM1900 for Head & Body
2. LTE
LTE Band 4 for Head & Body
LTE Band 13 for Head & Body
4. WIFI
WIFI 2.4G for Head & Body

Test Laboratory: SGS-SAR Lab

TE500 GSM850 GSM 190CH Right cheek

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

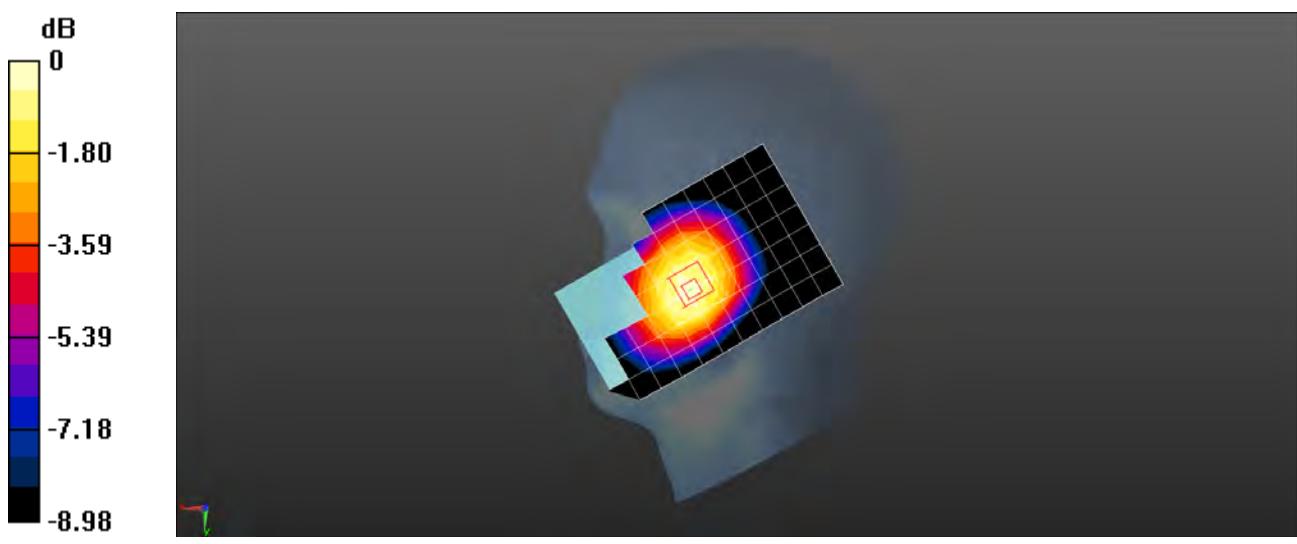
Communication System: UID 0, GSM Only Communication System (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium: HSL835; Medium parameters used: $f = 837$ MHz; $\sigma = 0.931$ S/m; $\epsilon_r = 42.594$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(9.96, 9.96, 9.96); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.649 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 7.242 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.711 W/kg

SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.439 W/kg

Test Laboratory: SGS-SAR Lab

TE500 GSM850 GSM 190CH Back side 15mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, GSM Only Communication System (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

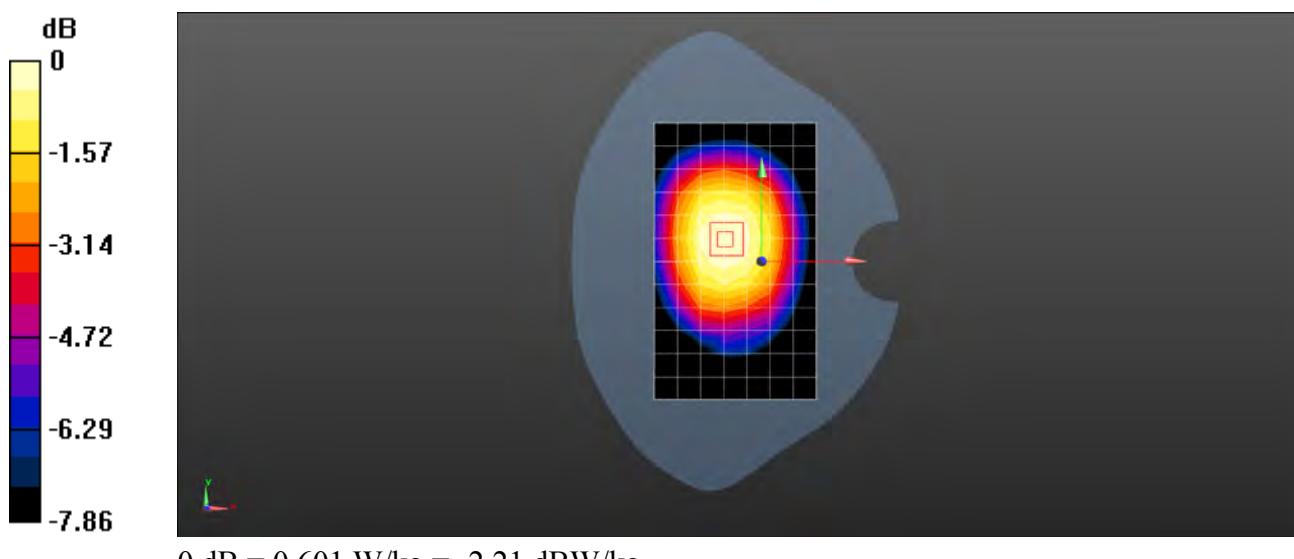
Medium: MSL835; Medium parameters used: $f = 837$ MHz; $\sigma = 1.013$ S/m; $\epsilon_r = 54.862$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3789; ConvF(8.84, 8.84, 8.84); Calibrated: 2018-02-08;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.600 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 22.01 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.663 W/kg

SAR(1 g) = 0.521 W/kg; SAR(10 g) = 0.398 W/kg

Maximum value of SAR (measured) = 0.601 W/kg

Test Laboratory: SGS-SAR Lab

TE500 GSM850 GPRS 2TS 251CH Back side 10mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, GPRS/EGPRS Mode(2up) Communication System (0); Frequency: 848.8 MHz; Duty Cycle: 1:4.14954

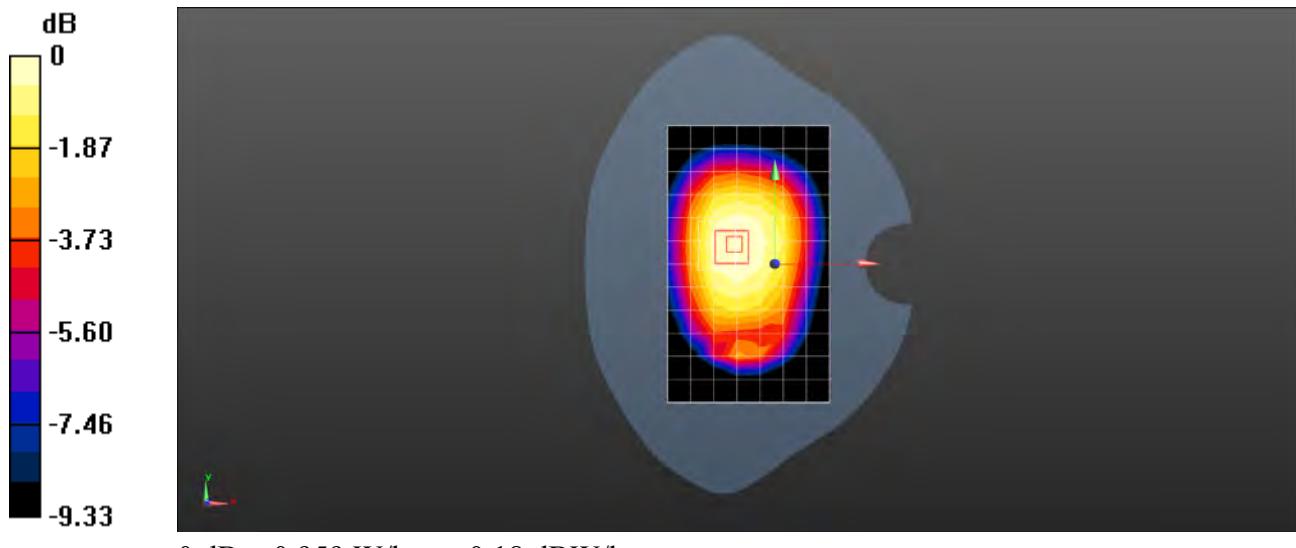
Medium: MSL835; Medium parameters used: $f = 849$ MHz; $\sigma = 1.02$ S/m; $\epsilon_r = 54.805$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3789; ConvF(8.84, 8.84, 8.84); Calibrated: 2018-02-08;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.958 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 28.30 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.831 W/kg; SAR(10 g) = 0.631 W/kg

Maximum value of SAR (measured) = 0.959 W/kg

Test Laboratory: SGS-SAR Lab

TE500 GSM1900 GSM 661CH Left cheek

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, GSM Only Communication System (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

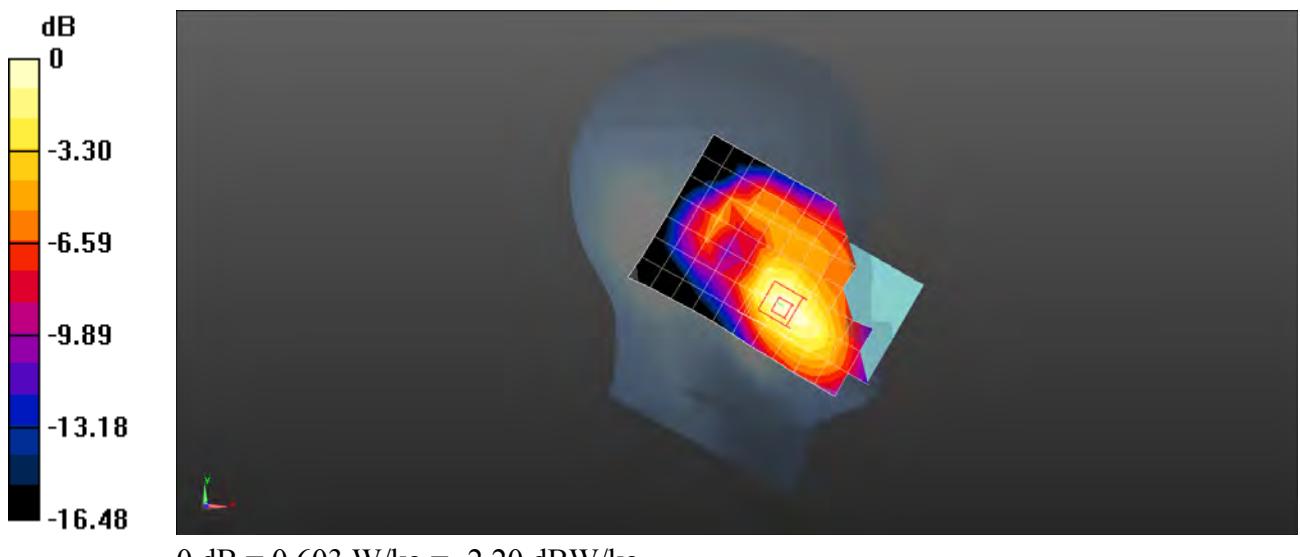
Medium: HSL1900; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.418$ S/m; $\epsilon_r = 41.237$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3789; ConvF(7.35, 7.35, 7.35); Calibrated: 2018-02-08;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.581 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 10.35 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.724 W/kg

SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.308 W/kg

Maximum value of SAR (measured) = 0.603 W/kg

Test Laboratory: SGS-SAR Lab

TE500 GSM1900 GSM 661CH Front side 15mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, GSM Only Communication System (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

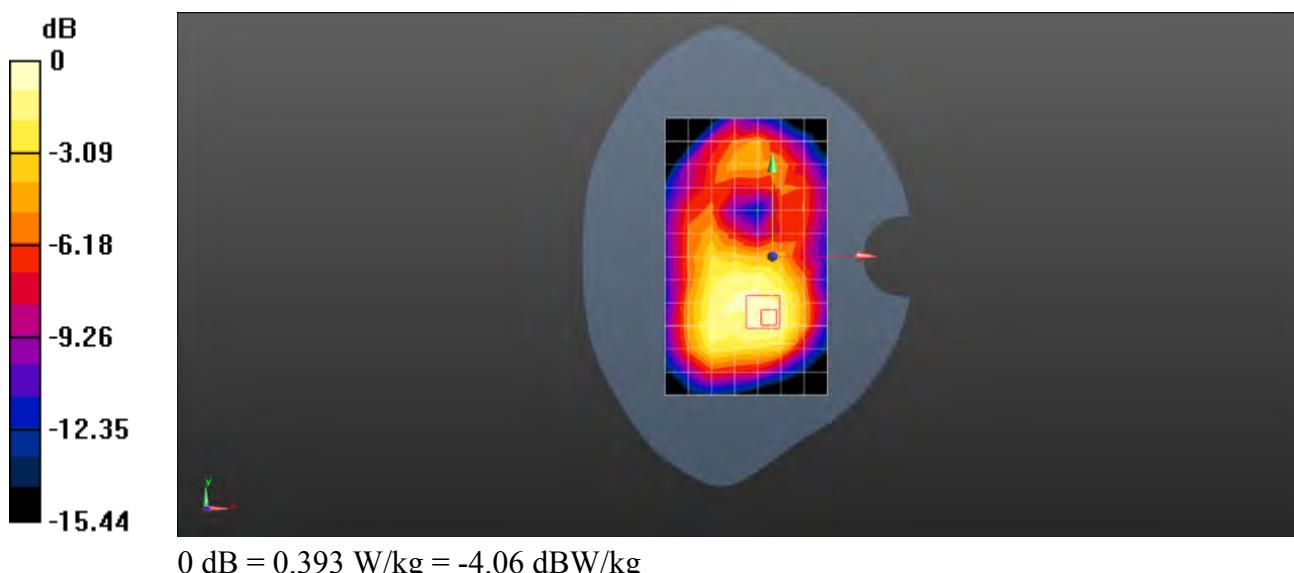
Medium: MSL1900; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.504$ S/m; $\epsilon_r = 53.933$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.09, 8.09, 8.09); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.354 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 10.41 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.464 W/kg

SAR(1 g) = 0.310 W/kg; SAR(10 g) = 0.208 W/kg

Maximum value of SAR (measured) = 0.393 W/kg

Test Laboratory: SGS-SAR Lab

TE500 GSM1900 GPRS 3TS 661CH Back side 10mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, GPRS/EGPRS Mode(3up) Communication System (0); Frequency: 1880 MHz; Duty Cycle: 1:2.77013

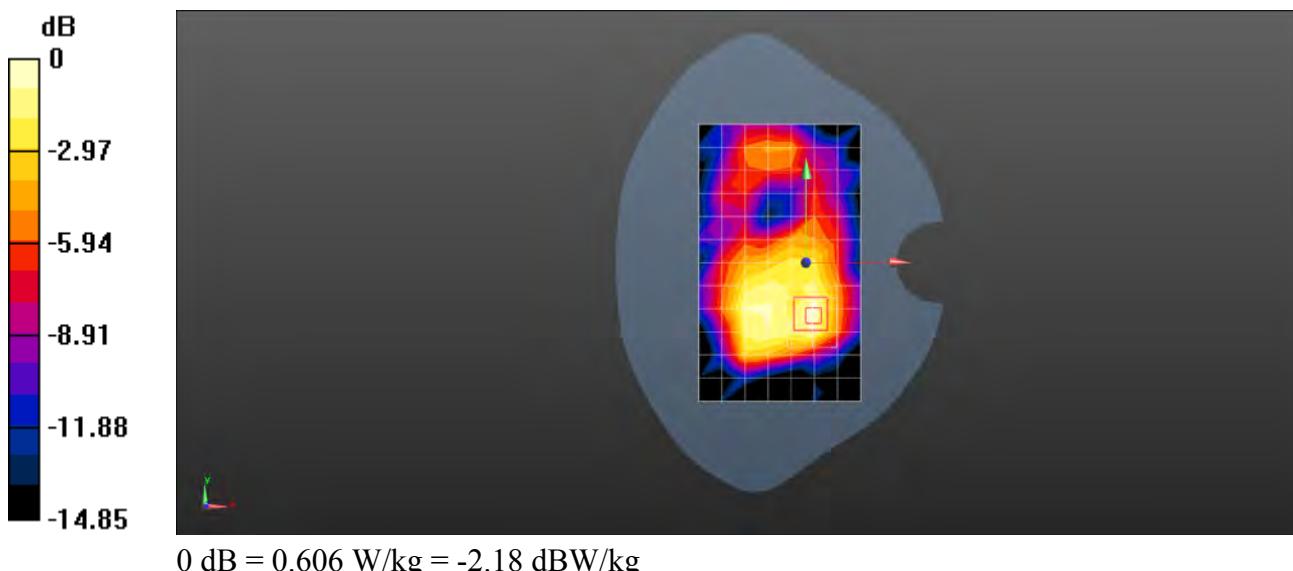
Medium: MSL1900; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.504$ S/m; $\epsilon_r = 53.933$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.09, 8.09, 8.09); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.577 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 14.03 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.760 W/kg

SAR(1 g) = 0.470 W/kg; SAR(10 g) = 0.291 W/kg

Maximum value of SAR (measured) = 0.606 W/kg

Test Laboratory: SGS-SAR Lab

TE500 LTE Band 4 20M QPSK 1RB50 Offset 20300CH Left cheek

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1745 MHz; Duty Cycle: 1:1

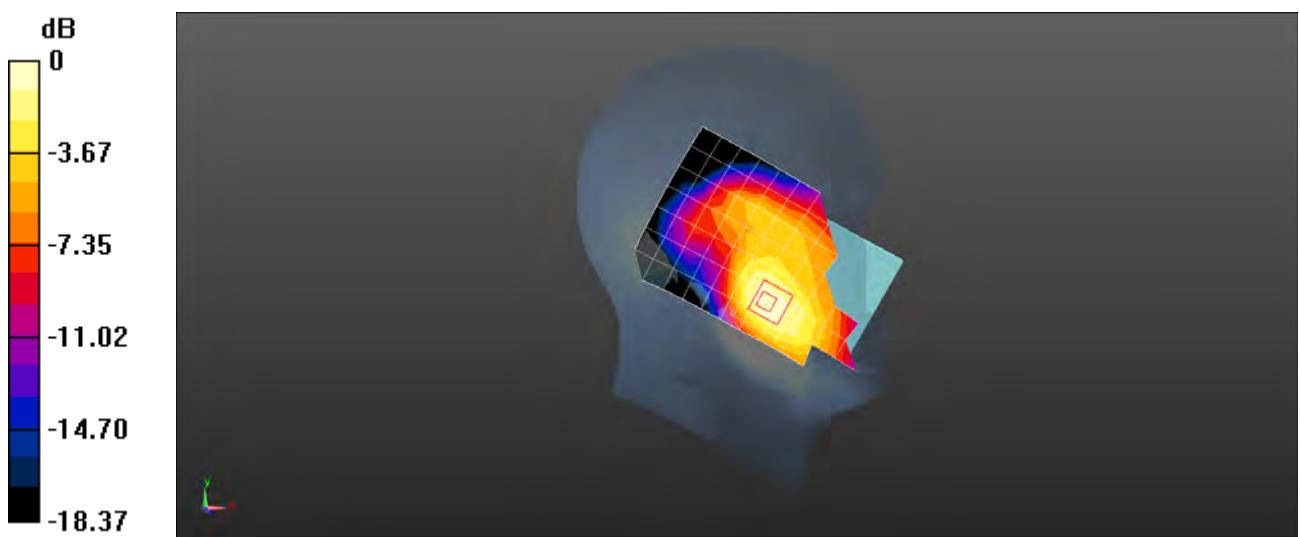
Medium: HSL1750; Medium parameters used: $f = 1745$ MHz; $\sigma = 1.313$ S/m; $\epsilon_r = 40.426$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.54, 8.54, 8.54); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 2; Type: SAM V4.0; Serial: 1640
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.529 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 8.467 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.709 W/kg

SAR(1 g) = 0.477 W/kg; SAR(10 g) = 0.307 W/kg

Maximum value of SAR (measured) = 0.607 W/kg

Test Laboratory: SGS-SAR Lab

TE500 LTE Band 4 20M QPSK 1RB50 Offset 20300CH Back side 15mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1745 MHz; Duty Cycle: 1:1

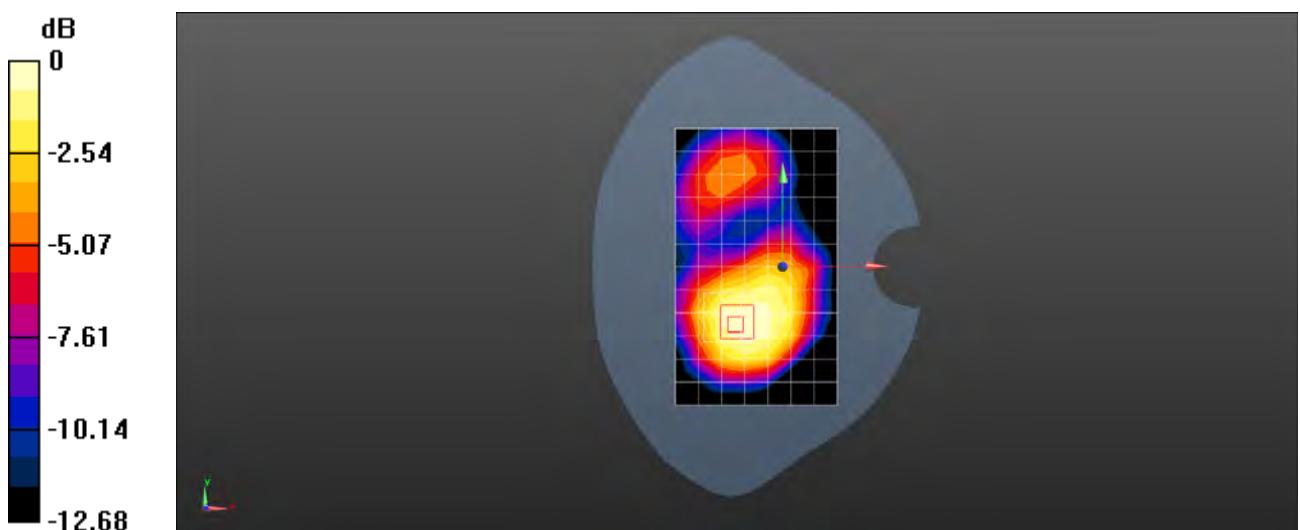
Medium: MSL1750; Medium parameters used: $f = 1745$ MHz; $\sigma = 1.488$ S/m; $\epsilon_r = 52.171$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.49, 8.49, 8.49); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 2; Type: SAM V4.0; Serial: 1640
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.539 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 12.19 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.666 W/kg

SAR(1 g) = 0.478 W/kg; SAR(10 g) = 0.323 W/kg

Maximum value of SAR (measured) = 0.579 W/kg

0 dB = 0.579 W/kg = -2.37 dBW/kg

Test Laboratory: SGS-SAR Lab

TE500 LTE Band 4 20M QPSK 1RB50 Offset 20300CH Back side 10mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 1745 MHz; Duty Cycle: 1:1

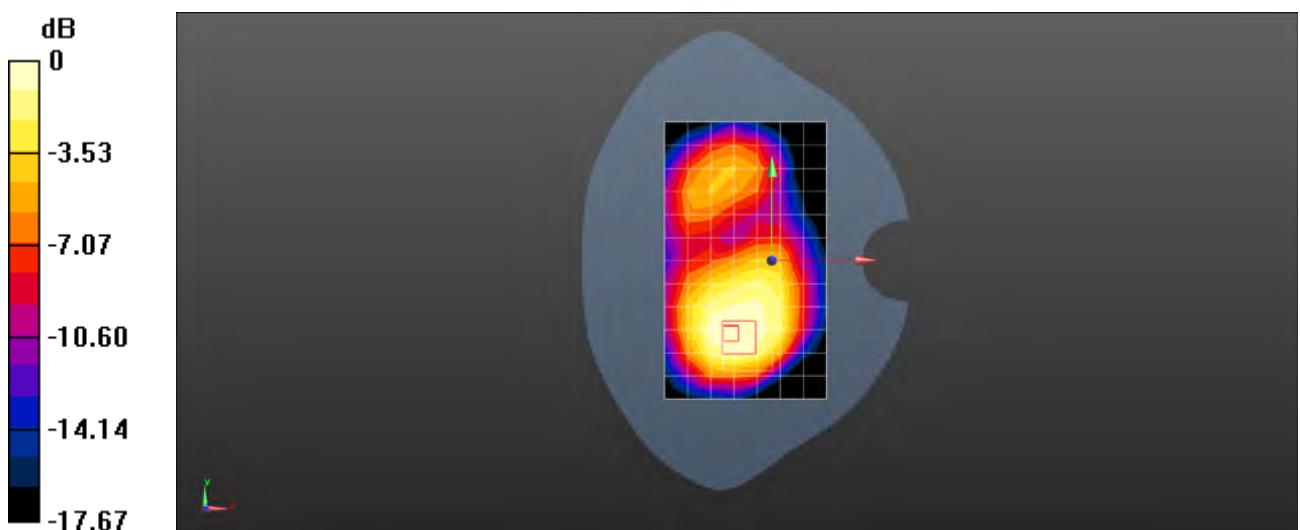
Medium: MSL1750; Medium parameters used: $f = 1745$ MHz; $\sigma = 1.488$ S/m; $\epsilon_r = 52.171$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.49, 8.49, 8.49); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 2; Type: SAM V4.0; Serial: 1640
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.844 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 12.86 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.983 W/kg

SAR(1 g) = 0.699 W/kg; SAR(10 g) = 0.457 W/kg

Maximum value of SAR (measured) = 0.864 W/kg

Test Laboratory: SGS-SAR Lab

TE500 LTE Band 13 10M QPSK 1RB25 Offset 23230CH Left cheek

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, LTE-FDD BW 10MHZ (0); Frequency: 782 MHz; Duty Cycle: 1:1

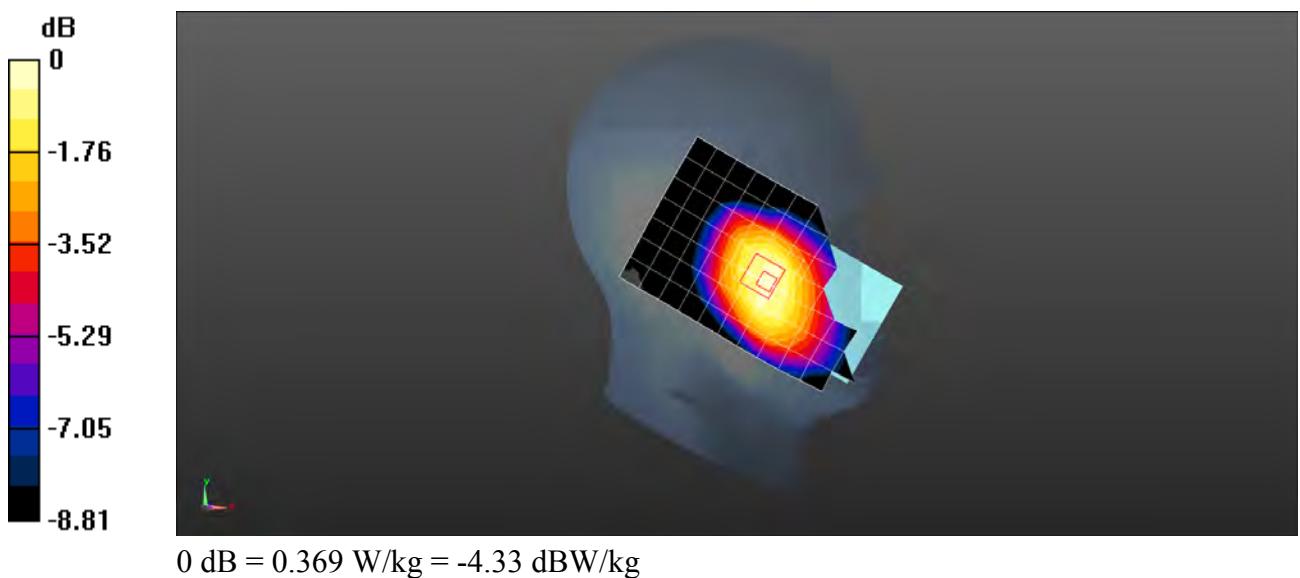
Medium: HSL750; Medium parameters used: $f = 782$ MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 42.907$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(10.19, 10.19, 10.19); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.346 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 5.940 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.397 W/kg

SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.255 W/kg

Maximum value of SAR (measured) = 0.369 W/kg

Test Laboratory: SGS-SAR Lab

TE500 LTE Band 13 10M QPSK 1RB25 Offset 23230CH Back side 15mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, LTE-FDD BW 10MHZ (0); Frequency: 782 MHz; Duty Cycle: 1:1

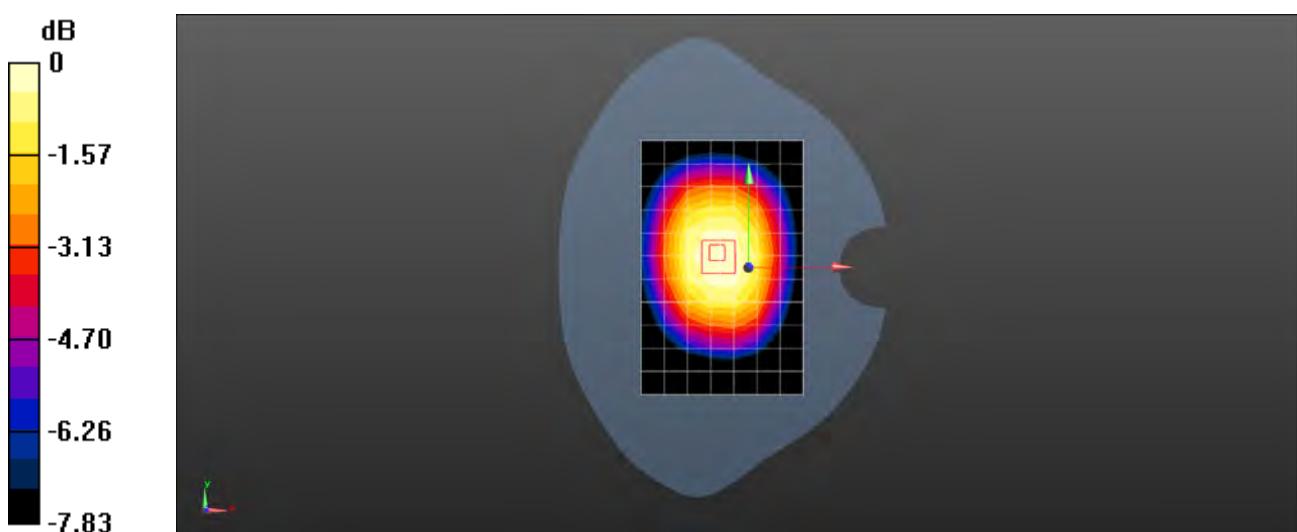
Medium: MSL750; Medium parameters used: $f = 782$ MHz; $\sigma = 0.976$ S/m; $\epsilon_r = 55.092$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3789; ConvF(9.27, 9.27, 9.27); Calibrated: 2018-02-08;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x12x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.518 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 21.85 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.589 W/kg

SAR(1 g) = 0.454 W/kg; SAR(10 g) = 0.348 W/kg

Maximum value of SAR (measured) = 0.526 W/kg

Test Laboratory: SGS-SAR Lab

TE500 LTE Band 13 10M QPSK 1RB25 Offset 23230CH Back side 10mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, LTE-FDD BW 10MHZ (0); Frequency: 782 MHz; Duty Cycle: 1:1

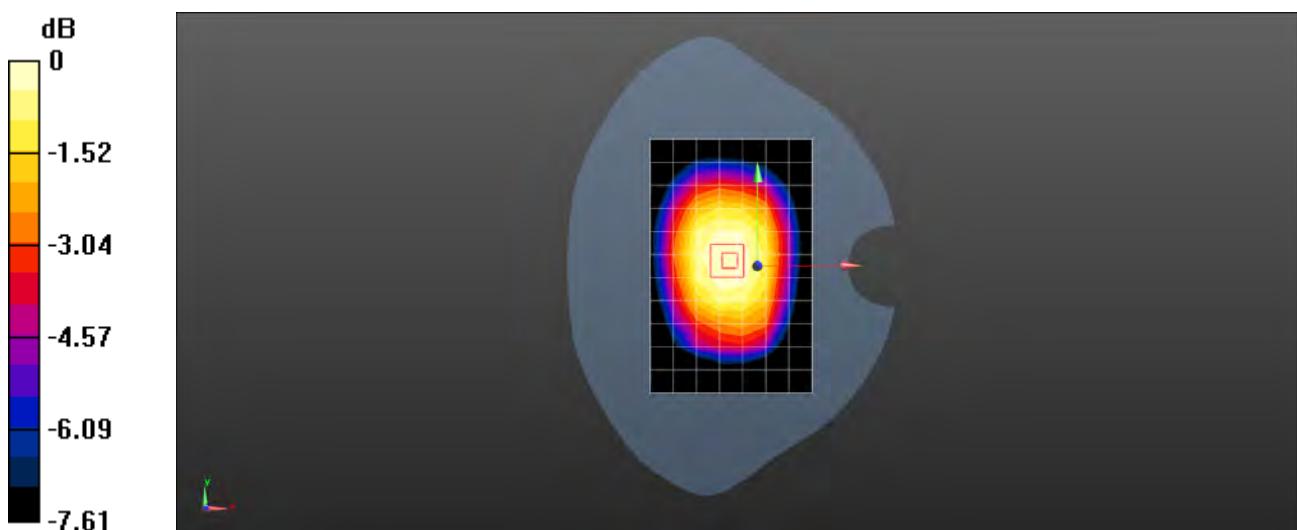
Medium: MSL750; Medium parameters used: $f = 782$ MHz; $\sigma = 0.976$ S/m; $\epsilon_r = 55.092$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3789; ConvF(9.27, 9.27, 9.27); Calibrated: 2018-02-08;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM2; Type: SAM; Serial: 1913
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x12x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.606 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 23.62 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.681 W/kg

SAR(1 g) = 0.530 W/kg; SAR(10 g) = 0.405 W/kg

Maximum value of SAR (measured) = 0.609 W/kg

Test Laboratory: SGS-SAR Lab

TE500 WIFI 802.11b 6CH Left cheek

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2437 MHz; Duty Cycle: 1:1

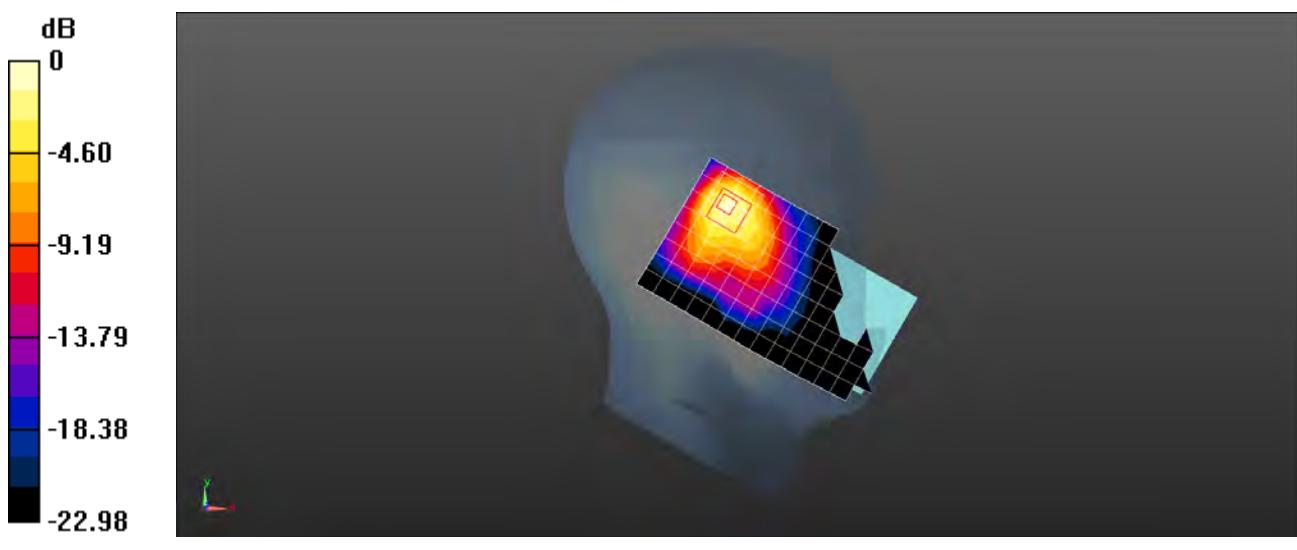
Medium: HSL2450; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.795$ S/m; $\epsilon_r = 41.086$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.62, 7.62, 7.62); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 1; Type: SAM; Serial: 1912
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (9x16x1): Measurement grid: $dx=12$ mm, $dy=12$ mm
Maximum value of SAR (measured) = 1.37 W/kg


Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 14.41 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.17 W/kg

SAR(1 g) = 0.998 W/kg; SAR(10 g) = 0.482 W/kg

Maximum value of SAR (measured) = 1.51 W/kg

Test Laboratory: SGS-SAR Lab

TE500 WIFI 802.11b 6CH Front side 15mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2437 MHz; Duty Cycle: 1:1

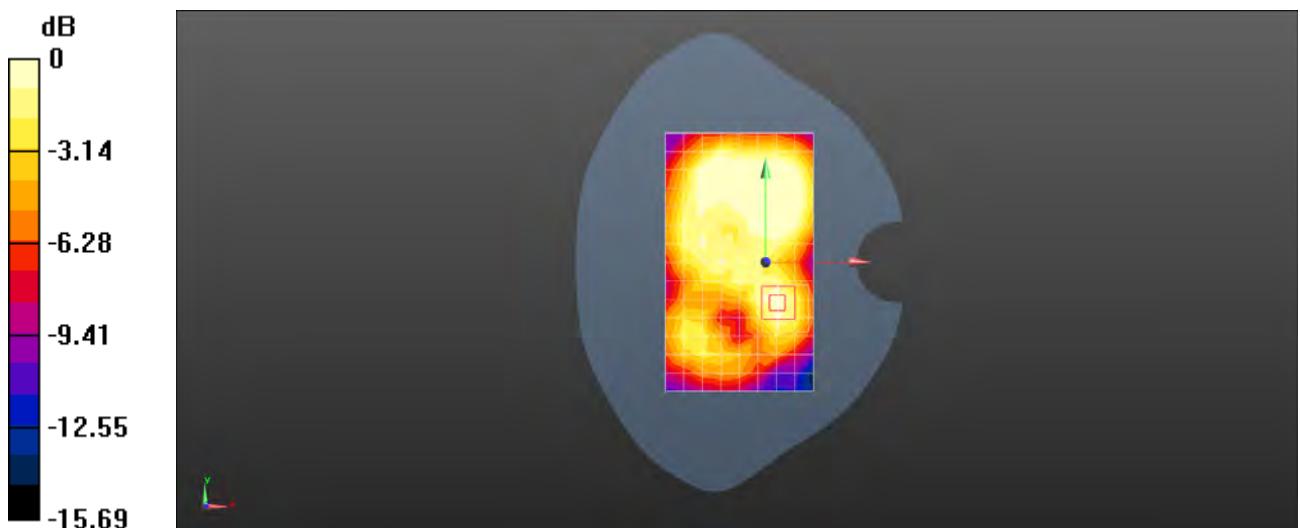
Medium: MSL2450; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.95$ S/m; $\epsilon_r = 52.719$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.78, 7.78, 7.78); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 2; Type: SAM V4.0; Serial: 1640
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (9x15x1): Measurement grid: $dx=12$ mm, $dy=12$ mm
Maximum value of SAR (measured) = 0.131 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 4.921 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.0940 W/kg

SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.033 W/kg

Maximum value of SAR (measured) = 0.0762 W/kg

Test Laboratory: SGS-SAR Lab

TE500 WIFI 802.11b 6CH Back side 10mm

DUT: TE500; Type: Smart Phone; Serial: d7d9cc5d

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2437 MHz; Duty Cycle: 1:1

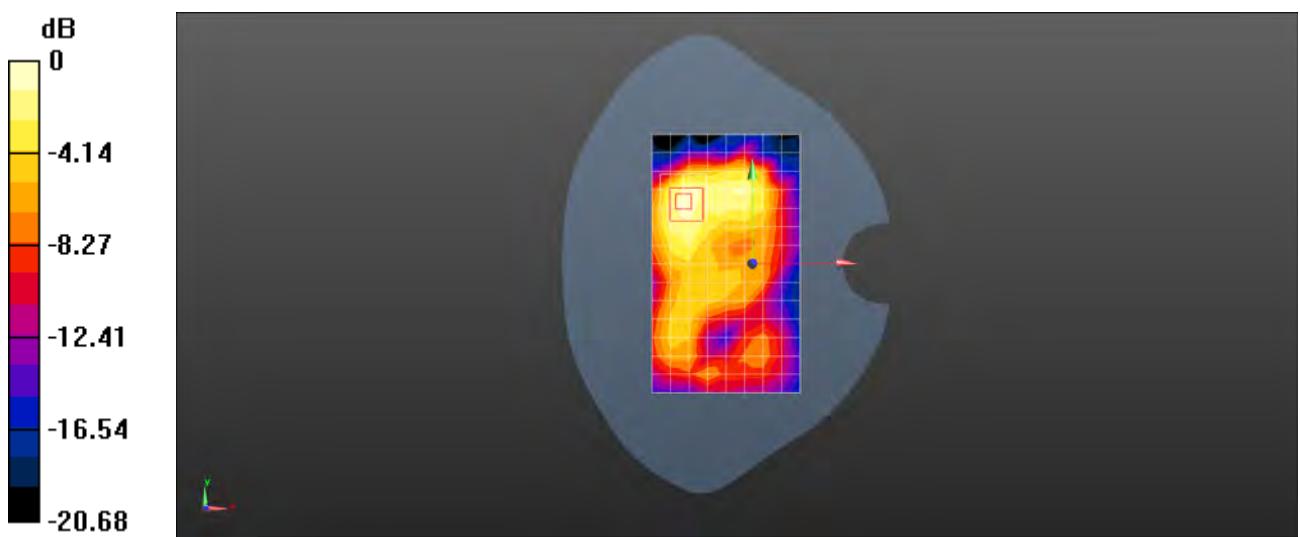
Medium: MSL2450; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.95$ S/m; $\epsilon_r = 52.719$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.78, 7.78, 7.78); Calibrated: 2018-01-11;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = -2.0, 31.0$
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: SAM 2; Type: SAM V4.0; Serial: 1640
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (9x15x1): Measurement grid: $dx=12$ mm, $dy=12$ mm
Maximum value of SAR (measured) = 0.248 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 5.841 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.370 W/kg

SAR(1 g) = 0.198 W/kg; SAR(10 g) = 0.108 W/kg

Maximum value of SAR (measured) = 0.288 W/kg

Appendix C

Calibration certificate

1. Dipole
D750V3-SN 1160(2016-6-22)
D835V2-SN 4d105(2016-12-08)
D1750V2-SN 1149(2016-6-23)
D1900V2-SN 5d028(2016-12-07)
D2450V2-SN 733(2016-12-07)
2. DAE
DAE4-SN 1428(2018-01-17)
3. Probe
EX3DV4-SN 3962(2018-01-11)
EX3DV4-SN 3789(2018-02-08)

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **SGS-SZ (Auden)**

Certificate No: **D750V3-1160_Jun16**

CALIBRATION CERTIFICATE

Object **D750V3 - SN:1160**

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **June 22, 2016**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02289)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by: Name **Jeton Kastrati** Function **Laboratory Technician**

Approved by: Name **Katja Pokovic** Function **Technical Manager**

Issued: June 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.6 \pm 6 %	0.91 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.17 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.36 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	55.4 \pm 6 %	1.00 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.57 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.66 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω - 1.6 $j\Omega$
Return Loss	- 26.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω - 3.8 $j\Omega$
Return Loss	- 28.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.040 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 19, 2015

DASY5 Validation Report for Head TSL

Date: 22.06.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1160

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: $f = 750$ MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³

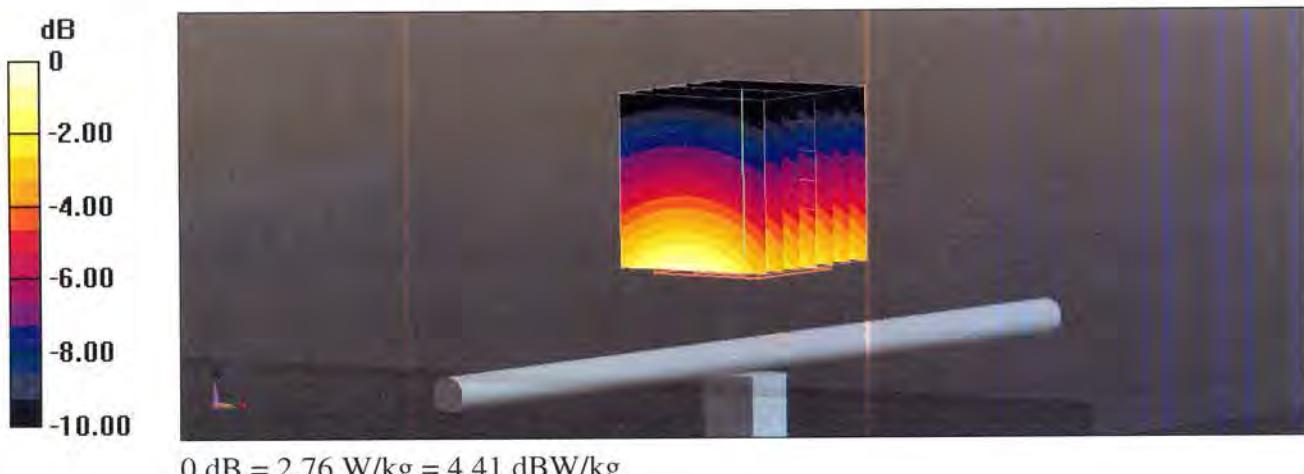
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

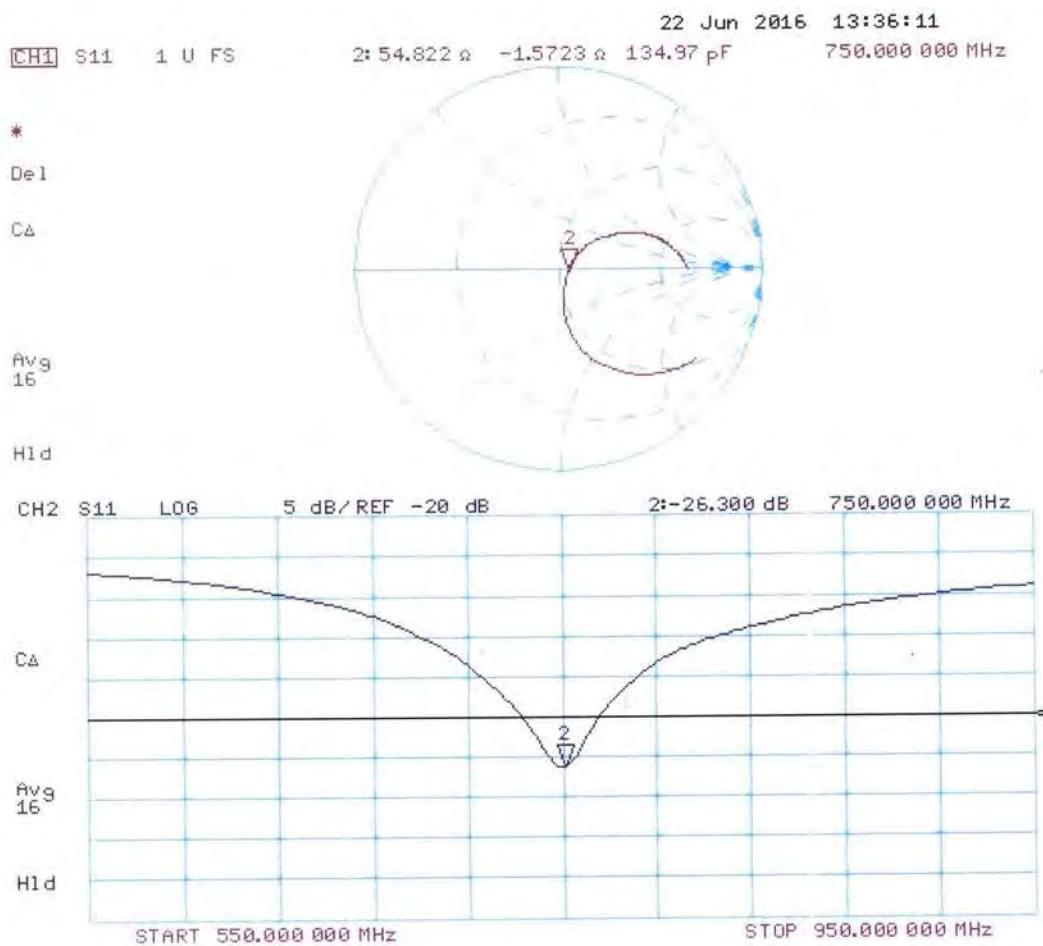
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.89 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 3.12 W/kg

SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.36 W/kg

Maximum value of SAR (measured) = 2.76 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.06.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1160

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: $f = 750$ MHz; $\sigma = 1$ S/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.66 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.29 W/kg

SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.93 W/kg

0 dB = 2.93 W/kg = 4.67 dBW/kg

Impedance Measurement Plot for Body TSL

Client

SGS(Boce)

Certificate No: Z16-97239

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d105

Calibration Procedure(s) FD-Z11-003-01
 Calibration Procedures for dipole validation kits

Calibration date: December 8, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG, No.EX3-7433_Sep16)	Sep-17
DAE4	SN 771	02-Feb-16(CTTL-SPEAG, No.Z16-97011)	Feb-17
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: December 11, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinatl.com [Http://www.chinatl.cn](http://www.chinatl.cn)

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: ctl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	40.8 \pm 6 %	0.91 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.59 mW /g \pm 20.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.59 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.29 mW /g \pm 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	54.7 \pm 6 %	0.98 mho/m \pm 6 %
Body TSL temperature change during test	<1.0 °C	—	—

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.65 mW /g \pm 20.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.63 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.46 mW /g \pm 20.4 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2Ω- 3.41jΩ
Return Loss	- 29.1dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8Ω- 3.25jΩ
Return Loss	- 25.1dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.500 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d105

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

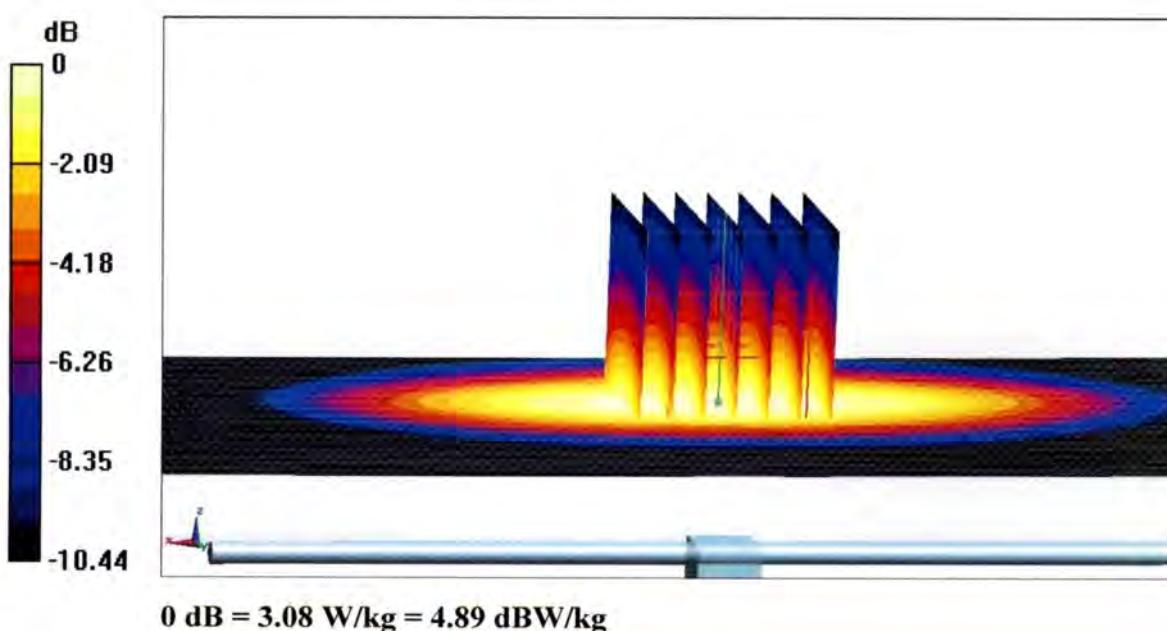
Medium parameters used: $f = 835$ MHz; $\sigma = 0.912$ S/m; $\epsilon_r = 40.78$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

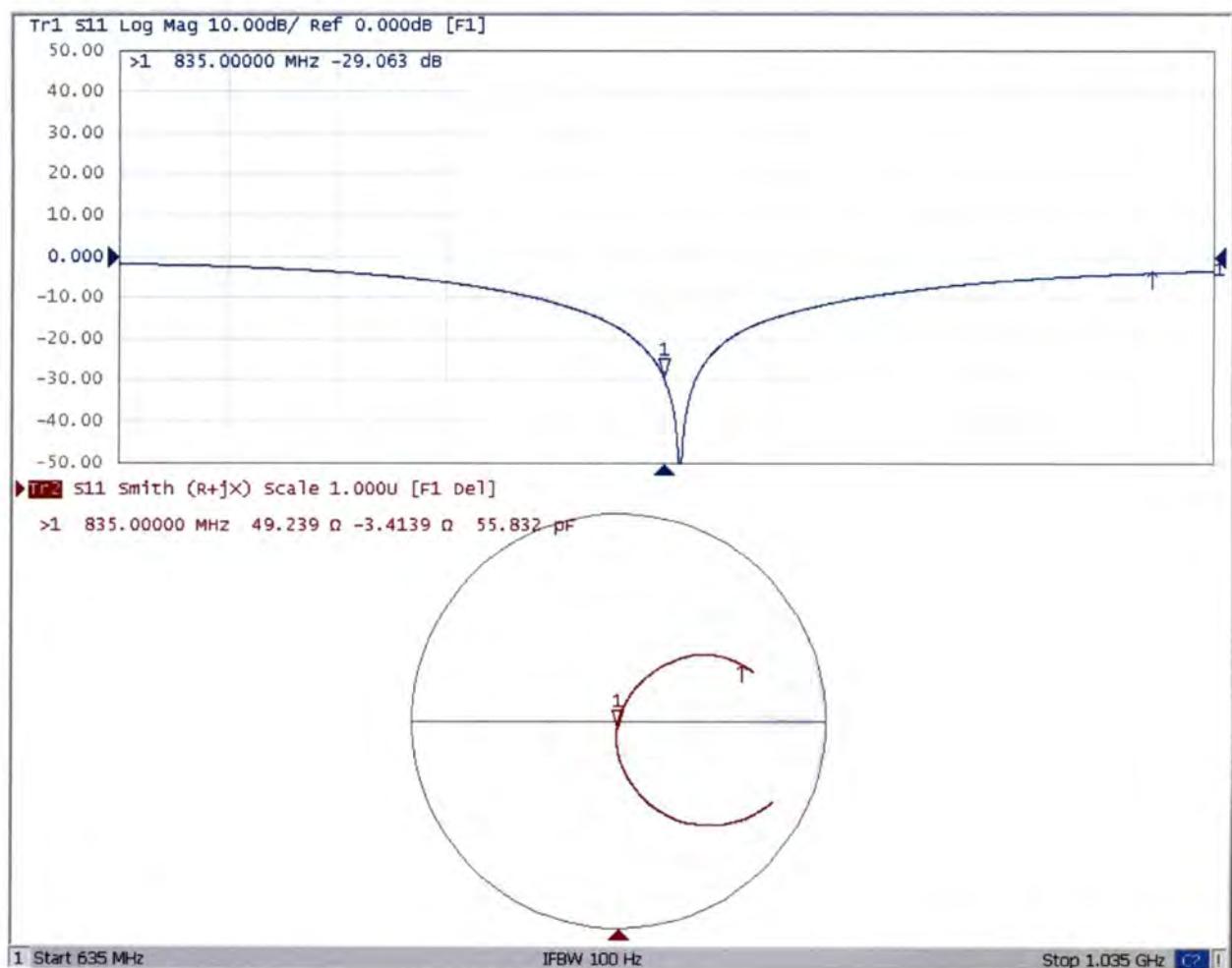
- Probe: EX3DV4 - SN7433; ConvF(9.82, 9.82, 9.82); Calibrated: 9/26/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.08V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.59 W/kg


Maximum value of SAR (measured) = 3.08 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 12.08.2016

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d105

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

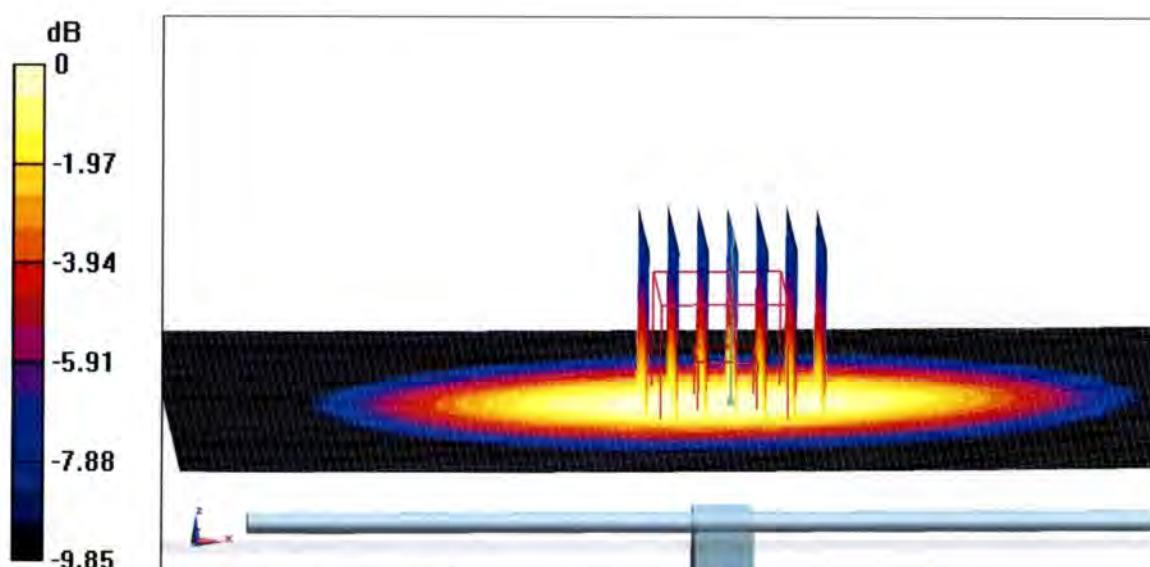
Medium parameters used: $f = 835$ MHz; $\sigma = 0.983$ S/m; $\epsilon_r = 54.74$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

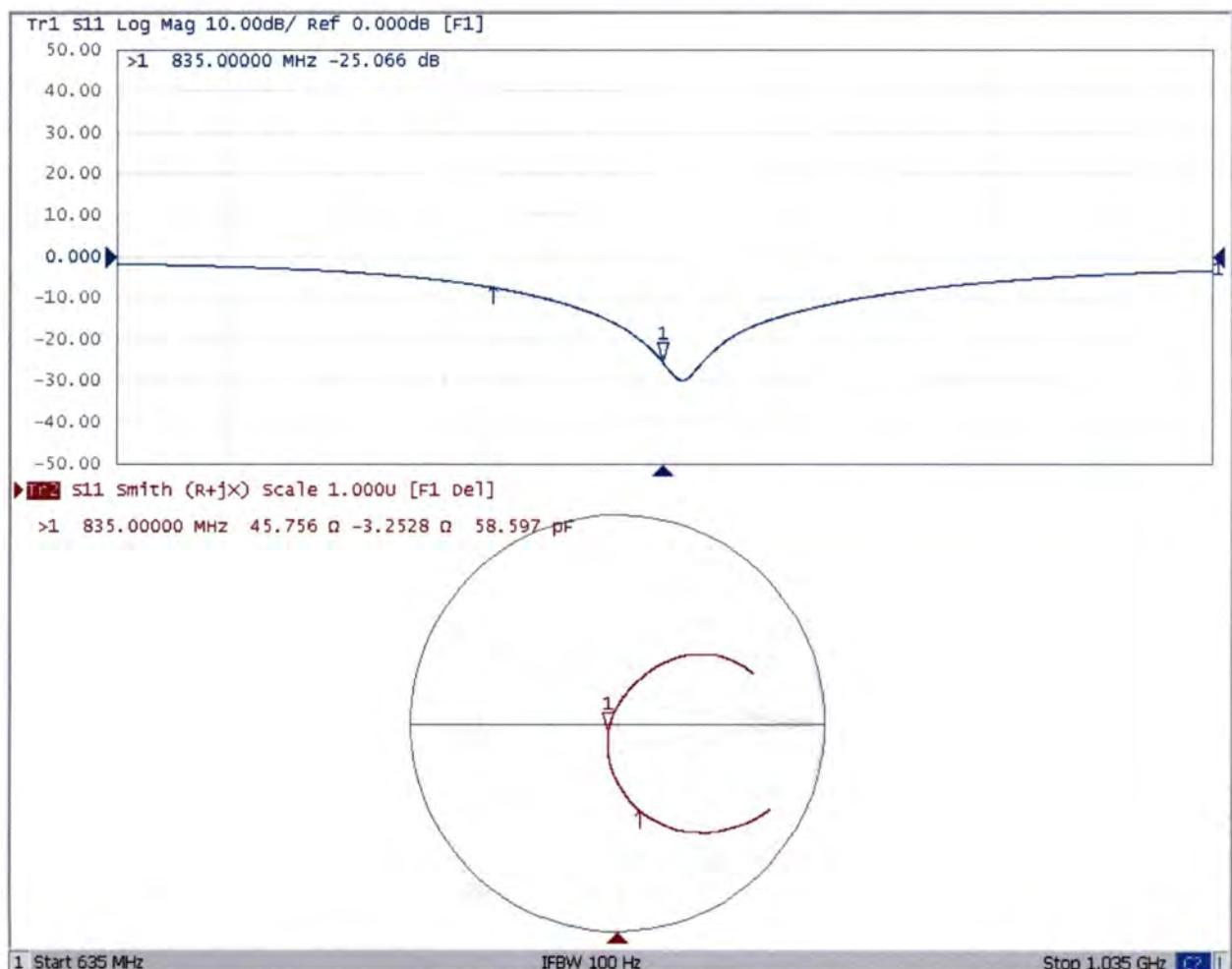
- Probe: EX3DV4 - SN7433; ConvF(9.5,9.5, 9.5); Calibrated: 9/26/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 57.10 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.63 W/kg


Maximum value of SAR (measured) = 3.06 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Body TSL

