

Carnegie Technologies

World IoT LoRa Module

FCC 15.247:2019 902 - 928 MHz Hybrid Option 3 Transceiver

Report # CRNE0015.1

NVLAP LAB CODE: 201049-0

CERTIFICATE OF TEST

Last Date of Test: June 13, 2019 Carnegie Technologies Model: World IoT LoRa Module

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2019	ANSI C63.10:2013
FCC 15.247:2019	ANSI C03.10.2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	
7.8.2	Carrier Frequency Separation	Yes	Pass	
7.8.3	Number of Hopping Frequencies	Yes	Pass	
7.8.4	Dwell Time	Yes	Pass	
7.8.5	Output Power	Yes	Pass	
7.8.5	Equivalent Isotropic Radiated Power	Yes	Pass	
7.8.6	Band Edge Compliance	Yes	Pass	
7.8.6	Band Edge Compliance - Hopping Mode	Yes	Pass	
7.8.7	Occupied Bandwidth	Yes	Pass	
7.8.8	Spurious Conducted Emissions	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

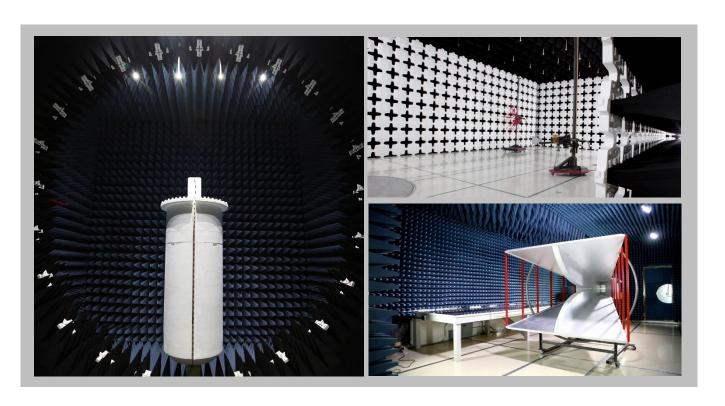
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations


FACILITIES

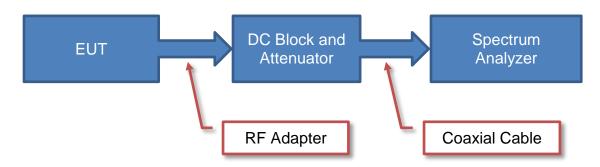
California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600		
		NVLAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1		
BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
VCCI						
A-0029	A-0109	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157		

MEASUREMENT UNCERTAINTY

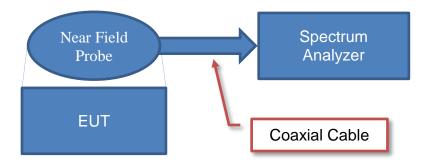
Measurement Uncertainty

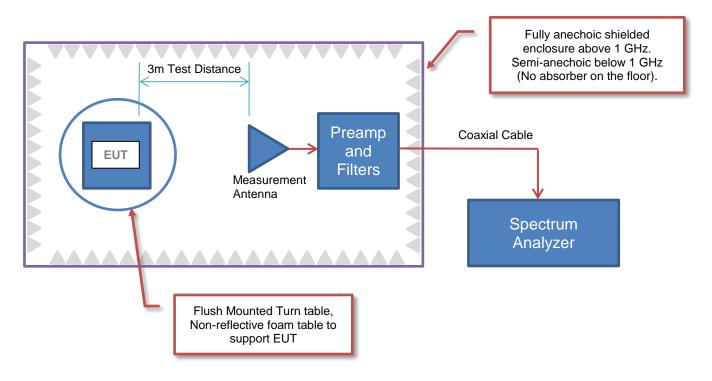
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

POWER SETTINGS

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types	Position	Frequency (MHz)	Power Setting
LORA	Low Channel	903	14dBm
LORA	Mid Channel	909	14dBm
LORA	High Channel	915	14dBm

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Carnegie Technologies
Address:	9737 Great Hills Trail STE 260
City, State, Zip:	Austin, TX 78759
Test Requested By:	John Nagy
Model:	World IoT LoRa Module
First Date of Test:	June 12, 2019
Last Date of Test:	June 13, 2019
Receipt Date of Samples:	June 12, 2019
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:
LoRa Radio Module

Testing Objective:

Seeking to demonstrate compliance under FCC 15.247:2019 for operation in the 902 - 928 MHz Band.

CONFIGURATIONS

Configuration CRNE0015-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
World IoT LoRa Module (Direct Connect)	Carnegie Technologies	LV-WLM-271 / 830-000218-200 B	0190810450

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Num						
FCC Test Carrier Assembly (Direct Connect)	Carnegie Technologies	830-000220-100 A	040819001			
Lithium Battery	Energizer	Unknown	None			
Test Terminal	Carnegie Technologies	Unknown	None			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Power Leads (Direct Connect)	No	0.2m	No	Lithium Battery	FCC Test Carrier Assembly (Direct Connect)	
Ribbon Cable	No	1m	No	Test Terminal	FCC Test Carrier Assembly (Direct Connect)	

Configuration CRNE0015- 2

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
World IoT LoRa Module (With Antenna)	Carnegie Technologies	LV-WLM-271 / 830-000218-200 B	016		

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
FCC Test Carrier Assembly (With Antenna)	Carnegie Technologies	830-000220-100 A	040919001		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power Leads (Radiated)	No	0.2m	No	Lithium Battery	FCC Test Carrier Assembly (With Antenna)

Report No. CRNE0015.1 10/63

CONFIGURATIONS

Configuration CRNE0015-3

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
World IoT LoRa Module (With Antenna)	Carnegie Technologies	LV-WLM-271 / 830-000218-200 B	016				

Peripherals in test setup boundary							
Description	Description Manufacturer Model/Part Number Serial Number						
FCC Test Carrier Assembly (With Antenna)	Carnegie Technologies	830-000220-100 A	040919001				

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Power Leads (Conducted)	No	1m	No	LISN	World IoT LoRa Module (With Antenna)	

Configuration CRNE0015- 4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
World IoT LoRa Module (Direct	Carnegie Technologies	LV-WLM-271 /	0190810451
Connect)	Carriegie rechnologies	830-000218-200 B	0190010431

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
FCC Test Carrier Assembly (Direct Connect)	Carnegie Technologies	830-000220-100 A	040319001			
Lithium Battery	Energizer	Unknown	None			
Test Terminal	Carnegie Technologies	Unknown	None			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Power Leads (Direct Connect)	No	0.2m	No	Lithium Battery	FCC Test Carrier Assembly (Direct Connect)	
Ribbon Cable	No	1m	No	Test Terminal	FCC Test Carrier Assembly (Direct Connect)	

Report No. CRNE0015.1 11/63

CONFIGURATIONS

Configuration CRNE0015-5

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
World IoT LoRa Module (With Antenna)	Carnegie Technologies	LV-WLM-271 / 830-000218-200 B	0190810466

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
FCC Test Carrier Assembly (With Antenna)	Carnegie Technologies	830-000220-100 A	0509190001			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power Leads (Radiated)	No	0.2m	No	Lithium Battery	FCC Test Carrier Assembly (With Antenna)

Report No. CRNE0015.1 12/63

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Carrier	Tested as	No EMI suppression	EUT remained at
1	2019-06-12	Frequency	delivered to	devices were added or	Element following
		Separation	Test Station.	modified during this test.	the test.
		Number of	Tested as	No EMI suppression	EUT remained at
2	2019-06-12	Hopping	delivered to	devices were added or	Element following
		Frequencies	Test Station.	modified during this test.	the test.
			Tested as	No EMI suppression	EUT remained at
3	2019-06-12	Dwell Time	delivered to	devices were added or	Element following
			Test Station.	modified during this test.	the test.
			Tested as	No EMI suppression	EUT remained at
4	2019-06-12	Output Power	delivered to	devices were added or	Element following
			Test Station.	modified during this test.	the test.
		Equivalent	Tested as	No EMI suppression	EUT remained at
5	2019-06-12	Isotropic	delivered to	devices were added or	Element following
		Radiated Power	Test Station.	modified during this test.	the test.
		Band Edge Compliance	Tested as	No EMI suppression	EUT remained at
6	2019-06-12		delivered to	devices were added or	Element following
		•	Test Station.	modified during this test.	the test.
		Band Edge	Tested as	No EMI suppression	EUT remained at
7	2019-06-12	Compliance -	delivered to	devices were added or	Element following
		Hopping Mode	Test Station.	modified during this test.	the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
8	2019-06-12	Bandwidth	delivered to	devices were added or	Element following
			Test Station.	modified during this test.	the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
9	2019-06-12	Conducted	delivered to	devices were added or	Element following
		Emissions	Test Station.	modified during this test.	the test.
		Power Spectral	Tested as	No EMI suppression	EUT remained at
10	2019-06-12	Density	delivered to	devices were added or	Element following
		,	Test Station.	modified during this test.	the test.
		Powerline	Tested as	No EMI suppression	EUT remained at
11	11 2019-06-13	Conducted	delivered to	devices were added or	Element following
		Emissions	Test Station.	modified during this test.	the test.
4.0		Spurious	Tested as	No EMI suppression	Scheduled testing
12	2019-06-13	Radiated	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	Tab domplotodi

Report No. CRNE0015.1 13/63

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARF	2018-07-20	2019-07-20
Cable - Conducted Cable Assembly	Northwest EMC	TXA, HHZ, TQU	TXAA	2019-01-30	2020-01-30
LISN	Solar Electronics		LJK	2018-09-07	2019-09-07
Power Supply - DC	Ametek Programmable Power, Inc.	Sorenson XEL30-3D	TQE	NCR	NCR

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

CRNE0015-3

MODES INVESTIGATED

Continuously Transmitting at Mid Channel 909 MHz

EUT:	World IoT LoRa Module	Work Order:	CRNE0015
Serial Number:	See Configuration	Date:	2019-06-13
Customer:	Carnegie Technologies	Temperature:	21.5°C
Attendees:	Joseph Haas	Relative Humidity:	46.7%
Customer Project:	None	Bar. Pressure:	1022 mb
Tested By:	Jonathan Kiefer	Job Site:	TX01
Power:	3VDC	Configuration:	CRNE0015-3

TEST SPECIFICATIONS

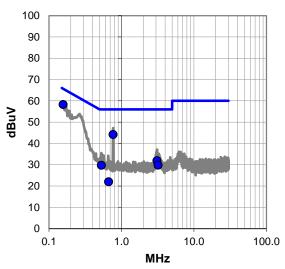
Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

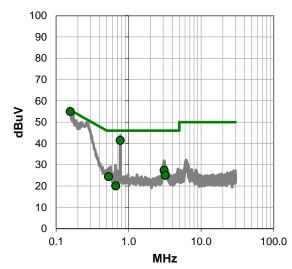
_						
Run #:	3	Line:	Positive Lead	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

Continuously Transmitting at Mid Channel 909 MHz


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. CRNE0015.1 15/63

RESULTS - Run #3

Quasi Peak Data - vs - Quasi Peak Limit

	Quadri dan Bata 10 Quadri dan Elilik						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.157	38.0	20.3	58.3	65.6	-7.3		
0.768	24.0	20.2	44.2	56.0	-11.8		
3.098	11.7	20.2	31.9	56.0	-24.1		
3.205	9.6	20.2	29.8	56.0	-26.2		
0.530	9.6	20.1	29.7	56.0	-26.3		
0.667	1.7	20.3	22.0	56.0	-34.0		

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.157	34.7	20.3	55.0	55.6	-0.6	
0.768	21.2	20.2	41.4	46.0	-4.6	
3.098	7.2	20.2	27.4	46.0	-18.6	
3.205	4.8	20.2	25.0	46.0	-21.0	
0.530	4.3	20.1	24.4	46.0	-21.6	
0.667	-0.3	20.3	20.0	46.0	-26.0	

CONCLUSION

Pass

Tested By

EUT:	World IoT LoRa Module	Work Order:	CRNE0015
Serial Number:	See Configuration	Date:	2019-06-13
Customer:	Carnegie Technologies	Temperature:	21.5°C
Attendees:	Joseph Haas	Relative Humidity:	46.7%
Customer Project:	None	Bar. Pressure:	1022 mb
Tested By:	Jonathan Kiefer	Job Site:	TX01
Power:	3VDC	Configuration:	CRNE0015-3

TEST SPECIFICATIONS

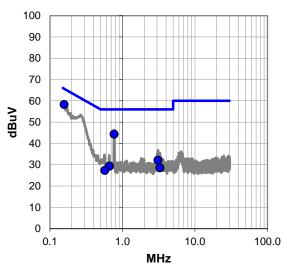
Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

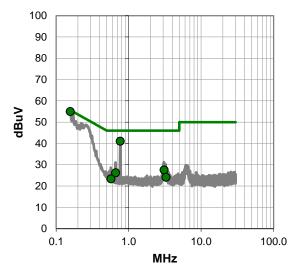
Run #:	4	Line:	Negative Lead	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

Continuously Transmitting at Mid Channel 909 MHz


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. CRNE0015.1 17/63

RESULTS - Run #4

Quasi Peak Data - vs - Quasi Peak Limit

	Quadri dan Bata 10 Quadri dan Elilik						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.157	38.0	20.3	58.3	65.6	-7.3		
0.768	24.1	20.2	44.3	56.0	-11.7		
3.090	11.9	20.2	32.1	56.0	-23.9		
0.663	9.1	20.2	29.3	56.0	-26.7		
3.293	8.3	20.2	28.5	56.0	-27.5		
0.570	7.2	20.1	27.3	56.0	-28.7		

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.157	34.7	20.3	55.0	55.6	-0.6	
0.768	20.8	20.2	41.0	46.0	-5.0	
3.090	7.3	20.2	27.5	46.0	-18.5	
0.663	6.0	20.2	26.2	46.0	-19.8	
3.293	3.9	20.2	24.1	46.0	-21.9	
0.570	3.2	20.1	23.3	46.0	-22.7	

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS

PSA-FSCI 2019.05.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously Transmitting at Low Channel 903 MHz, Mid Channel 909 MHz, High Channel 915 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CRNE0015 - 5

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz	Stop Frequency	10000 MHz
Start Frequency 30 MHz	Stop Frequency	

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - High Pass	Micro-Tronics	HPM50108	HGD	10-Oct-2018	12 mo
Attenuator	Weinschel Corp	4H-10	AWA	17-Mar-2019	12 mo
Attenuator	Weinschel Corp	4H-20	AWB	17-Mar-2019	12 mo
Filter - Band Reject	Wainwright Instruments	WTRCTV5-750-1000-20-70-60EEK	CUL	25-Feb-2019	12 mo
Filter - Low Pass	Micro-Tronics	LPM50003	H	1-Aug-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	PAK	9-Oct-2018	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AJF	NCR	0 mo
Cable	Northwest EMC	8-18GHz	TXD	14-May-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAJ	17-Mar-2019	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJL	11-Oct-2018	24 mo
Cable	Northwest EMC	1-8.2 GHz	TXC	14-May-2019	12 mo
Amplifier - Pre-Amplifier	Fairview Microwave	FMAM63001	PAS	24-Jan-2019	12 mo
Antenna - Biconilog	ETS Lindgren	3143B	AYF	10-May-2018	24 mo
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	1-Aug-2019	12 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	27-Feb-2019	12 mo

Report No. CRNE0015.1 19/63

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

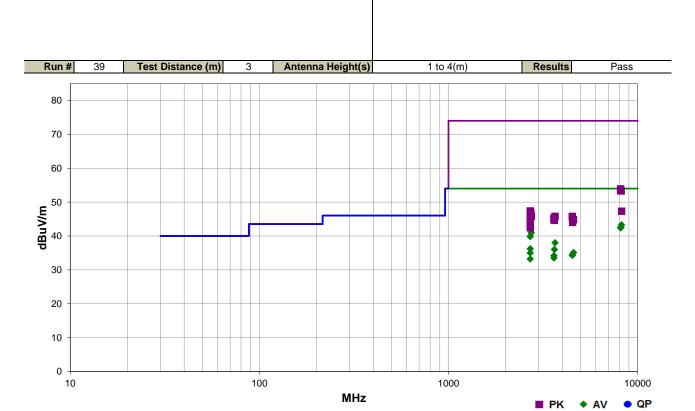
The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.


Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*LOG(dc).

SPURIOUS RADIATED EMISSIONS

				EmiR5 2019.08.01 PSA-ESCI 2019.05.10
Work Order:	CRNE0015	Date:	27-Aug-2019	
Project:	None	Temperature:	22.2 °C	Jonathan Kiefer
Job Site:	TX02	Humidity:	53.1% RH	
Serial Number:	See Configuration	Barometric Pres.:	1019 mbar	Tested by: Jonathan Kiefer
EUT:	World LoRa Module	•		
Configuration:	5			
Customer:	Carnegie Technologie	·S		
Attendees:	None			
EUT Power:	Battery			
Operating Mode:	Continuously Transmi	tting at Low Channel 9	03 MHz, Mid Channe	909 MHz, High Channel 915 MHz
Deviations:	None			
Comments:		nts for EUT channel an	d orientation informat	ion.
Test Specifications			Test Meth	nod
FCC 15.247:2019			ANSI C63	.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
8235.367	49.7	-6.4	2.7	109.0	3.0	0.0	Horz	AV	0.0	43.3	54.0	-10.7	High Ch, EUT Y
2709.050	46.8	-3.6	3.6	188.0	3.0	0.0	Horz	AV	0.0	43.2	54.0	-10.8	Low Ch, EUT Y
8128.933	30.3	12.2	1.5	170.0	3.0	0.0	Horz	AV	0.0	42.5	54.0	-11.5	Low Ch, EUT Y
8181.333	30.1	12.4	1.5	115.0	3.0	0.0	Horz	AV	0.0	42.5	54.0	-11.5	Mid Ch, EUT Y
8128.408	30.2	12.2	1.5	16.9	3.0	0.0	Vert	AV	0.0	42.4	54.0	-11.6	Low Ch, EUT Z
2727.042	45.6	-3.5	4.0	195.0	3.0	0.0	Horz	AV	0.0	42.1	54.0	-11.9	Mid Ch, EUT Y
2744.917	44.4	-3.5	3.5	186.0	3.0	0.0	Horz	AV	0.0	40.9	54.0	-13.1	High Ch, EUT Y
2709.133	43.5	-3.6	3.9	176.0	3.0	0.0	Horz	AV	0.0	39.9	54.0	-14.1	Low Ch, EUT X
2709.058	43.4	-3.6	3.5	116.0	3.0	0.0	Vert	AV	0.0	39.8	54.0	-14.2	Low Ch, EUT Z
3660.000	36.8	1.2	3.1	193.0	3.0	0.0	Horz	AV	0.0	38.0	54.0	-16.0	High Ch, EUT Y
2709.100	39.8	-3.6	3.3	270.0	3.0	0.0	Horz	AV	0.0	36.2	54.0	-17.8	Low Ch, EUT Z
3636.167	34.9	1.1	2.5	196.9	3.0	0.0	Horz	AV	0.0	36.0	54.0	-18.0	Mid Ch, EUT Y
4587.500	31.9	3.2	1.9	141.0	3.0	0.0	Horz	AV	0.0	35.1	54.0	-18.9	High Ch, EUT Y
2709.025	38.6	-3.6	4.0	118.9	3.0	0.0	Vert	AV	0.0	35.0	54.0	-19.0	Low Ch, EUT X

Report No. CRNE0015.1 21/63

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4516.742	31.5	2.9	1.5	220.9	3.0	0.0	Horz	AV	0.0	34.4	54.0	-19.6	Low Ch, EUT Y
4517.025	31.4	2.9	1.5	194.0	3.0	0.0	Vert	AV	0.0	34.3	54.0	-19.7	Low Ch, EUT Z
4536.250	31.3	3.0	1.5	117.0	3.0	0.0	Horz	AV	0.0	34.3	54.0	-19.7	Mid Ch, EUT Y
3612.208	33.0	1.2	3.4	171.9	3.0	0.0	Vert	AV	0.0	34.2	54.0	-19.8	Low Ch. EUT Z
8128.525	41.7	12.2	1.5	16.9	3.0	0.0	Vert	PK	0.0	53.9	74.0	-20.1	Low Ch, EUT Z
3613.500	32.3	1.2	1.5	10.9	3.0	0.0	Horz	AV	0.0	33.5	54.0	-20.5	Low Ch, EUT Y
8127.575	41.3	12.2	1.5	170.0	3.0	0.0	Horz	PK	0.0	53.5	74.0	-20.5	Low Ch, EUT Y
8189.208	40.9	12.4	1.5	115.0	3.0	0.0	Horz	PK	0.0	53.3	74.0	-20.7	Mid Ch, EUT Y
2708.908	36.8	-3.6	1.5	225.9	3.0	0.0	Vert	AV	0.0	33.2	54.0	-20.8	Low Ch, EUT Y
2708.833	51.0	-3.6	3.6	188.0	3.0	0.0	Horz	PK	0.0	47.4	74.0	-26.6	Low Ch, EUT Y
8234.833	53.7	-6.4	2.7	109.0	3.0	0.0	Horz	PK	0.0	47.3	74.0	-26.7	High Ch, EUT Y
2726.958	50.3	-3.5	4.0	195.0	3.0	0.0	Horz	PK	0.0	46.8	74.0	-27.2	Mid Ch, EUT Y
4516.708	42.9	2.9	1.5	220.9	3.0	0.0	Horz	PK	0.0	45.8	74.0	-28.2	Low Ch, EUT Y
2744.917	49.3	-3.5	3.5	186.0	3.0	0.0	Horz	PK	0.0	45.8	74.0	-28.2	High Ch, EUT Y
3659.750	44.6	1.2	3.1	193.0	3.0	0.0	Horz	PK	0.0	45.8	74.0	-28.2	High Ch, EUT Y
2708.783	49.2	-3.6	3.9	176.0	3.0	0.0	Horz	PK	0.0	45.6	74.0	-28.4	Low Ch, EUT X
2709.033	49.2	-3.6	3.5	116.0	3.0	0.0	Vert	PK	0.0	45.6	74.0	-28.4	Low Ch, EUT Z
4515.017	42.7	2.9	1.5	194.0	3.0	0.0	Vert	PK	0.0	45.6	74.0	-28.4	Low Ch, EUT Z
3611.083	44.1	1.2	1.5	10.9	3.0	0.0	Horz	PK	0.0	45.3	74.0	-28.7	Low Ch, EUT Y
3612.125	43.6	1.2	3.4	171.9	3.0	0.0	Vert	PK	0.0	44.8	74.0	-29.2	Low Ch, EUT Z
4582.125	41.7	3.1	1.9	141.0	3.0	0.0	Horz	PK	0.0	44.8	74.0	-29.2	High Ch, EUT Y
3635.917	43.5	1.1	2.5	196.9	3.0	0.0	Horz	PK	0.0	44.6	74.0	-29.4	Mid Ch, EUT Y
2708.892	47.6	-3.6	3.3	270.0	3.0	0.0	Horz	PK	0.0	44.0	74.0	-30.0	Low Ch, EUT Z
4536.583	41.0	3.0	1.5	117.0	3.0	0.0	Horz	PK	0.0	44.0	74.0	-30.0	Mid Ch, EUT Y
2709.008	46.6	-3.6	4.0	118.9	3.0	0.0	Vert	PK	0.0	43.0	74.0	-31.0	Low Ch, EUT X
2709.183	46.0	-3.6	1.5	225.9	3.0	0.0	Vert	PK	0.0	42.4	74.0	-31.6	Low Ch, EUT Y

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

CARRIER FREQUENCY SEPARATION

XMit 2019 05 15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Attenuator	Fairview Microwave	SA4018-20	TYE	10-Oct-18	10-Oct-19
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The channel carrier frequencies in the 902-928 band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

CARRIER FREQUENCY SEPARATION

						TbtTx 2018.09.13	XMit 2019.05.15
EUT:	World IoT LoRa Module				Work Order:	CRNE0015	
Serial Number:	See Configuration				Date:	12-Jun-19	
Customer:	Carnegie Technologies				Temperature:	22.3 °C	
Attendees:	Joseph Haas				Humidity:	48.6% RH	
Project:	None				Barometric Pres.:		,
Tested by:	Jonathan Kiefer		Power:	Battery	Job Site:	TX09	,
TEST SPECIFICATI	IONS			Test Method			
FCC 15.247:2019				ANSI C63.10:2013			
COMMENTS							
		Block + Cable). EUT has a PIFA antenn	na with a 2.0 dBi an	tenna gain.			
DEVIATIONS FROM	// TEST STANDARD						
None							
Configuration #	1	Signature	Jonathan	Xiefer			
						Limit	
					Value	(≥)	Results
Hopping Mode (All C	Channels)				206.87 kHz	163.633 kHz	Pass

CARRIER FREQUENCY SEPARATION

| Hopping Mode (All Channels)
| Limit | Value (2) Results | 206.87 kHz | 163.633 kHz | Pass |

NUMBER OF HOPPING FREQUENCIES

XMit 2019.05.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

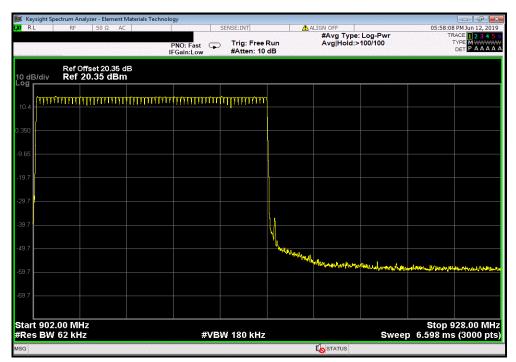
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Attenuator	Fairview Microwave	SA4018-20	TYE	10-Oct-18	10-Oct-19
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The number of hopping frequencies was measured across the authorized band. The hopping function of the EUT was enabled.

NUMBER OF HOPPING FREQUENCIES


EUT: World IoT LoRa Module
Serial Number: See Configuration
Customer: Carnegie Technologies
Attendees: Joseph Haas
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: CRNE0015
Date: 12-Jun-19
Temperature: 22.1 °C
Humidity: 47.7% RH
Barometric Pres.: 1018 mbar Power: Battery
Test Method Job Site: TX09 FCC 15.247:2019 ANSI C63.10:2013 COMMENTS Ref Offset 20.35 dB (20 dB attenuator + DC Block + Cable). EUT has a PIFA antenna with a 2.0 dBi antenna gain. DEVIATIONS FROM TEST STANDARD Configuration # Jonathan Kiefer Signature Limit Result Channels Hopping Mode (All Channels)

NUMBER OF HOPPING FREQUENCIES

Hopping Mode (All Channels)

Number of
Channels Limit Result
64 N/A N/A

XMit 2019.05.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Attenuator	Fairview Microwave	SA4018-20	TYE	10-Oct-18	10-Oct-19
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

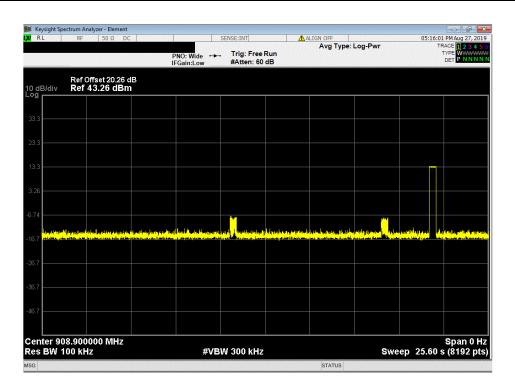
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The hopping function of the EUT was enabled.

The dwell time limit is based on the Number of Hopping Channels * 400 mS. For this device it would be 64 Channels * 400 mS = 25.6

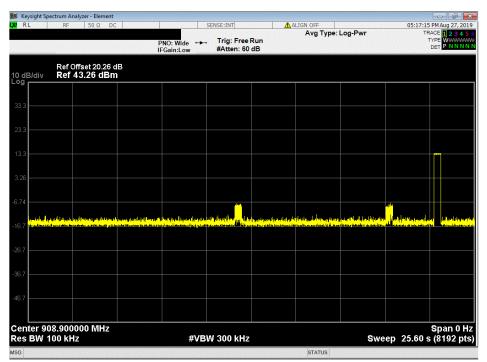


EUT: World LoRa Module
Serial Number: See Configuration
Customer: Carnegie Technologies
Attendees: Joseph Haas
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: CRNE0015
Date: 27-Aug-19
Temperature: 22.4 °C
Humidity: 54.7% RH
Barometric Pres.: 1015 mbar Power: Battery
Test Method Job Site: TX09 FCC 15.247:2019 ANSI C63.10:2013 COMMENTS Ref Offset 20.26 dB (20 dB attenuator + DC Block + Cable). EUT has a PIFA antenna with a 2.0 dBi antenna gain. DEVIATIONS FROM TEST STANDARD Configuration # 4 Jonathan Kiefer Signature On Time (ms) During 25.6 s Average No of Pulses Results (ms) 389.6 Pulses (ms) Hopping Mode (All Channels) N/A N/A N/A N/A N/A 400 Hopping Mode (All Channels) Hopping Mode (All Channels) Hopping Mode (All Channels) Hopping Mode (All Channels) N/A Hopping Mode (All Channels) N/A 389.6 389.6 Pass

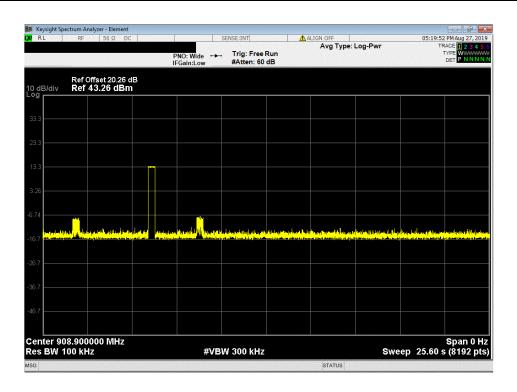


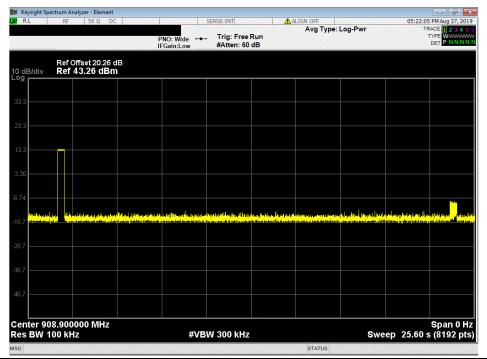
32/63

Hopping Mode (All Channels) Pulse Width Number of Average No. On Time (ms) Limit (ms) Pulses of Pulses During 25.6 s (ms) Results 389.6 N/A N/A N/A N/A



Hopping Mode (All Channels)							
Pulse Width	Number of	Average No.		On Time (ms)	Limit		
(ms)	Pulses	of Pulses		During 25.6 s	(ms)	Results	
N/A	1	N/A		N/A	N/A	N/A	




33/63

Hopping Mode (All Channels)							
Pulse Width	Number of	Average No.		On Time (ms)	Limit		
(ms)	Pulses	of Pulses		During 25.6 s	(ms)	Results	
N/A	1	N/A		N/A	N/A	N/A	

			Hoppi	ng Mode (All Channe	iels)		
	Pulse Width	Number of	Average No.	0	On Time (ms)	Limit	
_	(ms)	Pulses	of Pulses	D	During 25.6 s	(ms)	Results
	389.6	N/A	1		389.6	400	Pass

Calculation Only

No Screen Capture Required

OUTPUT POWER

XMit 2019.05.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Attenuator	Fairview Microwave	SA4018-20	TYE	10-Oct-18	10-Oct-19
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method AVGSA-1 in section 11.9.2.2.2 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging with the EUT transmitting at full power throughout each sweep using an RMS detector. Following the measurement a duty cycle correction factor was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

OUTPUT POWER

EUT: World IoT LoRa Module
Serial Number: See Configuration
Customer: Carnegie Technologies
Attendees: Joseph Haas
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Terriza

Work Order: CRNE0015

Date: 12-Jun-19

Temperature: 22 °C

Humidity: 47.5% RH

Barometric Pres.: 1019 mbar Power: Battery
Test Method Job Site: TX09 FCC 15.247:2019 ANSI C63.10:2013 COMMENTS Ref Offset 20.35 dB (20 dB attenuator + DC Block + Cable). EUT has a PIFA antenna with a 2.0 dBi antenna gain. DEVIATIONS FROM TEST STANDARD Jonathan Kiefer Configuration # Signature Avg Cond Pwr (dBm) 14.072 Duty Cycle Factor (dB) Limit (dBm) 30 Value (dBm) Results Pass Mid Channel, 909 MHz High Channel, 915 MHz 14.2 14.1 30 30 Pass Pass 14.155 0 14.147

OUTPUT POWER

Mid Channel, 909 MHz						
	Avg Cond	Duty Cycle		Value	Limit	
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
	14.155	0		14.2	30	Pass

OUTPUT POWER

XMit 2019.05.15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Attenuator	Fairview Microwave	SA4018-20	TYE	10-Oct-18	10-Oct-19
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method AVGSA-1 in section 11.9.2.2.2 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging with the EUT transmitting at full power throughout each sweep using an RMS detector. Following the measurement a duty cycle correction factor was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

The actual antenna gain of the EUT was added to the conducted output power to derive the EIRP values.

								TbtTx 2018.09.13	XMit 2019.05.15
EUT:	World IoT LoRa Module						Work Order:	CRNE0015	
Serial Number:	See Configuration						Date:	12-Jun-19	
Customer:	Carnegie Technologies						Temperature:	22 °C	
Attendees:	Joseph Haas						Humidity:	47.5% RH	
Project:	None						Barometric Pres.:	1019 mbar	
Tested by:	Jonathan Kiefer		Power:	Battery			Job Site:	TX09	
TEST SPECIFICATI	ONS			Test Method					
FCC 15.247:2019				ANSI C63.10:2013					
COMMENTS			•						
Ref Offset 20.35 dB	(20 dB attenuator + DC B	lock + Cable). EUT has a PIFA antenna	a with a 2.0 dBi anto	enna gain.					
DEVIATIONS FROM	TEST STANDARD								
None									
Configuration #	1	Signature	Jonathan	Xiefer	_				
				Avg Cond Pwr (dBm)	Duty Cycle Factor (dB)	Antenna Gain (dBi)	EIRP Value (dBm)	Limit (dBm)	Results
Low Channel, 903 M	Hz	<u> </u>		14.072	0	2	16.072	36	Pass
Mid Channel, 909 MI	Hz			14.155	0	2	16.155	36	Pass
High Channel, 915 M	1Hz			14.147	0	2	16.147	36	Pass

Low Channel, 903 MHz Avg Cond **Duty Cycle** Antenna EIRP Limit Value (dBm) Pwr (dBm) Factor (dB) Gain (dBi) (dBm) Results 14.072 16.072 36 Pass

	Mid Channel, 909 MHz						
		Avg Cond	Duty Cycle	Antenna	EIRP	Limit	
<u> </u>		Pwr (dBm)	Factor (dB)	Gain (dBi)	Value (dBm)	(dBm)	Results
I		14.155	0	2	16.155	36	Pass

Report No. CRNE0015.1 41/63

BAND EDGE COMPLIANCE

VMH 2010 05 15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Attenuator	Fairview Microwave	SA4018-20	TYE	10-Oct-18	10-Oct-19
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

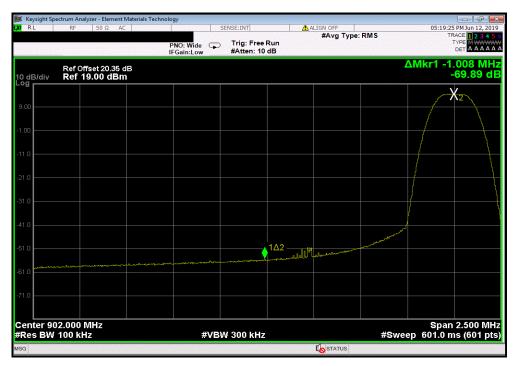
The spectrum was scanned below the lower band edge and above the higher band edge.

An RMS detector was used to match the method called out for Output Power. Because the reference level was taken with an RMS detector, the attenuation requirement is -30 dBc.

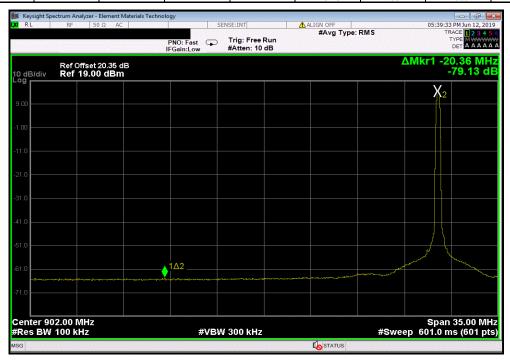
BAND EDGE COMPLIANCE

						TbtTx 2018.09.13	XMit 2019.05.15
EUT:	World IoT LoRa Module				Work Order:	CRNE0015	
Serial Number:	See Configuration				Date:	12-Jun-19	
Customer:	Carnegie Technologies				Temperature:	22 °C	
Attendees:	John Nagy				Humidity:		
Project:	None				Barometric Pres.:	1019 mbar	
Tested by:	Jonathan Kiefer		Power:	Battery	Job Site:	TX09	
TEST SPECIFICATI	ONS			Test Method			
FCC 15.247:2019				ANSI C63.10:2013			
COMMENTS							
Ref Offset 20.35 dB	(20 dB attenuator + DC E	Block + Cable). EUT has a PIFA antenn	a with a 2.0 dBi an	tenna gain.			
DEVIATIONS FROM	TEST STANDARD						
None							
Configuration #	1	Signature	Jonathan	Kiefer			
		Signaturo			Value	Limit	
					(dBc)	≤ (dBc)	Result
Low Channel, 903 M	Hz				-69.89	-30	Pass
High Channel, 915 M	ИHz				-79.13	-30	Pass

BAND EDGE COMPLIANCE




 Low Channel, 903 MHz


 Value
 Limit

 (dBc)
 ≤ (dBc)
 Result

 -69.89
 -30
 Pass

Report No. CRNE0015.1 45/63

BAND EDGE COMPLIANCE - HOPPING MODE

XMit 2019.05.15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

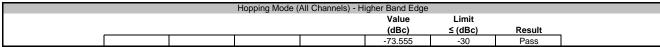
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Attenuator	Fairview Microwave	SA4018-20	TYE	10-Oct-18	10-Oct-19
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to its normal pseudo-random hopping sequence. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE - HOPPING MODE


EUT: World IoT LoRa Module
Serial Number: See Configuration
Customer: Carnegie Technologies
Attendees: Joseph Haas
Project: None
Tested by: Jonathan Kiefer
TEST SPECIFICATIONS Work Order: CRNE0015
Date: 12-Jun-19
Temperature: 22.1 °C Humidity: 49.4% RH
Barometric Pres.: 1018 mbar Power: Battery
Test Method Job Site: TX09 FCC 15.247:2019 ANSI C63.10:2013 COMMENTS Ref Offset 20.35 dB (20 dB attenuator + DC Block + Cable). EUT has a PIFA antenna with a 2.0 dBi antenna gain. DEVIATIONS FROM TEST STANDARD Configuration # Jonathan Kiefer Signature Value (dBc) Result ≤ (dBc) Hopping Mode (All Channels) - Lower Band Edge -73.555 Pass Hopping Mode (All Channels) - Higher Band Edge -30

BAND EDGE COMPLIANCE - HOPPING MODE

| Hopping Mode (All Channels) - Lower Band Edge | Value | Limit | (dBc) | ≤ (dBc) | Result | -57.441 | -30 | Pass |

XMit 2019.05.15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

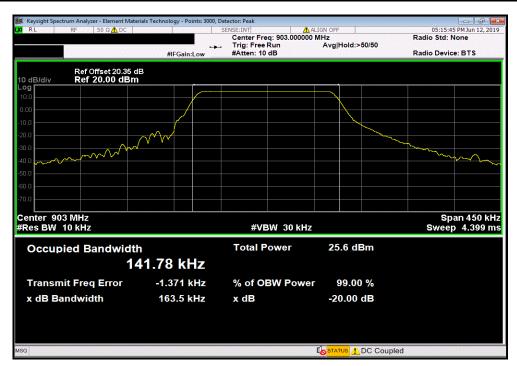
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Attenuator	Fairview Microwave	SA4018-20	TYE	10-Oct-18	10-Oct-19
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

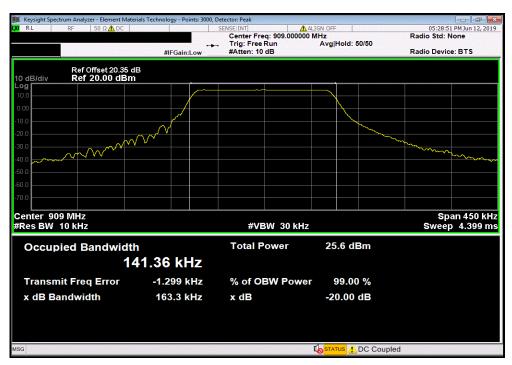
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.

The 20dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth.

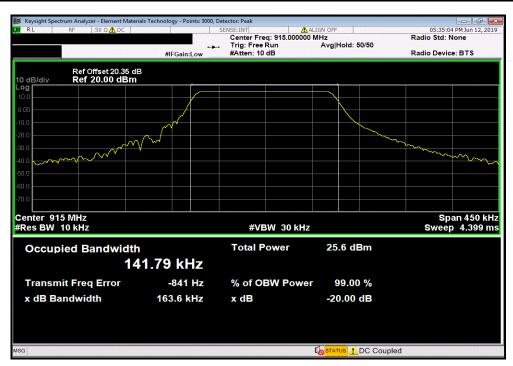
For a hybrid system, there is no minimum occupied bandwidth requirement; therefore, the occupied bandwidth measurement is for characterization purposes only.


						IBUX 2018.09.13	XMit 2019.05.15
EUT: Wo	orld IoT LoRa Module				Work Order:	CRNE0015	
Serial Number: See	e Configuration				Date:	12-Jun-19	
Customer: Car	rnegie Technologies				Temperature:	22.1 °C	
Attendees: Jos	seph Haas				Humidity:	46.8% RH	
Project: No	ne				Barometric Pres.:	1019 mbar	
Tested by: Jor	nathan Kiefer		Power:	Battery	Job Site:	TX09	
TEST SPECIFICATIONS	S			Test Method			
FCC 15.247:2019				ANSI C63.10:2013			
COMMENTS							
DEVIATIONS FROM TE		Block + Cable). EUT has a PIFA antenna	a willi a 2.0 GBI an	terina yanı.			
None							
Configuration #	1	Signature	Jonathan	Xiefer			
					Value	Limit	Result
Low Channel, 903 MHz		_		<u> </u>	163.484 kHz	N/A	Pass
Mid Channel, 909 MHz					163.259 kHz	N/A	Pass
High Channel, 915 MHz					163.633 kHz	N/A	Pass


 Low Channel, 903 MHz

 Value
 Limit
 Result

 163.484 kHz
 N/A
 Pass



 High Channel, 915 MHz

 Value
 Limit
 Result

 163.633 kHz
 N/A
 Pass

XMit 2019 06 1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Attenuator	Fairview Microwave	SA4018-20	TYW	17-Mar-19	17-Mar-20
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	27-Feb-19	27-Feb-20

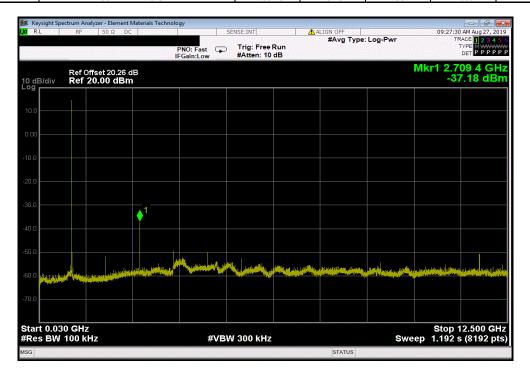
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

54/63

						TbtTx 2019.08.02	XMit 2019.06.
	orld LoRa Module				Work Order:		
Serial Number: See						27-Aug-19	
	rnegie Technologies				Temperature:		
Attendees: Nor					Humidity:		
Project: Nor	ne				Barometric Pres.:	1018 mbar	
Tested by: Jon	nathan Kiefer		Power: Battery		Job Site:	TX09	
TEST SPECIFICATIONS	5		Test Method				
FCC 15.247:2019			ANSI C63.10:2013				
COMMENTS							
Ref Offset 20 26 dB (20	dB attenuator + DC Block	+ Cable) FUT has a PIFA an	tenna with a 2.0 dBi antenna gain.				
(E) 0113C1 20:20 GB (20	ab attenuator + bo block +	r Gable). Lot has a thi A an	nemia with a 2.0 abi anterma gam.				
DEVIATIONS FROM TE	ST STANDARD						
None	31 STANDARD						
None							
Configuration #	4		Jonathan Kiefer				
oomigaranon n	·	Signature	Davacuar encla				
	L	Olgridiaio	Frequency	Measured	Max Value	Limit	
			Range	Freq (MHz)	(dBc)	≤ (dBc)	Result
Low Channel, 903 MHz			Fundamental	903	N/A	N/A	N/A
ow Channel, 903 MHz			30 MHz - 12.5 GHz	2709.43	-51.8		
Low Channel, 903 MHz							
Mid Channel, 909 MHz			***************************************			-30 -30	Pass
			12.5 GHz - 25 GHz	13545.35	-63.08	-30	Pass Pass
			12.5 GHz - 25 GHz Fundamental	13545.35 909	-63.08 N/A	-30 N/A	Pass Pass N/A
Mid Channel, 909 MHz			12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	13545.35 909 2727.7	-63.08 N/A -52	-30 N/A -30	Pass Pass N/A Pass
Mid Channel, 909 MHz Mid Channel, 909 MHz			12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	13545.35 909 2727.7 13635.39	-63.08 N/A -52 -62.47	-30 N/A -30 -30	Pass Pass N/A Pass Pass
Mid Channel, 909 MHz Mid Channel, 909 MHz High Channel, 915 MHz			12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	13545.35 909 2727.7 13635.39 915	-63.08 N/A -52 -62.47 N/A	-30 N/A -30 -30 N/A	Pass Pass N/A Pass Pass N/A
Mid Channel, 909 MHz Mid Channel, 909 MHz			12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	13545.35 909 2727.7 13635.39	-63.08 N/A -52 -62.47	-30 N/A -30 -30	Pass Pass N/A Pass Pass

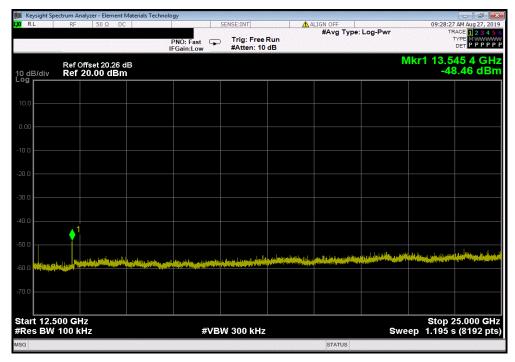
 Low Channel, 903 MHz


 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 Fundamental
 903
 N/A
 N/A
 N/A

	Low Channel, 903 MHz						
	Frequency	Measured	Max Value	Limit			
_	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result		
ſ	30 MHz - 12.5 GHz	2709.43	-51.8	-30	Pass		


56/63

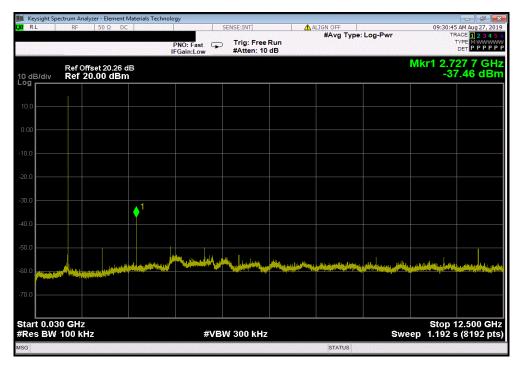
 Low Channel, 903 MHz


 Frequency
 Measured
 Max Value
 Limit

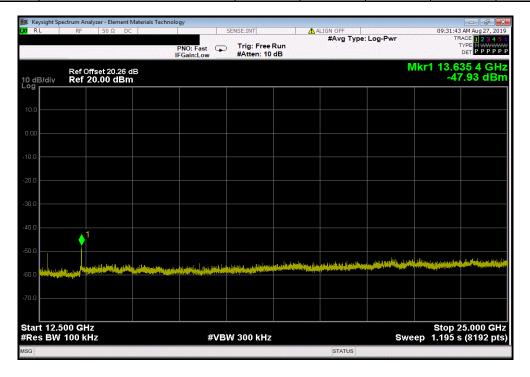
 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 12.5 GHz - 25 GHz
 13545.35
 -63.08
 -30
 Pass

Mid Channel, 909 MHz						
Frequency Measured Max Value Limit						
Range Freq (MHz) (dBc) ≤ (dBc) Result						
Fundamental	909	N/A	N/A	N/A		

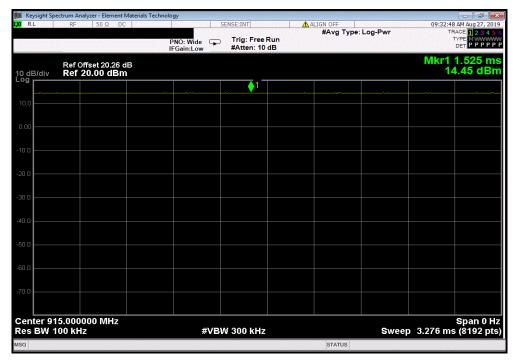

57/63

 Mid Channel, 909 MHz

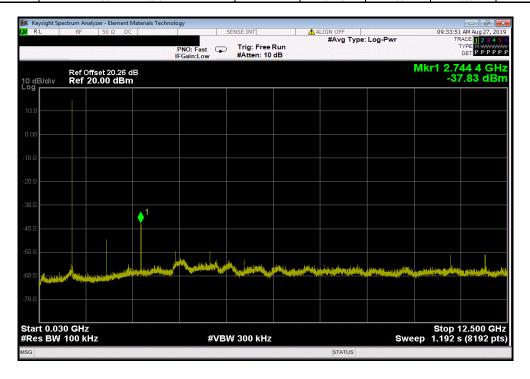

 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

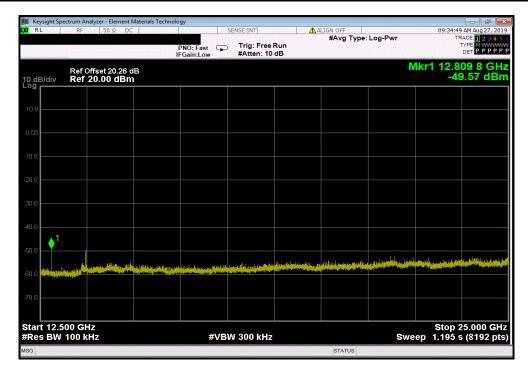
 30 MHz - 12.5 GHz
 2727.7
 -52
 -30
 Pass



Mid Channel, 909 MHz							
Frequency Measured Max Value Limit							
Range Freq (MHz) (dBc) ≤ (dBc) Result							
12.5 GHz - 25 GHz	13635.39	-62.47	-30	Pass			



| High Channel, 915 MHz | Frequency | Measured | Max Value | Limit | Range | Freq (MHz) | (dBc) | ≤ (dBc) | Result | Fundamental | 915 | N/A | N/A | N/A |


	High Channel, 915 MHz						
	Frequency Measured Max Value Limit						
_	Range Freq (MHz) (dBc) ≤ (dBc)						
	30 MHz - 12.5 GHz	2744.44	-52.29	-30	Pass		

TbtTx 2019.08.02 XMit 2019.06.11

High Channel, 915 MHz								
	Measured	Max Value	Limit					
Range		Freq (MHz)	(dBc)	≤ (dBc)	Result			
	12.5 GHz - 25 GHz	12809.79	-64.03	-30	Pass			

XMit 2019.05.15

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

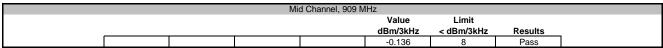
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Attenuator	Fairview Microwave	SA4018-20	TYE	10-Oct-18	10-Oct-19
Block - DC	Fairview Microwave	SD3379	AMT	10-Oct-18	10-Oct-19
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	10-Oct-18	10-Oct-19
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The power spectral density was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.


The method AVGPSD-1 in section 11.10.3 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging and RMS detection across the full power of the burst. This method is allowed as the same method has been used to determine the conducted output power.



						TbtTx 2018.09.13	XMit 2019.05.15
EUT:	World IoT LoRa Module				Work Order:	CRNE0015	
Serial Number:	See Configuration				Date:	12-Jun-19	
Customer:	Carnegie Technologies				Temperature:	22.1 °C	
Attendees:	Joseph Haas				Humidity:	49.8% RH	
Project:	None				Barometric Pres.:	1019 mbar	
Tested by:	Jonathan Kiefer		Power:	Battery	Job Site:	TX09	
TEST SPECIFICATI	ONS			Test Method			
FCC 15.247:2019				ANSI C63.10:2013			
COMMENTS							
DEVIATIONS FROM	•	Block + Cable). EUT has a PIFA antenn	ia with a 2.0 dBi an	tenna gain.			
None	TEGT GTANDARD						
None							
Configuration #	1	Signature	Jonathan	Kiefer			
					Value	Limit	
					dBm/3kHz	< dBm/3kHz	Results
Low Channel, 903 M	Hz				0.31	8	Pass
Mid Channel, 909 MHz				-0.136	8	Pass	
High Channel, 915 MHz				0.073	8	Pass	

Report No. CRNE0015.1 61/63

Report No. CRNE0015.1 62/63

High Channel, 915 MHz

Value Limit

dBm/3kHz < dBm/3kHz Results

0.073 8 Pass

