

MPE Calculation

Applicant:	YANTAI HUADONG ELECTRON TECHNOLOGY CO., LTD.
Address:	Huadong Elec-Tech Building, Gaoxin District, 264003 yantai, China
Product:	Small-sized graphical vehicle-mounted wireless terminal
FCC ID:	2AROX-HDVWT8005
Model No.:	HD-VWT8005

According to subpart 15.247(i) and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1,500	/	/	f/1500	30
1,500–100,000	/	/	1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4 π R² = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

For vehicle-mounted wireless terminal

Maximum peak output power at antenna input terminal (dBm):	15.1
Maximum peak output power at antenna input terminal (mW):	32.36
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	5
Maximum Antenna Gain (numeric):	3.16
The worst case is power density at predication frequency at 20 cm (mW/cm ²):	0.0203
MPE limit for general population exposure at prediction frequency (mW/cm ²):	1.0

0.0203(mW/cm²) < 1 (mW/cm²)

Result: Compliant

TUV SUD China, Shenzhen Branch

Reviewed by:

Phoebe Hu/ EMC Section Manager
Date: 2018-11-27

Prepared by:

Mark Chen/EMC Project Engineer
Date:2018-11-27