

210 Cougar Court Hillsborough, NJ 08844

Tel: (908) 927 9288 Fax: (908) 927 0728

Electromagnetic Emission Compliance Test Report

Equipment Under Test Fiber to Antenna System/ Booster

(EUT) FTA-DL002

Applicant CellGain Wireless

In Accordance With FCC Part 90 (/Part 2)

Test by Advanced Compliance Laboratory, Inc.

210 Cougar Court

Hillsborough, New Jersey 08844

Authorized by Wei Li Signature

Lab Manager

Date May 9, 2019

AC Lab Report 0048-181017-01

Number

The test result in this report is supported and covered by the NVLAP accreditation.

EUT: Fiber to Antenna System/ Booster Model: FTA-DL002 FCC ID: 2ARIM-FTA-DL002 Report Number: 0048-181017-01

Index

Section 1. Summary of Test Results	3
Section 2. General Equipment Specification	5
Section 3. AGC Threshold	
Section 4. Out of-Band Rejection	9
Section 5. Input-versus-output signal comparison	
Section 6. Input/output power and amplifier/booster gain	
Section 7. Band Noise	
Section 8. Measuring out-of-band/out-of-block and Spurious Emissions	
Section 9. Frequency Stability Measurements	
Section 10. Field Strength of Spurious	
Section 11. Maximum Permissible Exposure	
Section 12. Test Equipment List	
Section 13. FCC ID Labeling	
Section 14. Setup Photos	
Section 15. EUT Photos	70

Section 1. Summary of Test Results

Manufacturer: CellGain Wireless

Product Name: Fiber to Antenna System/ Booster

Model No.: FTA-DL002

Sample No.: PT002

General: All measurements are traceable to national standards

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 2& Part 90.

New Submission Production Unit

Class II Permissive Change Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

"See Summary of Test Data"

NVLAP LAB CODE: 200101-0

Advance Compliance Laboratory, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Advance Compliance Laboratory, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary of Test Data

The measurement methodology shall compliance with the requirements in ANSI C63.26-2015 & FCC KDB 935210 D05 Industrial Booster Basic Measurement v01r02 (2017).

FCC Requirements	FCC Rule Part	Result	
AGC Threshold	935210 D05, Sec. 3.2	Complies	
Out of-Band Rejection	935210 D05, Sec. 3.3	Complies	
Input-versus-output signal comparison	935210 D05, Sec. 3.4	Complies	
Input/output power and amplifier/booster gain	935210 D05, Sec. 3.5	Complies	
Band Noise	935210 D05, Sec. 3.6	Complies	
Measuring out-of-band/out-of-block and Spurious Emissions	935210 D05, Sec. 3.7 Part 90.210	.7 Complies	
Frequency Stability Measurements	935210 D05, Sec. 3.8 Part 90.219	Complies	
Field Strength of Spurious	935210 D05, Sec. 3.9 Part 2.1053	Complies	

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Date: May 9, 2019

Wei Li Lab Manager

Advanced Compliance Lab

Section 2. General Equipment Specification

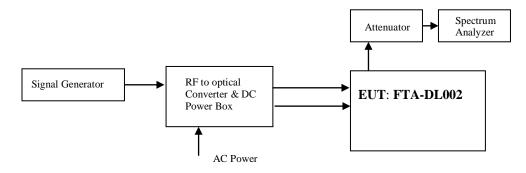
Supply Voltage	Nominal +48Vdc				
	Pass Band I: 151.115MHz ~196.2MHz Pass Band II: 337.5MHz~564.0MHz Pass Band III: 658.0MHz~1119.0MHz FCC Part 90 Frequency List for certification				
Frequency Range	151.115-156.2475 MHz		For Pass Band III 758-775 MHz 788-805 MHz 806-849 MHz 851-894 MHz 896-901 MHz 902-930 MHz 935-940 MHz		
Modulations	Per KDB 935210 D05, Sec. 4.4 Table1	Digital FM (16K0F3E)	Digital FM (11K3F3	FM	
Rated Operational Power	0dBm (Tolerance ±3dB)				
Output Impedance	50ohm				
Frequency Translation	All Software Duplexer Change Cover		N/A ☐ Full Band Coverage		

DC voltages and DC currents per 2.1033(c)(8)

The input supply to the RF Circuitry was set as followings: 48Vdc, 150mA

Tune-up procedure per 2.1033(c) (9)

There are no user accessible adjustments or tuning in this Transmitter. All necessary adjustments and tuning are performed during manufacture of the product. Any adjustments or tuning after service or repair are done as part of that process as special equipment is required to perform such adjustments.


Description of Operation

A signal generator was connected to the RF In of the RF to Fiber Optic converter (support equipment, which also provides DC power to the EUT). This RF signal was converted internally to a fiber optic interface and the fiber optic cable was connected to the Fiber Optical In port of the EUT. The RF output port of the EUT was connected to the spectrum analyzer.

System Diagram

See Attachment.

General EUT Setup

System Configurations

Device	Reference	Description	Mfr. P/N
FTA System	EUT	Fiber to Antenna System/Booster	FTA-DL002
Power Box & Converter	Accessory	RF to Fiber Optical Converter	NA

Cable List

Reference	Port Name	Start	End	Cable Length(m)	w/ Ferrite	Sjielded
1	DC Input	EUT	48 V DC supply from Power Box	>3	No	No
2	Coaxial Cable	EUT	Test Equipment	Depends on test	No	Coax
3	Fiber optic cable	EUT	RF- Optical Converter	>3	No	No
4	Coaxial Cable	Sig Gen (test equipment)	RF-Optical Converter	Depends on test	No	Coax

Section 3. AGC Threshold

Name of Test:	AGC Threshold	Test Standard:	KDB 935210 D05
Tested By:	WEI LI	Test Date:	10/17/2018-01/18/2019

Minimum

Standard: per KDB 935210 D05 Indus Booster Basic Meas v01r02, Section 4.2

Method of **Measurement:**

The AGC threshold was determined as follows

- a) Connect a signal generator to the input of the EUT (i.e. the RF
- a) Connect a signal generator to the input of the EUT (i.e. the RF input of support equipment).
 b) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation as necessary.
 c) The signal generator was configured to produce a CW signal.
 d) Set the signal generator frequency to the center frequency of the EUT operating band.
- e) While monitoring the output power of the EUT, increase the input level until a 1 dB increase in the input signal power no longer causes a 1 dB increase in the output signal power.
- f) Record this level as the AGC threshold level.
- g) Repeat the procedure with the remaining test signal.

Test Result:	Complies*
--------------	-----------

Test Data:

* AGC function shall be provided by external device which will limit the EUT input up to AGC Threshold level.

Frequency, MHz	Gain (dB)	AGC Threshold Level
160.1	48.1	-48.1 dBm
412.0	47.3	-47.3 dBm
760.0	45.6	-45.6 dBm

Section 4. Out of-Band Rejection

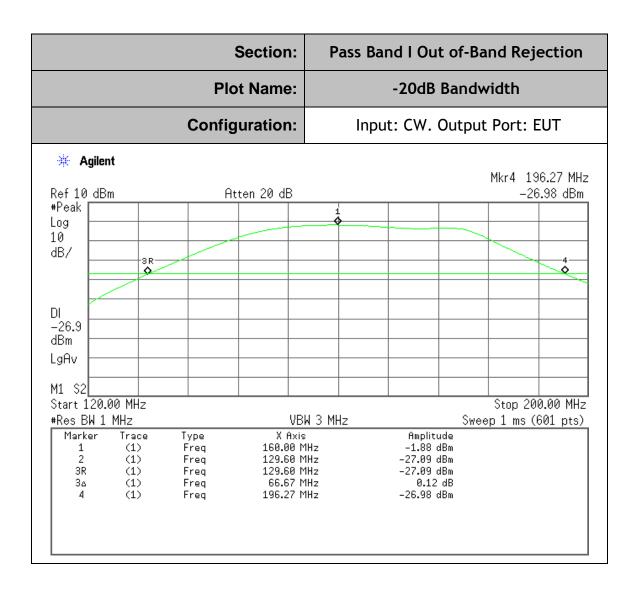
Name of Test:	Out of-Band Rejection	Test Standard:	KDB 935210 D05
Tested By:	WEI LI	Test Date:	10/17/2018-01/18/2019

Minimum per KDB 935210 D05 Indus Booster Basic Meas v01r02, Section 4.3 **Standard:**

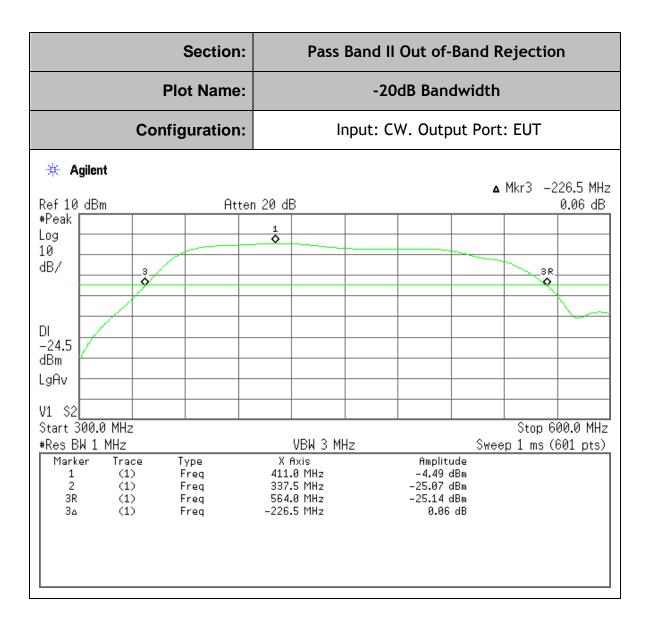
Method of Measurement:

Adjust the internal gain control of the EUT to the maximum gain for which equipment certification is sought.

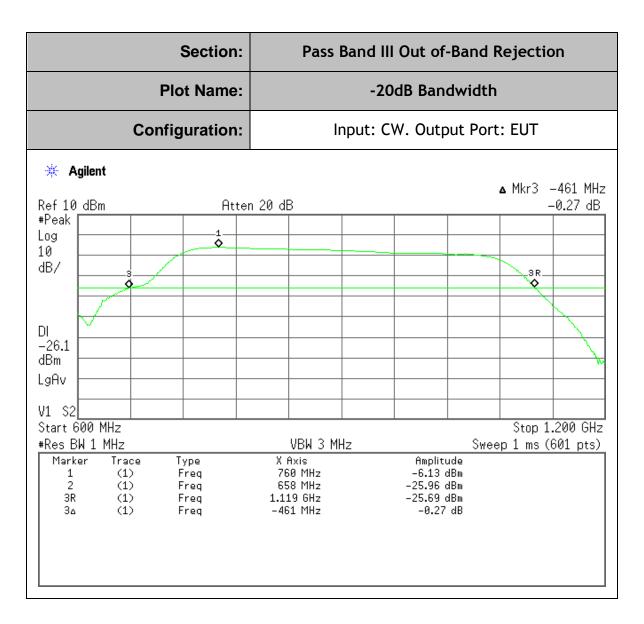
- a) Connect a signal generator (network analyzer output) to the input of the EUT.
- b) Configure a swept CW signal with the following parameters:
- 1) Frequency range = ± 250 % of the manufacturer's specified pass band.
- 2) The CW amplitude shall be 3 dB below the AGC threshold (see 4.2), and shall not activate the AGC threshold throughout the test.
- 3) Dwell time = approximately 10 ms.
- 4) Frequency step = 50 kHz.
- c) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
- d) Set the RBW of the spectrum analyzer to between 1 % and 5 % of the manufacturer's rated passband, and $VBW = 3 \times RBW$.
- e) Set the detector to Peak and the trace to Max-Hold.
- f) After the trace is completely filled, place a marker at the peak amplitude, which is designated as f0, and with two additional markers (use the marker-delta method) at the 20 dB bandwidth (i.e., at the points where the level has fallen by 20 dB).
- g) Capture the frequency response plot for inclusion in the test report.


Test Complies Result:

Test Data: Attached Plots


Frequency, MHz	F-low, MHz	F-high, MHz	-20dBBandwidth, MHz
160.1	129.6*	196.27	66.67
412.0	337.5	564.0	226.5
760.0	658.0	1119.0	461.0

^{*} Signal below 150MHz for booster Band I shall be limited by external PLMRS licensed Station with its authorized service band. Set for 151.115MHz as lowest frequency per FCC filter input to the FTA.


Project Number:	0048-181017-01	
EUT:	Fiber to Antenna System/ Booster FTA-DL002	
SN:	PT002	
Tested By:	By: Wei Li	
Temperature:	70°F	
Humidity:	30%	

Project Number:	0048-181017-01		
EUT:	Γ: Fiber to Antenna System/ Booster FTA-DL002		
SN:	PT002		
Tested By:	Wei Li		
Temperature:	70°F		
Humidity:	y: 30%		

Project Number:	0048-181017-01		
EUT:	Fiber to Antenna System/ Booster FTA-DL002		
SN:	PT002		
Tested By:	Wei Li		
Temperature:	70°F		
Humidity:	30%		

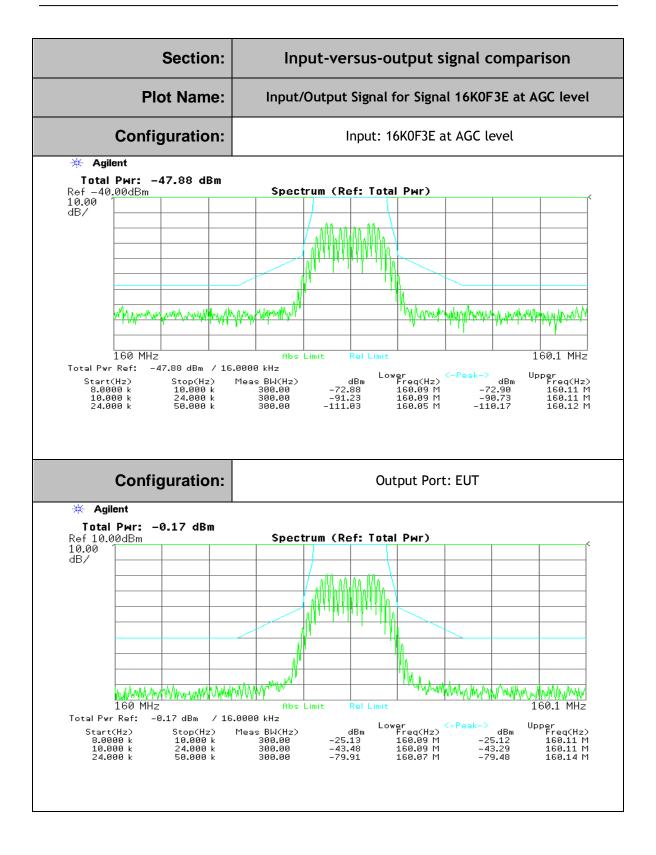
Section 5. Input-versus-output signal comparison

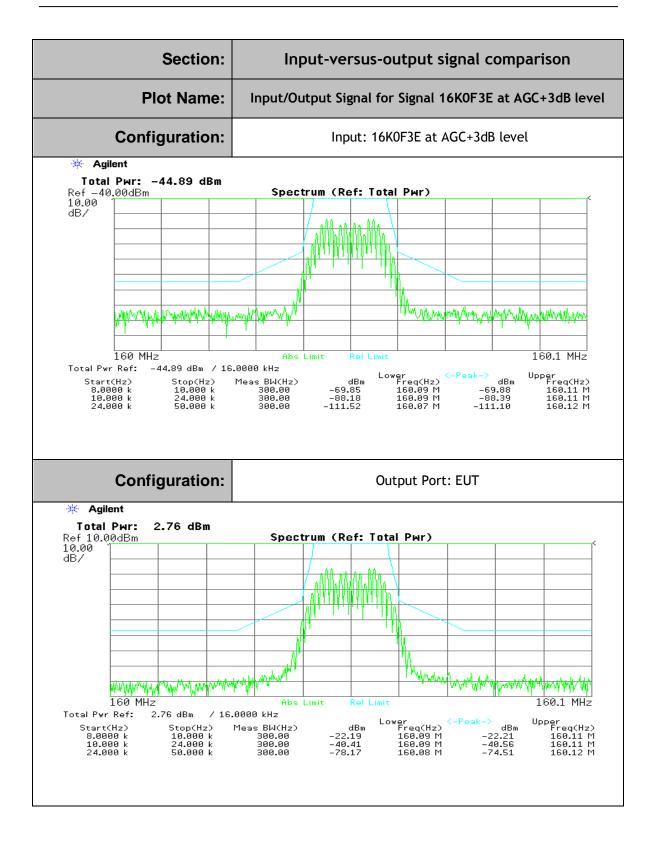
Name of Test:	Input-versus-output signal comparison	Test Standard:	KDB 935210 D05
Tested By:	WEI LI	Test Date:	10/17/2018-01/18/2019

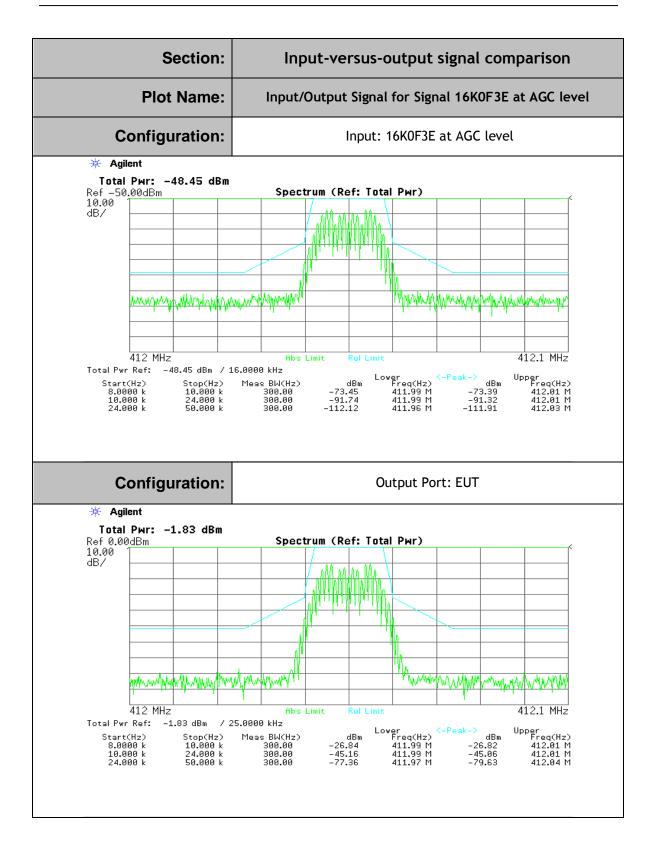
Minimum per KDB 935210 D05 Indus Booster Basic Meas v01r02, Section 4.4 **Standard:**

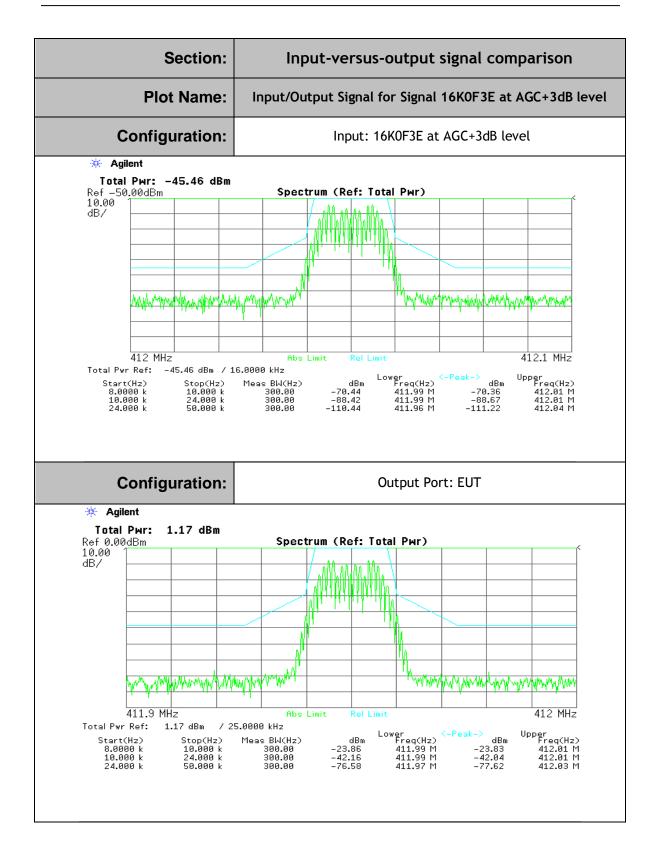
Method of Measurement:

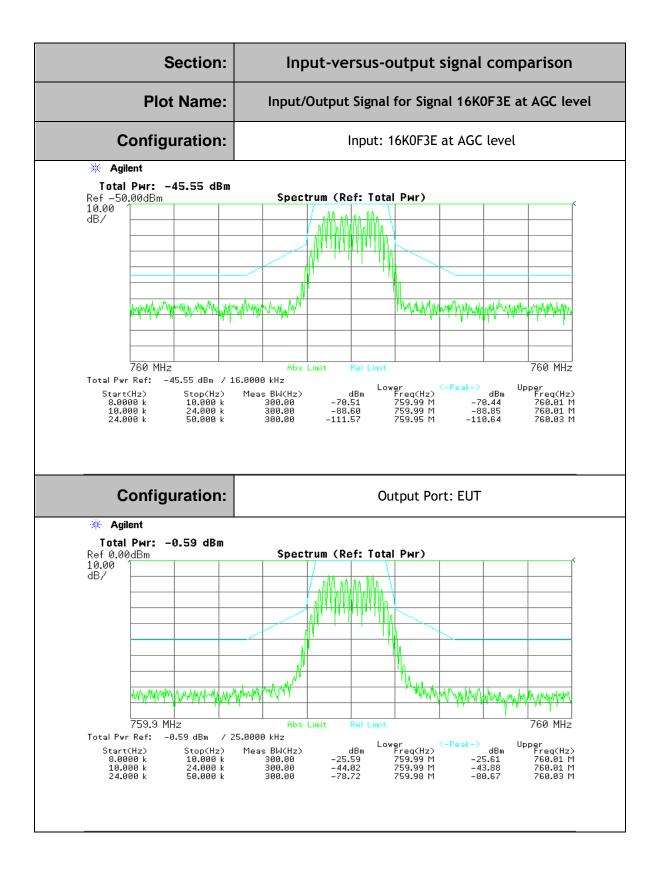
Method of The signals were adjusted according to Table 1.

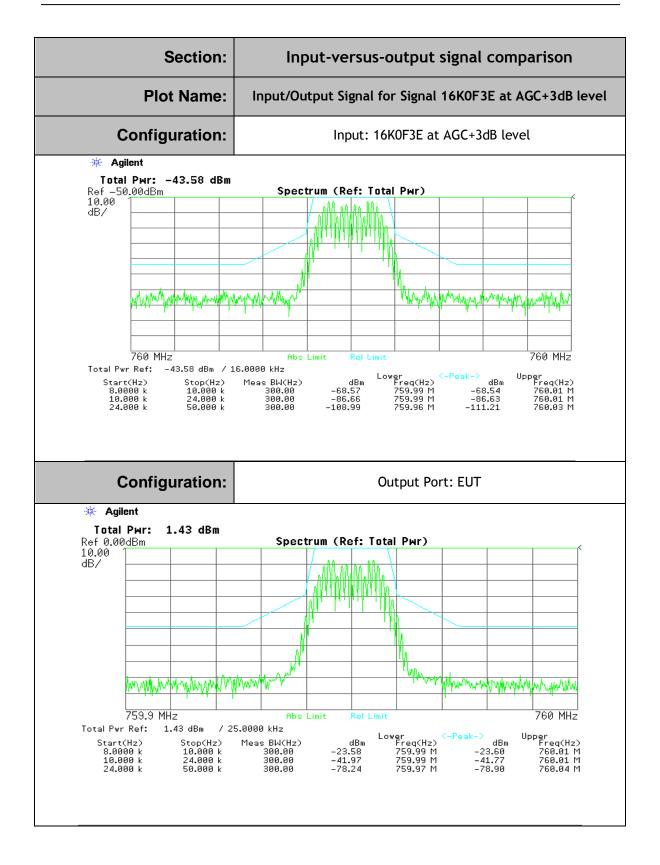

Table 1-Test signals for PLMRS devices

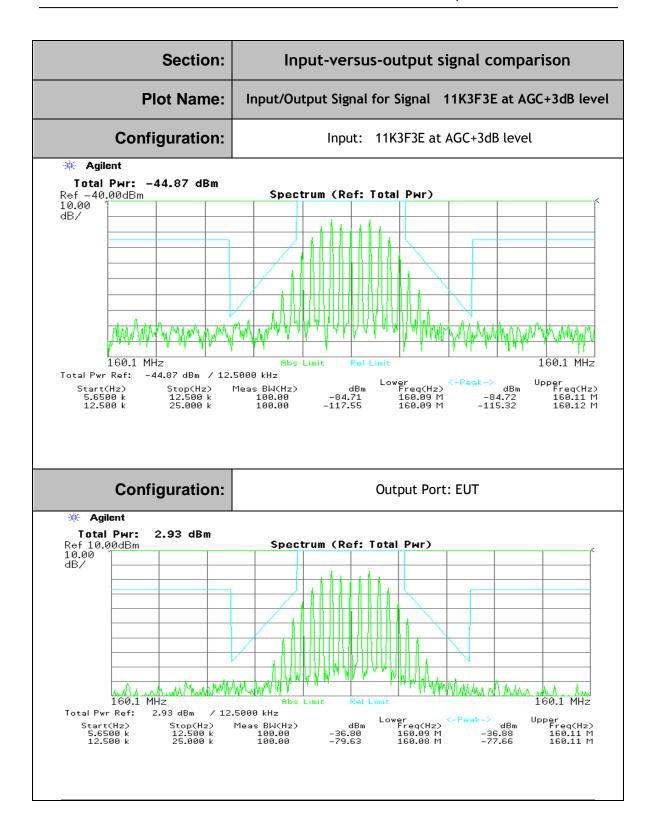

Emission	Modulation	Occupied	Channel	Audio	
Designator	Modulation	Bandwidth	Bandwidth	Frequency	
16K0F3E	FM	16 kHz	25 kHz	1 kHz	
11K3F3E	FM	11.3 kHz	12.5 kHz	1 kHz	
4K00F1E	FM	4 kHz	6.25 kHz	1 kHz	
N/A	CW	N/A	N/A	N/A	

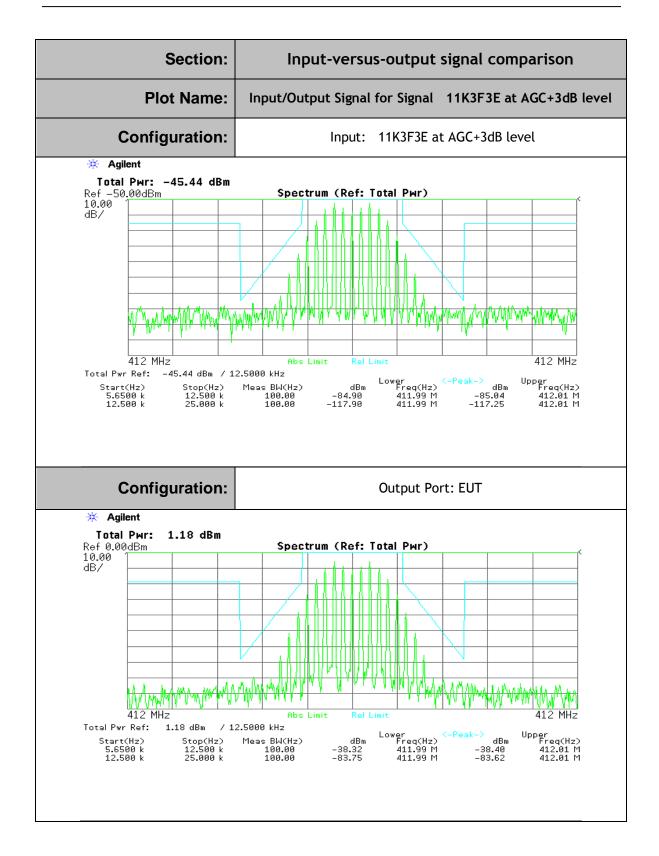

Test Result: Complies


Attached Plots Test Data:

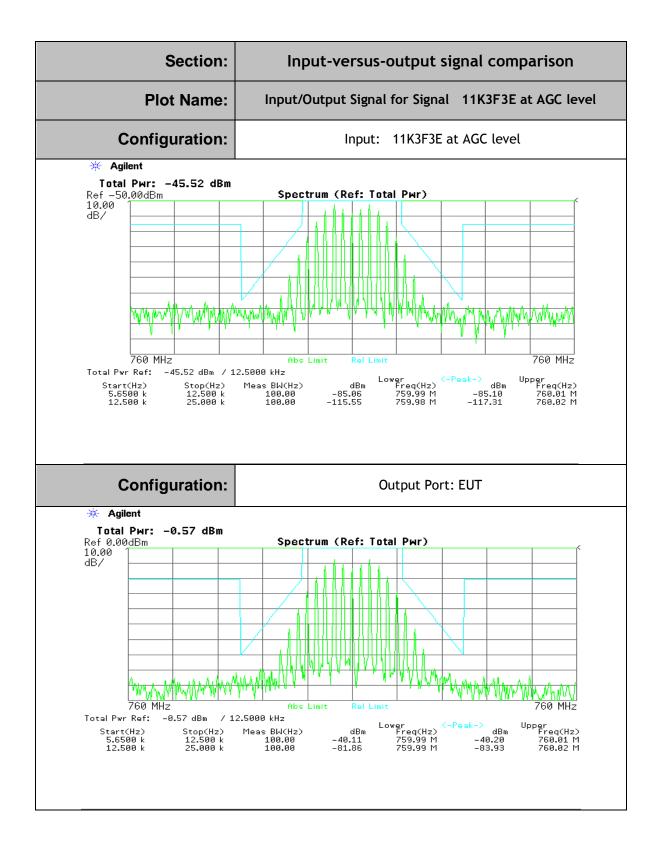

Project Number:	0048-181017-01	
EUT:	Fiber to Antenna System/ Booster FTA-DL002	
SN:	PT002	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

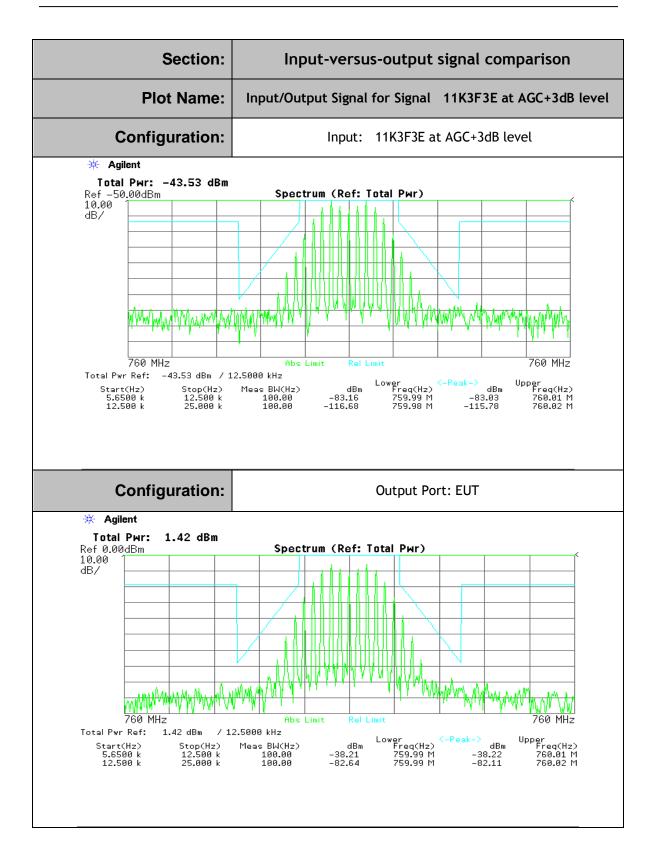


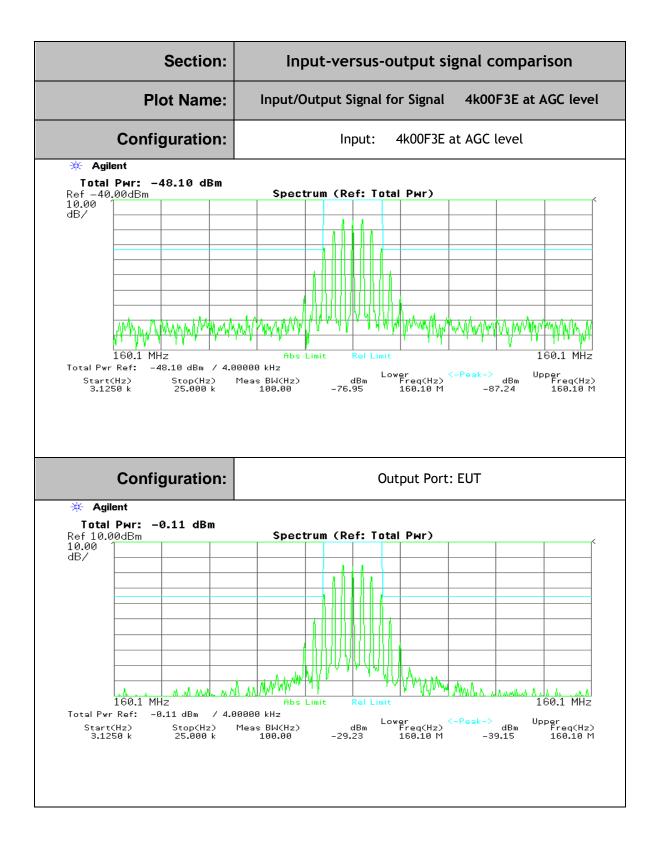


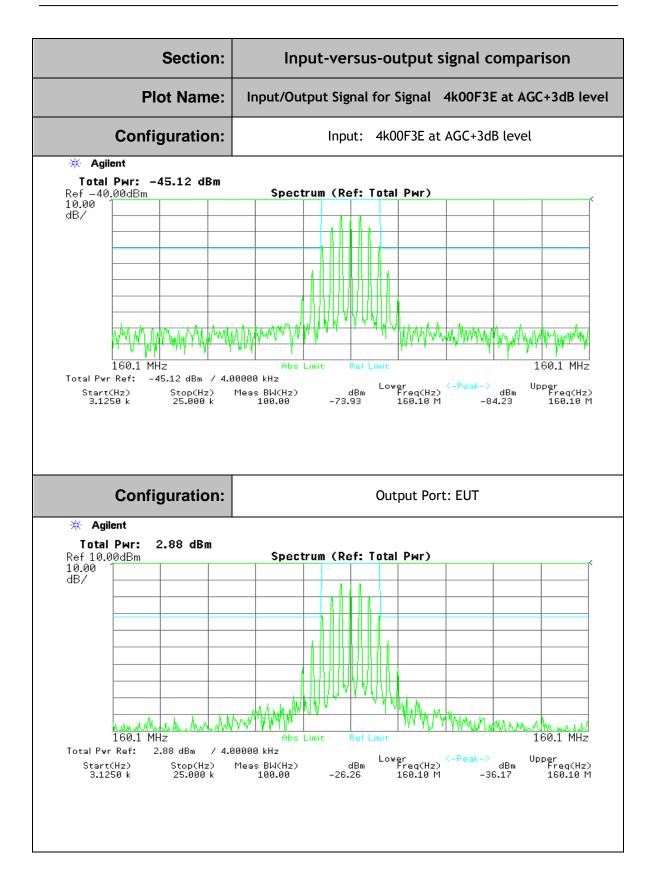

FCC ID: 2ARIM-FTA-DL002

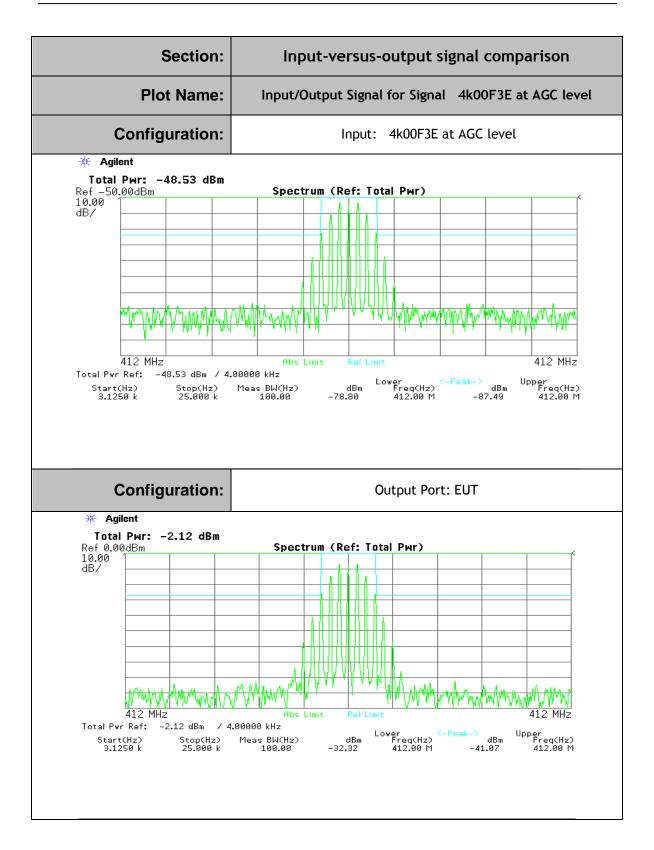
Report Number: 0048-181017-01

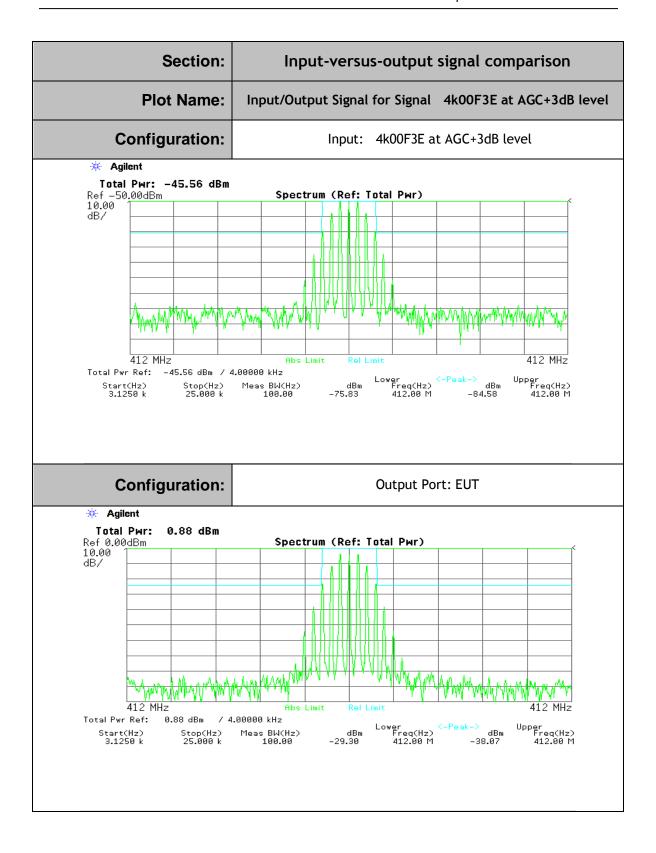

EUT: Fiber to Antenna System/ Booster

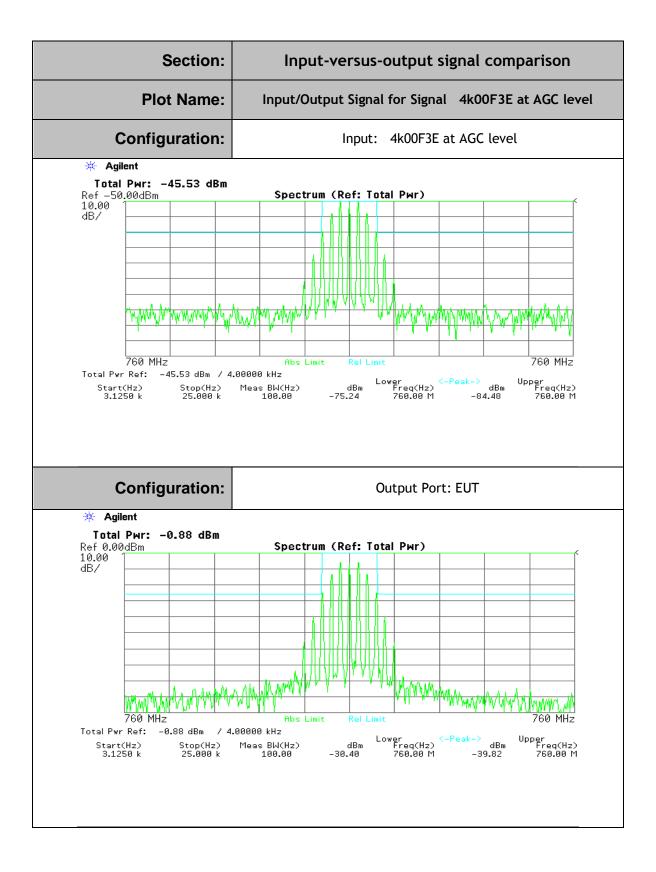


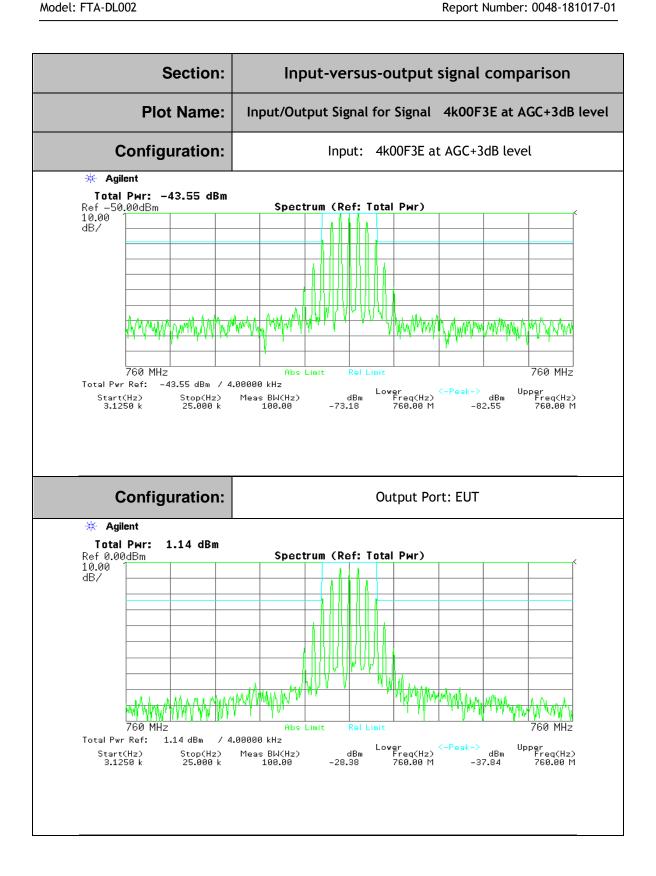





FCC ID: 2ARIM-FTA-DL002 Report Number: 0048-181017-01







Section 6. Input/output power and amplifier/booster gain

Name of Test:	Input/output power and amplifier/booster gain	Test Standard:	KDB 935210 D05
Tested By:	WEI LI	Test Date:	10/17/2018-01/18/2019

Minimum Standard:

per KDB 935210 D05 Indus Booster Basic Meas v01r02, Section 4.5

Method of Measurement:

Input power levels (uplink and downlink) should be set to maximum input ratings, while confirming that the device is not capable of operating in saturation (non-linear mode) at the rated input levels, including during the performance of the input/output power measurements.

- a. Power measurement Method 1: using a spectrum or signal analyzer
- a) Set the frequency span to at least 1 MHz.
- b) Set RBW = 100 kHz.
- c) Set VBW \geq 3 × RBW.
- d) Set the detector to PEAK, and trace mode to MAX HOLD.
- e) Place a marker on the peak of the signal, and record the value as the maximum power.
- f) Repeat step e) but with the EUT in place.
- b. Power measurement Method 2: using a power meter As an alternative to measuring the input and output power levels with a spectrum or signal analyzer, a broadband RF power meter may be used with an appropriate detector.
- c. Calculating amplifier, repeater, or industrial booster gain Gain (dB) = output power (dBm) input power (dBm).

EUT: Fiber to Antenna System/ Booster	FCC ID: 2ARIM-FTA-DL002
Model: FTA-DL002	Report Number: 0048-181017-01

Test Result: Complies

Test Data:

Frequency, MHz	Input Power,dBm	Output Power, dBm	Max. Gain for each Band*, dB
160.1 in Band I	-48.1	0	48.1
412.0 in Band II	-47.3	0	47.3
760.0 in Band III	-45.6	0	45.6

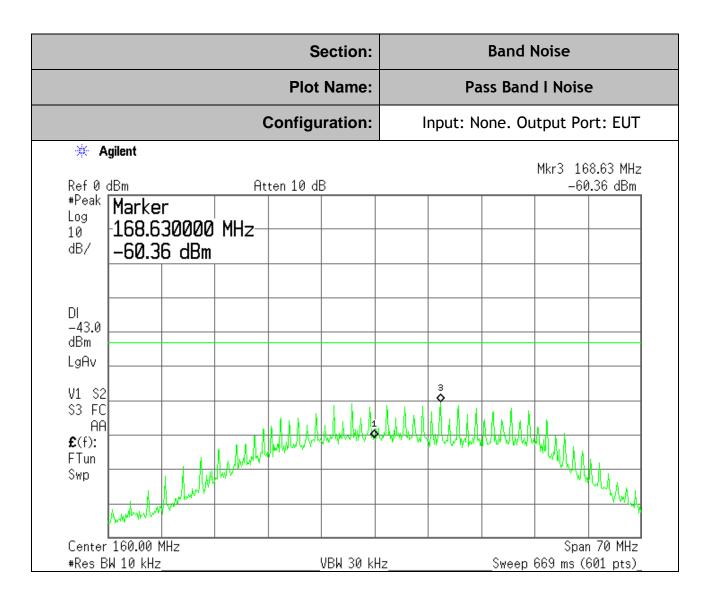
^{*} all cable loss and attenuation factors were taken in account.

Section 7. Band Noise

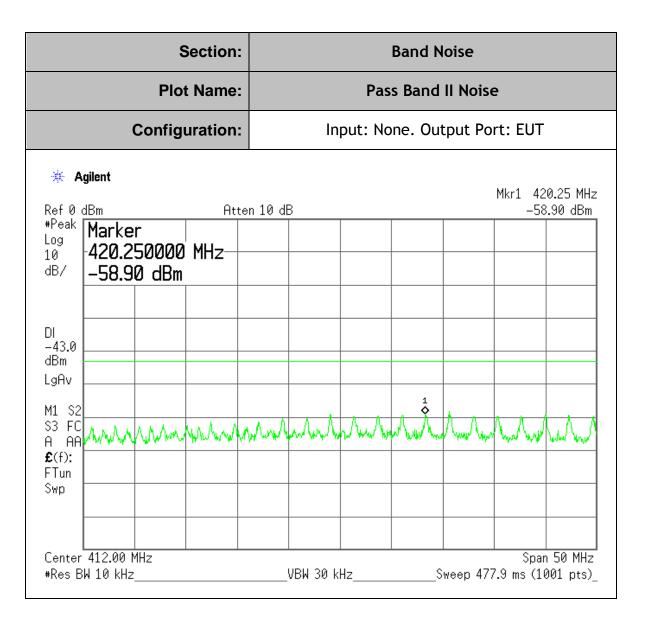
Name of Test:	Band Noise	Test Standard:	KDB 935210 D05 90.219(e)(2)
Tested By:	Tested By: WEI LI		10/17/2018-01/18/2019

Minimum per KDB 935210 D05 v01r02, Sec. 4.6. **Standard:**

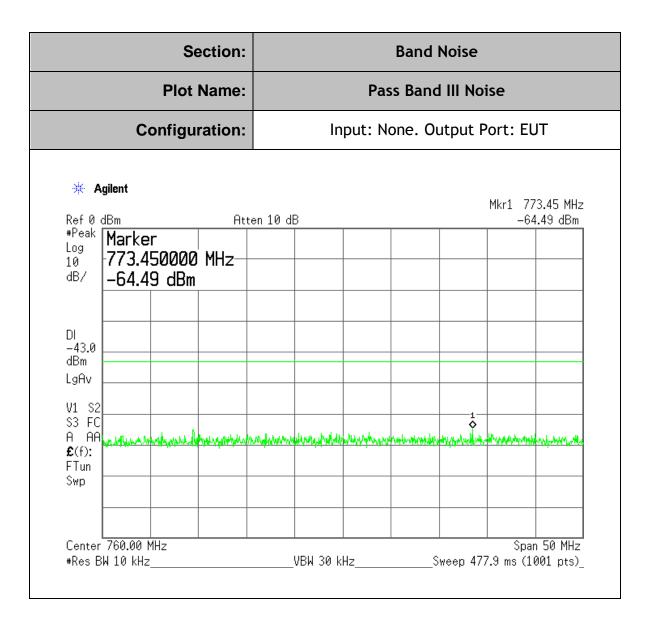
Method of Measurement:


In accordance with 935210 D02 Signal Boosters Certification v04, Section V, paragraph (j)(5): For the remote unit of a conventional fiber-connected host/remote DAS booster system, it is acceptable to submit compliance information and test data consistent with Section 90.219(d)(6)(ii) (i.e., ERP of noise \leq -43 dBm in 10 kHz RBW) for the downlink path only, in place of Section 90.219(e)(2) noise figure test data (i.e., NF \leq 9 dB for both UL and DL). Test reports must provide explicit details about the instrumentation and test procedure used for Section 90.219(d)(6)(ii) testing.

Test Result: Complies


Attached Plots Test Data:

Frequency, MHz	Noise, dBm	Limit, dBm	Result	Allowed Antenna Gain less than,dBd
168.63 in Band I	-60.36	-43	Complies	17.36
420.25 in Band II	-58.90	-43	Complies	15.90
773.45 in Band III	-64.49	-43	Complies	21.49


Project Number:	0048-181017-01	
EUT:	Fiber to Antenna System/ Booster FTA-DL002	
SN:	PT002	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Project Number:	0048-181017-01	
EUT:	Fiber to Antenna System/ Booster FTA-DL002	
SN:	PT002	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Project Number:	0048-181017-01	
EUT:	Fiber to Antenna System/ Booster FTA-DL002	
SN:	PT002	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Section 8. Measuring out-of-band/out-of-block and Spurious Emissions

(including intermodulation)

Name of Test:	Measuring out-of- band/out-of-block and Spurious Emissions (including intermodulation)	Test Standard:	KDB 935210 D05 90.210
Tested By:	WEI LI	Test Date:	10/17/2018-01/18/2019

Minimum per KDB 935210 D05 Indus Booster Basic Meas v01r02, Section 4.7 **Standard:**

Method of Measurement:

Method of Out-of-band/out-of-block emissions conducted measurements

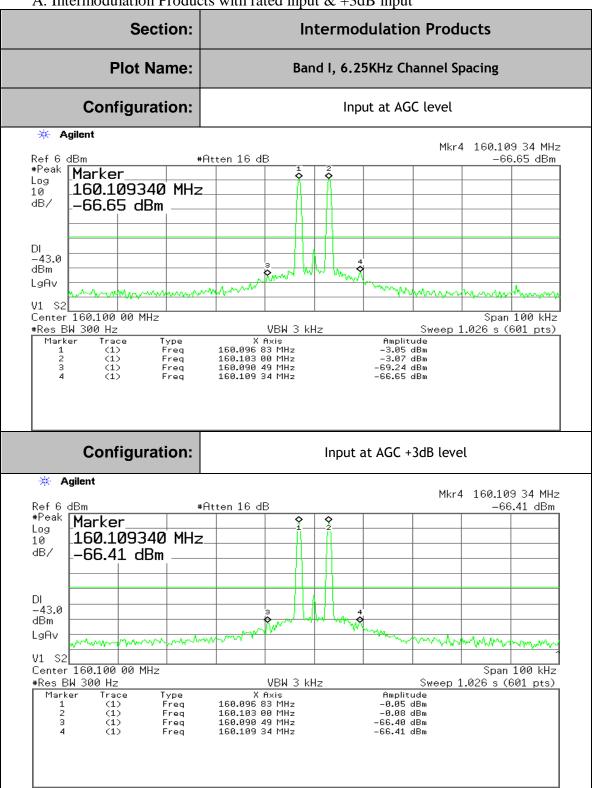
a) Connect a signal generator to the input of the EUT.

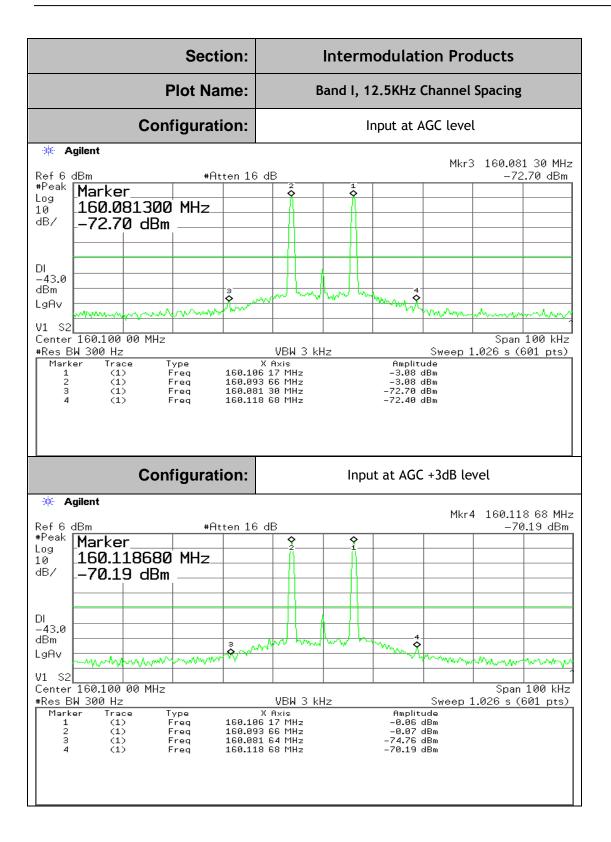
If the signal generator is not capable of producing two independent modulated carriers simultaneously, then two discrete signal generators can be connected, with an appropriate combining network to support the two-signal test.

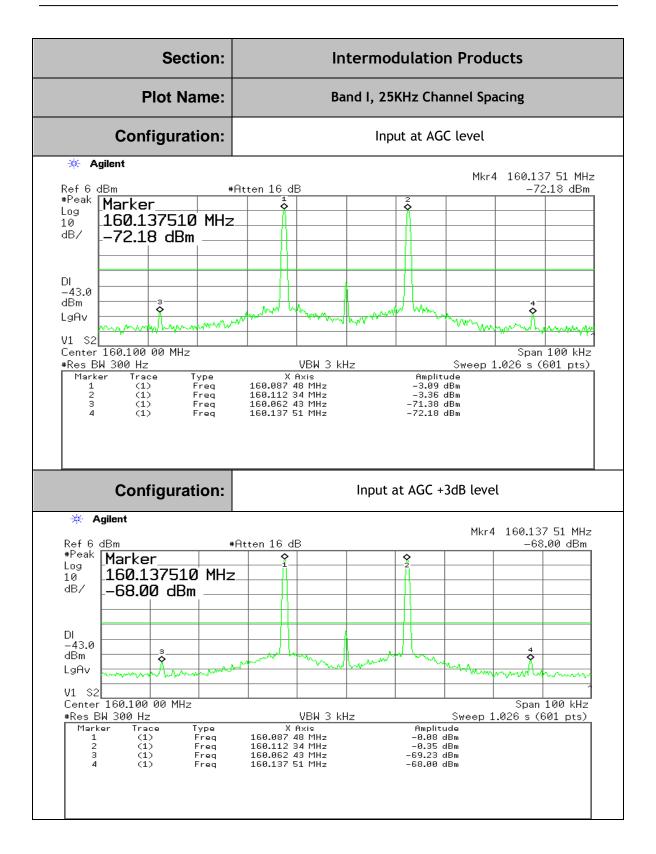
- b) Configure the two signal generators to produce CW on frequencies spaced consistent with 4.7.1, with amplitude levels set to just below the AGC threshold.
- c) Connect a spectrum analyzer to the EUT output.
- d) Set the span to 100 kHz.
- e) Set RBW = 300 Hz with VBW \geq 3 × RBW.
- f) Set the detector to power averaging (rms).
- g) Place a marker on highest intermodulation product amplitude.
- h) Capture the plot for inclusion in the test report.
- i) Repeat steps c) to h) with the composite input power level set to 3 dB above the AGC threshold.
- i) Repeat steps b) to i) for all operational bands.

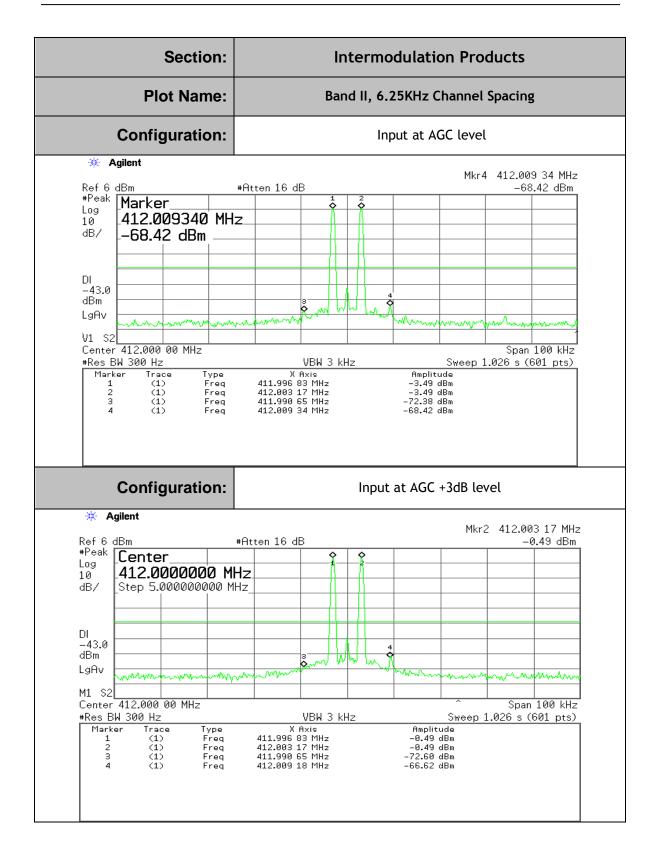
EUT spurious emissions conducted measurements

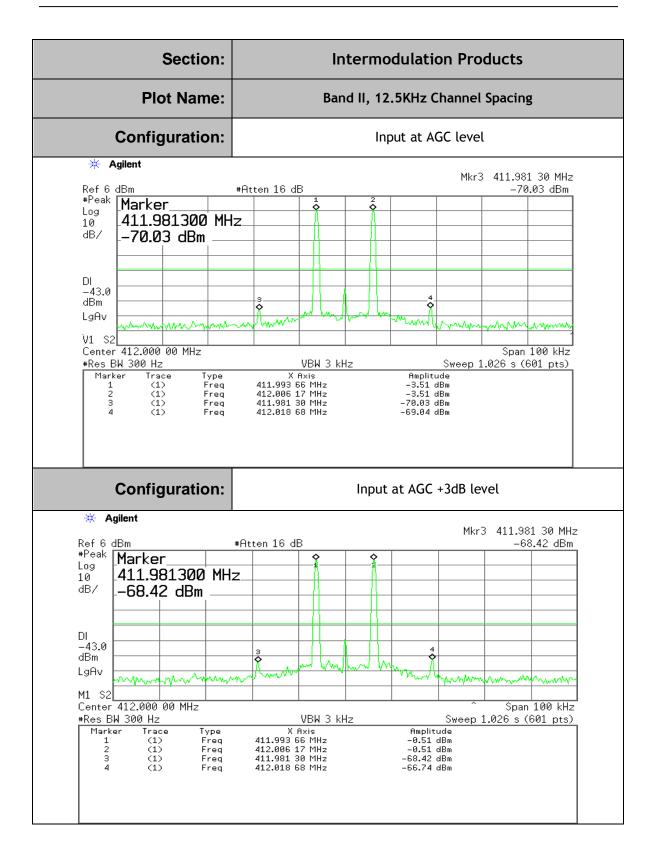
- a) Connect a signal generator to the input of the EUT.
- b) Configure the signal generator to produce a CW signal.
- c) Set the frequency of the CW signal to the center channel of the EUT passband.
- d) Set the output power level so that the resultant signal is just below the

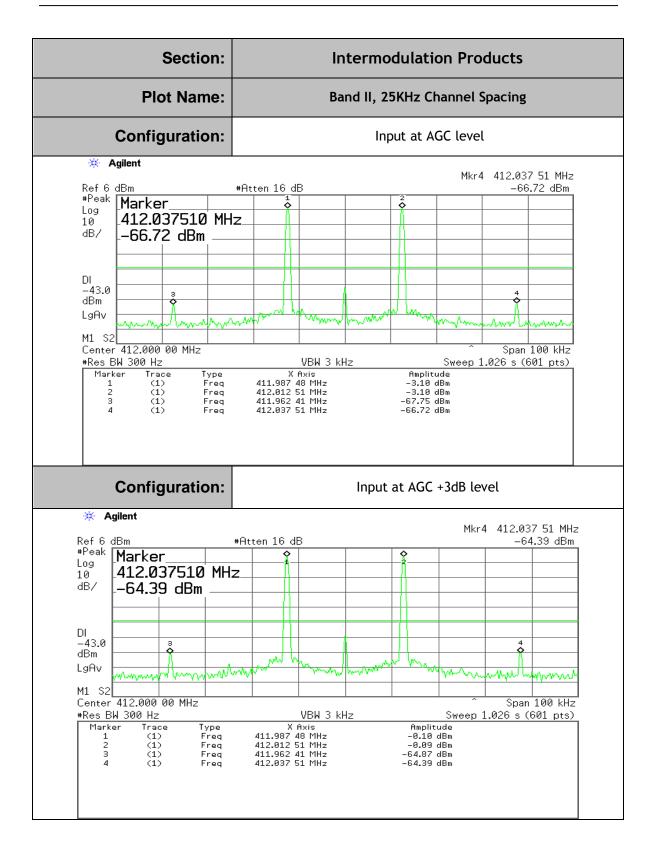

AGC threshold.

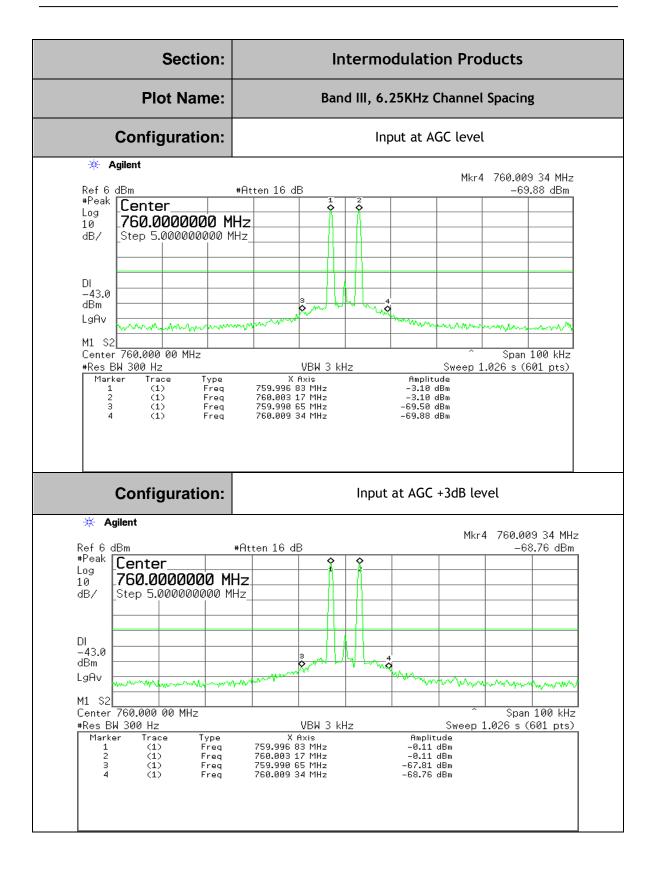

- e) Connect a spectrum analyzer to the output of the EUT, using appropriate attenuation as necessary.
- f) Set the RBW = 100 kHz. (i.e., for 30 MHz to 1 GHz PLMRS and/or PSRS booster devices)
- g) Set the $VBW = 3 \times RBW$.
- h) Set the Sweep time = auto-couple.
- i) Set the detector to PEAK.
- j) Set the spectrum analyzer start frequency to 30 MHz (or the lowest radio frequency signal generated in the EUT, without going below 9 kHz if the EUT has additional internal clock frequencies), and the stop frequency to 10 times the highest allowable frequency of the EUT passband.
- k) Select MAX HOLD, and use the marker peak function to find the highest emission(s) outside the passband. (This could be either at a frequency lesser or greater than the passband frequencies.)
- 1) Capture a plot for inclusion in the test report.
- m) Repeat steps c) to l) for each authorized frequency band/block of operation.

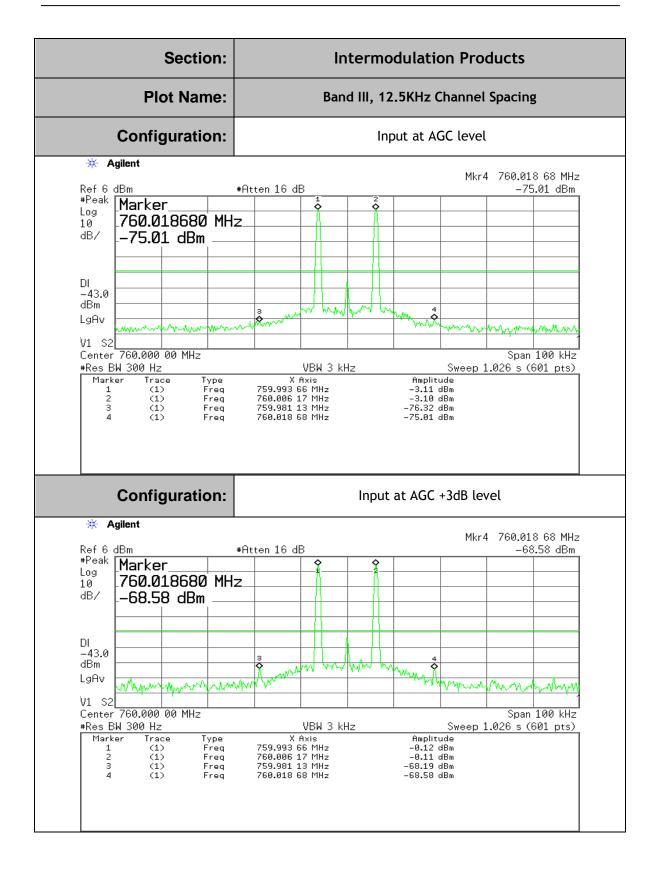

Test Result:	Complies		
Test Data:	Attached Plots		

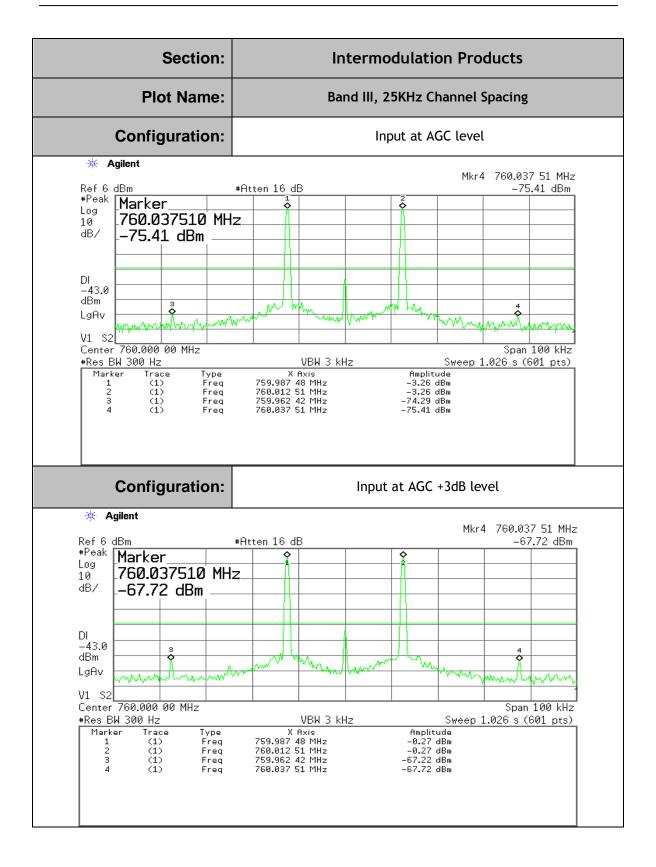

Project Number:	0048-181017-01	
EUT:	Fiber to Antenna System/ Booster FTA- DL002	
SN:	PT002	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

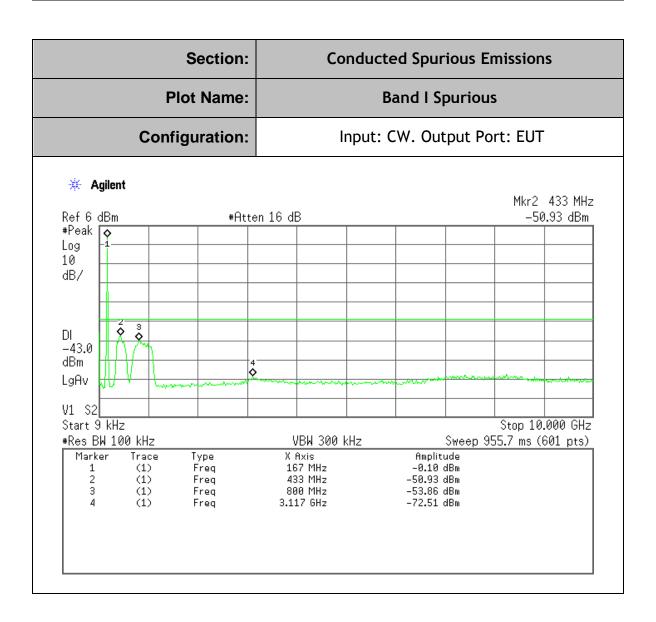

A. Intermodulation Products with rated input & +3dB input

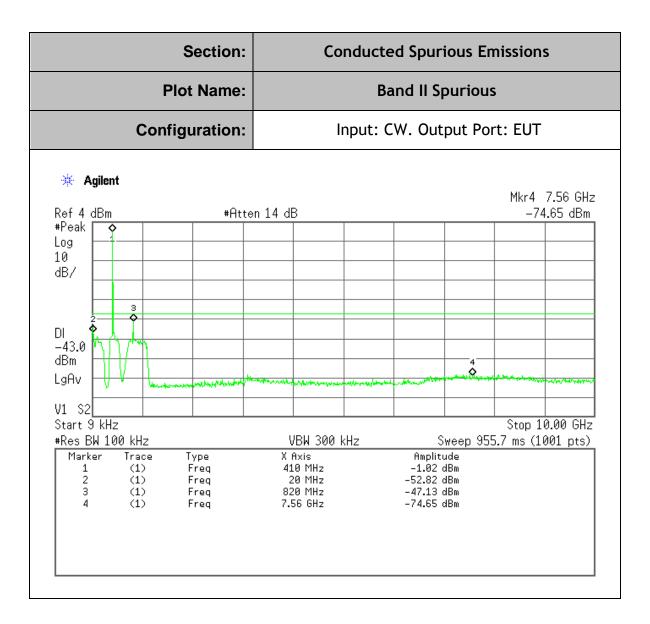




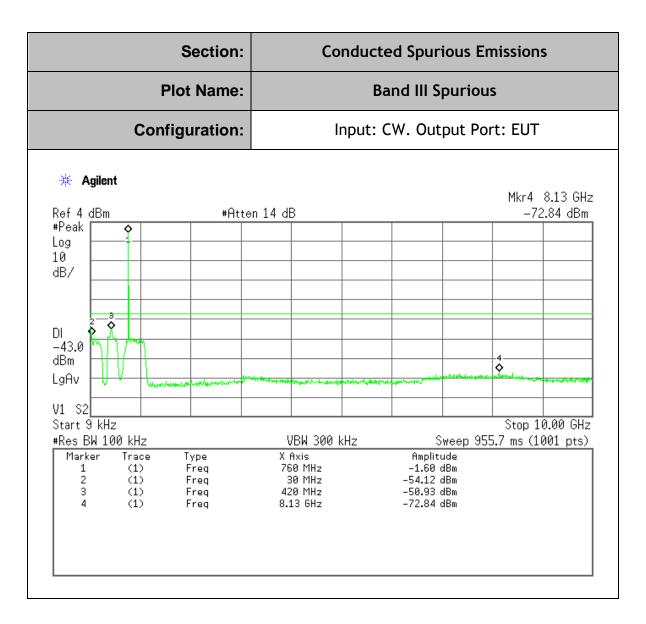








B. Conducted Spurious Emissions


Project Number:	0048-181017-01	
EUT:	Fiber to Antenna System/ Booster FTA-DL002	
SN:	PT002	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Project Number:	0048-181017-01	
EUT:	Fiber to Antenna System/ Booster FTA-DL002	
SN:	PT002	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Project Number:	0048-181017-01	
EUT:	Fiber to Antenna System/ Booster FTA-DL002	
SN:	PT002	
Tested By:	Wei Li	
Temperature:	70°F	
Humidity:	30%	

Section 9. Frequency Stability Measurements

Name of Test:	Frequency stability measurements	Test Standard:	KDB 935210 D05 Part 90.219(e)(4)(i)	
Tested By:	WEI LI	Test Date:	10/17/2018-01/18/2019	

Minimum per KDB 935210 D05 Indus Booster Basic Meas v01r02, Section 4.8 **Standard:**

Method of Refer to FCC Part 90.213 limit

Measurement: Frequency Stability vs Temperature Variation and

Power Supply Voltage Variation.

Test Result: Complies

Test Data:

A. Frequency Stability vs . Voltage

Nominal voltage =120Vac (provided to Power Box for +48Vdc output), 85% &115% of S.T.V., T=25C, Choose Nominal Middle channel frequency =412MHz

	Voltage	Freq-Hz	Error-ppm	Limit(ppm)
85% Nominal	102	411999964	0	1
Normal	120	411999965	0	1
115% Nominal	138	411999965	0	1

B. Frequency Stability vs. Temperature

Nominal voltage =120Vac (output+48Vdc), Nominal Middle channel frequency =412MHz

Temperature ©	Measured	Frequency Error	Error in ppm	Limit
	Frequency (Hz)	(Hz)		
-30	411999970	5	0.01	1
-10	411999965	0	0	1
0	411999964	1	0	1
10	411999964	1	0	1
20	411999965	0	0	1
30	411999965	0	0	1
40	411999964	-1	0	1
50	411999962	-3	0	1

Section 10. Field Strength of Spurious

Name of Test:	Field Strength of Spurious	Test Standard:	KDB 935210 D05 2.1053
Tested By:	DAVID TU	Test Date:	10/17/2018-01/18/2019

Minimum per KDB 935210 D05 Indus Booster Basic Meas v01r02, Section 4.9 **Standard:**

Method of Refer to Part 2.1053 & KDB 971168

Measurement:

Limit

-13 dBm = 82.2 dBuV/m at 3 m

EUT: Fiber to Antenna System/ Booster	FCC ID: 2ARIM-FTA-DL002
Model: FTA-DL002	Report Number: 0048-181017-01

Test Result: Complies

See Attached Table(s) **Test Data:**

^{*} The pre-scan investigation shows that different digital modulation mode has no evident effect on spurious measurements. CW is chosen for final data collection.

Operation Mode: SG Frequency at Band I: 160.1MHz (Rated Power)

Frequency	Polarity	Height	Amplitude	-13dBm	Difference
	•	C	Reading*	Limit	from limit
(MHz)	[H, V]	(m)	(dBµV)	@3m	(dB)
	. , ,	,	(02 pt +)	(dBµV/m)	,
137.8	Н	1.6	36.3	82.2	-45.9
145.7	Н	1.6	36.9	82.2	-45.3
160.0	Н	1.6	39.5	82.2	-42.7
177.9	Н	1.4	35.0	82.2	-47.2
186.2	Н	1.1	32.1	82.2	-50.1
304	Н	1.0	32.6	82.2	-49.6
610	Н	1.0	37.5	82.2	-44.7
880	Н	1.0	42.0	82.2	-40.2
141.2	V	1.3	37.7	82.2	-44.5
159.7	V	1.2	40.4	82.2	-41.8
175.4	V	1.1	38.1	82.2	-44.1
190.2	V	1.2	39.2	82.2	-43.0
220.3	V	1.2	33.0	82.2	-49.2
286	V	1.1	31.9	82.2	-50.3
310	V	1.1	32.3	82.2	-49.9
490	V	1.1	35.9	82.2	-46.3
716	V	1.1	39.8	82.2	-42.4
840	V	1.1	40.1	82.2	-42.1

^{*}Peak reading. For emissions that have peak values close to (or over) the specification limit (if any) will be also measured in the quasi-peak or average mode to determine the compliance.

^{**} Quasi-peak or Average Reading at this frequency.

Operation Mode: SG Frequency at Band II: 412.0MHz (Rated Power)

Frequency	Polarity	Height	Amplitude	-13dBm	Difference
		8	Reading*	Limit	from limit
(MHz)	[H, V]	(m)	(dBµV)	@3m	(dB)
(IVIIIE)	[11, 1]	(111)	(αΒμν)	$(dB\mu V/m)$	(ub)
43.6	Н	1.6	33.7	82.2	-48.5
47.0	Н	1.6	35.8	82.2	-46.4
50.4	Н	1.6	36.3	82.2	-45.9
53.8	Н	1.6	34.2	82.2	-48.0
100.1	Н	1.8	36.2	82.2	-46.0
115.9	Н	1.8	32.1	82.2	-50.1
284	Н	1.2	32.8	82.2	-49.4
334	Н	1.0	34.5	82.2	-47.7
412	Н	1.0	35.3	82.2	-46.9
500	Н	1.0	35.9	82.2	-46.3
534	Н	1.0	36.6	82.2	-45.6
904	Н	1.0	41.8	82.2	-40.4
43.2	V	1.2	41.0	82.2	-41.2
53.8	V	1.2	39.5	82.2	-42.7
92.9	V	1.1	34.9	82.2	-47.3
140.1	V	1.1	39.0	82.2	-43.2
146.0	V	1.1	36.2	82.2	-46.0
186.4	V	1.1	35.5	82.2	-46.7
300	V	1.1	33.9	82.2	-48.3
334	V	1.1	33.5	82.2	-48.7
412	V	1.1	35.8	82.2	-46.4
730	V	1.1	40.9	82.2	-41.3
870	V	1.1	41.5	82.2	-40.7

^{*}Peak reading. For emissions that have peak values close to (or over) the specification limit (if any) will be also measured in the quasi-peak or average mode to determine the compliance.

^{**} Quasi-peak or Average Reading at this frequency.

Operation Mode: SG Frequency at Band III: 760MHz (Rated Power)

Frequency	Polarity	Height	Amplitude	-13dBm	Difference
			Reading*	Limit	from limit
(MHz)	[H, V]	(m)	(dBµV)	@3m	(dB)
	, ,	, ,	(==, ,	(dBµV/m)	, ,
43.0	Н	1.6	33.7	82.2	-48.5
47.3	Н	1.6	35.8	82.2	-46.4
50.4	Н	1.6	36.3	82.2	-45.9
53.8	Н	1.6	34.2	82.2	-48.0
100.1	Н	1.8	36.2	82.2	-46.0
115.9	Н	1.8	32.1	82.2	-50.1
280	Н	1.1	32.8	82.2	-49.4
336	Н	1.0	34.3	82.2	-47.9
416	Н	1.0	35.0	82.2	-47.2
500	Н	1.0	36.5	82.2	-45.7
530	Н	1.0	36.1	82.2	-46.1
760	V	1.0	41.4	82.2	-40.8
43.2	V	1.2	40.9	82.2	-41.3
53.8	V	1.2	39.8	82.2	-42.4
92.9	V	1.1	35.9	82.2	-46.3
140.1	V	1.1	37.8	82.2	-44.4
146.0	V	1.1	36.5	82.2	-45.7
186.4	V	1.1	34.8	82.2	-47.4
43.2	V	1.2	41.0	82.2	-41.2
300	V	1.1	33.9	82.2	-48.3
334	V	1.1	33.5	82.2	-48.7
412	V	1.1	35.8	82.2	-46.4
760	V	1.1	43.9	82.2	-38.3
870	V	1.1	41.5	82.2	-40.7

^{*}Peak reading. For emissions that have peak values close to (or over) the specification limit (if any) will be also measured in the quasi-peak or average mode to determine the compliance.

^{**} Quasi-peak or Average Reading at this frequency.

Section 11. Maximum Permissible Exposure

FCC ID: 2ARIM-FTA-DL002

MPE estimate is given per 2.1091 of FCC Rules:

```
E = \sqrt{(30 * P * G)/d}
and
              ^2/3770
where
        E = Field Strength in Volts/meter
        P = Power in Watts
        G = Numeric antenna sain
        d = Distance in meters
        S = Power Density in milliwatts/square centimeter
Combining equations and rearranging the terms to express the distance as a function of the remaining
        d. = √ ((30 * P * G) /(3770 * S))
Changing to units of Power to mW and Distance to cm, using:
        P(mW) = P(W) / 1000 \text{ and}
        d (cm) =100 * d (m)
        d = 100 * \((30 * (P / 1000) * G)_(3770 * S))
        d = 0.282 * \sqrt{(P * G/S)}
        d = distance in cm
        P = Power in mW
        G = Numeric antenna gain
        S = Power Density in mW/cm^2
Substituting the logarithmic form of power and gain using:
        P(mW) = 10 ^ (P(dBm) / 10) and G(mmeric) = 10 ^ (G(dBi) / 10)
saelds.
        d = 0.282 * 10 ^(P + G) / 20) / \sqrt{S}
                                                                  Equation (1)
        S = 0.0796 * 10 ^((P + G)/10)/d^2
                                                                  Equation (2)
where
        d = MPE distance in cm
        P = Power in dBm
        G = Antanna Gain in dBi
        S = Power Density Limit in mW/cm^2
```

Equation (1) and the measured peak power is used to calculate the MPE distance. Equation (2) and the measured peak power is used to calculate the Power density.

Limit:

S=1.0 mW/cm² for public (un-controlled environment)*. S=5.0 mW/cm² for professional (controlled environment)

*1mW/cm² is the reference level for general public exposure according to the OET Bulletin 65, Edition 97-01 Table 1.

Results:

This EUT shall comply with RF exposure requirements stated in FCC KDB865664 section 2. and KDB447498 section 7.

No Antenna is included in this application. As reference, typical max. gain of antenna is G=3dBi. With P=+3dBm (3dB over rated power), using formula (1) or (2),

Minimum MPE distance d= 1.1 cm.

The intended and expected application for this product is for installation in a commercial base station (restricted access).

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Section 12. Test Equipment List

Manufacturer	Model	Serial No.	Description	Last Cal	Cal Due mm/dd/
				mm/dd/	yy
				yy	
Agilent	E4440A	US40420700	3Hz-26.5GHz Spec. Analyzer	6/06/17	6/06/19
R &S	ESPI	100018	9KHz-7GHz EMI Receiver	8/25/17	8/25/19
HP	HP8546A	3448A00290	9kHz to 6.5GHz EMI Receiver	10/16/17	10/16/19
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	10/19/17	10/19/19
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	10/19/17	10/19/19
Electro-Meterics	ALR-25M/30	289	10KHz-30MHz Active Loop Antenna	8/28/17	8/28/19
EMCO	3115	4945	Double Ridge Guide Horn Antenna	10/17/17	10/17/19
ARA	MWH-	1013	18-26GHZ Horn Antena	10/02/17	10/2/2019
	1826/B				
R&S	SMH	8942280/010	Signal Generator	8/25/17	8/25/19
RES-NET	RFA500NFF 30	0108	30dB in-line Power Attenuator	*	
Lorch Microwave	5NF-	AC3	Notch Filter	*	
	800/1000-S				
Lorch Microwave	5NF-	AE10	Notch Filter	*	
	1800/2200-S				
Narda	3022	80986	Directional Coupler	*	
Lorch Microwave	5NF- 800/1000-S	AC3	Notch Filter	*	

All Test Equipment Used are Calibrated Traceable to NIST Standards. Calibration Interval: 2 Year.

^{*} Functional Check and verified before each usage.