

**Amber Helm Development L.C.**

92723 Michigan Hwy-152

Sister Lakes, Michigan 49047 USA

Tel: 888-847-8027

**EMC Test Report**

**PULSE-WR1804TX**

Issued: October 17, 2018

regarding

**USA: CFR Title 47, Part 15.247 (Emissions)**

for



**Puulse**

**Category: DTS Transceiver**

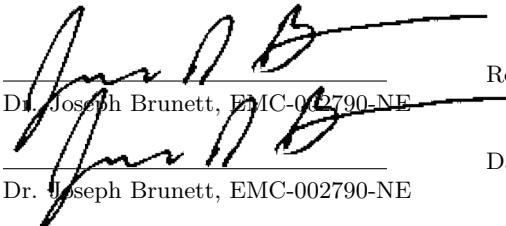
Judgements:

**15.247/RSS-247v2 Transceiver**

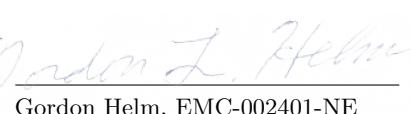
Testing Completed: October 12, 2018



Prepared for:


**Vivomi, Inc.**

9525 Airport Way, Snohomish Washington 98296 USA


Phone: +1 (425) 835-2477, Fax: +1 (425) 835-2478

Contact: Brian Walsh, brian.walsh@vivomi.com

Data Recorded by:

  
Dr. Joseph Brunett, EMC-002790-NE

Reviewed by:

  
Gordon Helm, EMC-002401-NE

Prepared by:

  
Dr. Joseph Brunett, EMC-002790-NE

Date of Issue: October 17, 2018

## Revision History

| Rev. No. | Date             | Details                       | Revised By |
|----------|------------------|-------------------------------|------------|
| r0       | October 17, 2018 | Initial Release.              | J. Brunett |
| r1       | October 25, 2018 | Correct typographical errors. | J. Brunett |

## Contents

|                                                                       |           |
|-----------------------------------------------------------------------|-----------|
| <b>Revision History</b>                                               | <b>2</b>  |
| <b>Table of Contents</b>                                              | <b>2</b>  |
| <b>1 Test Report Scope and Limitations</b>                            | <b>5</b>  |
| 1.1 Laboratory Authorization . . . . .                                | 5         |
| 1.2 Report Retention . . . . .                                        | 5         |
| 1.3 Subcontracted Testing . . . . .                                   | 5         |
| 1.4 Test Data . . . . .                                               | 5         |
| 1.5 Limitation of Results . . . . .                                   | 5         |
| 1.6 Copyright . . . . .                                               | 5         |
| 1.7 Endorsements . . . . .                                            | 5         |
| 1.8 Test Location . . . . .                                           | 6         |
| 1.9 Traceability and Equipment Used . . . . .                         | 6         |
| <b>2 Test Specifications and Procedures</b>                           | <b>7</b>  |
| 2.1 Test Specification and General Procedures . . . . .               | 7         |
| <b>3 Configuration and Identification of the Equipment Under Test</b> | <b>8</b>  |
| 3.1 Description and Declarations . . . . .                            | 8         |
| 3.1.1 EUT Configuration . . . . .                                     | 8         |
| 3.1.2 Modes of Operation . . . . .                                    | 8         |
| 3.1.3 Variants . . . . .                                              | 9         |
| 3.1.4 Test Samples . . . . .                                          | 9         |
| 3.1.5 Functional Exerciser . . . . .                                  | 9         |
| 3.1.6 Modifications Made . . . . .                                    | 9         |
| 3.1.7 Production Intent . . . . .                                     | 9         |
| 3.1.8 Declared Exemptions and Additional Product Notes . . . . .      | 9         |
| <b>4 Emissions</b>                                                    | <b>10</b> |
| 4.1 General Test Procedures . . . . .                                 | 10        |
| 4.1.1 Radiated Test Setup and Procedures . . . . .                    | 10        |
| 4.1.2 Conducted Emissions Test Setup and Procedures . . . . .         | 12        |
| 4.1.3 Power Supply Variation . . . . .                                | 12        |
| 4.2 Intentional Emissions . . . . .                                   | 13        |
| 4.2.1 Duty and Transmission Cycle, Pulsed Operation . . . . .         | 13        |
| 4.2.2 Fundamental Emission Bandwidth . . . . .                        | 14        |
| 4.2.3 Effective Isotropic Radiated Power . . . . .                    | 16        |
| 4.2.4 Power Spectral Density . . . . .                                | 17        |
| 4.3 Unintentional Emissions . . . . .                                 | 18        |
| 4.3.1 Transmit Chain Spurious Emissions . . . . .                     | 18        |
| 4.3.2 Relative Transmit Chain Spurious Emissions . . . . .            | 19        |
| 4.3.3 General Radiated Spurious . . . . .                             | 20        |

**5 Measurement Uncertainty and Accreditation Documents**

**21**

## List of Tables

|    |                                                       |    |
|----|-------------------------------------------------------|----|
| 1  | Test Site List. . . . .                               | 6  |
| 2  | Equipment List. . . . .                               | 6  |
| 3  | EUT Declarations. . . . .                             | 8  |
| 4  | Pulsed Emission Characteristics (Duty Cycle). . . . . | 13 |
| 5  | Intentional Emission Bandwidth. . . . .               | 14 |
| 6  | Effective Isotropic Radiated Power Results. . . . .   | 16 |
| 7  | Power Spectral Density Results. . . . .               | 17 |
| 8  | Transmit Chain Spurious Emissions. . . . .            | 18 |
| 9  | Radiated Digital Spurious Emissions. . . . .          | 20 |
| 10 | Measurement Uncertainty. . . . .                      | 21 |

## List of Figures

|   |                                                       |    |
|---|-------------------------------------------------------|----|
| 1 | Photos of EUT. . . . .                                | 8  |
| 2 | EUT Test Configuration Diagram. . . . .               | 8  |
| 3 | Radiated Emissions Diagram of the EUT. . . . .        | 10 |
| 4 | Radiated Emissions Test Setup Photograph(s). . . . .  | 11 |
| 5 | Pulsed Emission Characteristics (Duty Cycle). . . . . | 13 |
| 6 | Intentional Emission Bandwidth. . . . .               | 15 |
| 7 | Power Spectral Density Plots. . . . .                 | 17 |
| 8 | Conducted Transmitter Emissions Measured. . . . .     | 19 |
| 9 | Accreditation Documents . . . . .                     | 21 |

## 1 Test Report Scope and Limitations

### 1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

### 1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until October 2028.

### 1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

### 1.4 Test Data

This test report contains data included within the laboratories scope of accreditation.

### 1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

### 1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C..

### 1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

## 1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.

| Description    | Location                                            | Quality Num. |
|----------------|-----------------------------------------------------|--------------|
| OATS (3 meter) | 3615 E Grand River Rd., Williamston, Michigan 48895 | OATSC        |

## 1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

| Description          | Manufacturer/Model      | SN        | Quality Num.  | Last Cal By / Date Due |
|----------------------|-------------------------|-----------|---------------|------------------------|
| Spectrum Analyzer    | Rohde & Schwarz / FSV30 | 101660    | RSFSV30001    | RS / Apr-2019          |
| Biconical            | EMCO / 93110B           | 9802-3039 | BICEMCO01     | Keysight / Aug-2019    |
| Log Periodic Antenna | EMCO / 3146             | 9305-3614 | LOGEMCO01     | Keysight / Aug-2019    |
| BNC-BNC Coax         | WRTL / RG58/U           | 001       | CAB001-BLACK  | AHD / Mar-2019         |
| BNC-BNC Coax         | WRTL / RG58/U           | 001       | CAB002-BLACK  | AHD / Mar-2019         |
| 3.5-3.5MM Coax       | PhaseFlex / PhaseFlex   | 001       | CAB015-PURPLE | AHD / Mar-2019         |
| Quad Ridge Horn      | Singer / A6100          | C35200    | HQR2TO18S01   | Keysight / Aug-2019    |
| K-Band Horn          | JEF / NRL Std.          | 001       | HRNK01        | AHD / Jul-2019         |

## 2 Test Specifications and Procedures

### 2.1 Test Specification and General Procedures

The ultimate goal of Vivomi, Inc. is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Vivomi, Inc. Puulse for compliance to:

| Country/Region | Rules or Directive          | Referenced Section(s)     |
|----------------|-----------------------------|---------------------------|
| United States  | Code of Federal Regulations | CFR Title 47, Part 15.247 |

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

|                        |                                                                                                                                        |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| ANSI C63.4:2014        | "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" |
| ANSI C63.10:2013 (USA) | "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"                                       |
| FCC-KDB 558074 v04     | "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247"                         |
| FCC-KDB 913591 2007    | "Measurement of radiated emissions at the edge of the band for a Part 15 RF Device"                                                    |
| TP0102RA               | "AHD Internal Document TP0102 - Radiated Emissions Test Procedure"                                                                     |

### 3 Configuration and Identification of the Equipment Under Test

#### 3.1 Description and Declarations

The EUT is a BLE heart rate monitor (HRM). The EUT is approximately 9 x 4 x 0.7 cm in dimension, and is depicted in Figure 1. It is powered by 3.7 VDC Lithium Ion Battery. This device is a BLE enabled HRM worn on the user's body. Table 3 outlines provider declared EUT specifications.

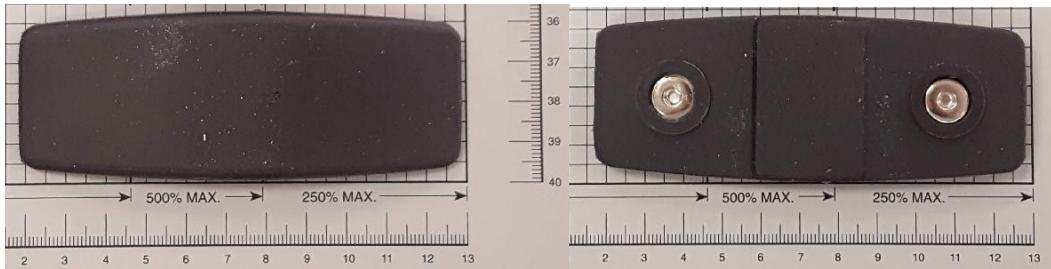



Figure 1: Photos of EUT.

Table 3: EUT Declarations.

| General Declarations |                 |                     |              |
|----------------------|-----------------|---------------------|--------------|
| Equipment Type:      | DTS Transceiver | Country of Origin:  | USA          |
| Nominal Supply:      | 3.7 VDC         | Oper. Temp Range:   | Not Declared |
| Frequency Range:     | 2402 – 2480 MHz | Antenna Dimension:  | Not Declared |
| Antenna Type:        | PCB Trace       | Antenna Gain:       | Not Declared |
| Number of Channels:  | 40              | Channel Spacing:    | 2 MHz        |
| Alignment Range:     | Not Declared    | Type of Modulation: | GFSK         |
| United States        |                 |                     |              |
| FCC ID Number:       | 2ARG3-01        | Classification:     | DTS          |

##### 3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

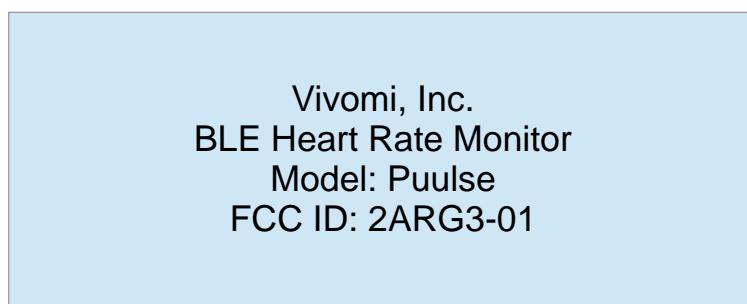



Figure 2: EUT Test Configuration Diagram.

##### 3.1.2 Modes of Operation

The EUT is capable of a single mode of radio operation, as a 1MBps BLE GFSK modulated transceiver only. When the EUT is in charging mode (i.e. when placed on a WPT charging pad) its radio is not active.

### **3.1.3 Variants**

There is only a single variant of the EUT, as tested. The EUT PCB is permanently potted in a non-removable TPE based material on all sides.

### **3.1.4 Test Samples**

Five samples in total were provided. Two potted samples with software modified for repeating CW transmissions at low, middle, and high channels, two unpotted samples with the same software, and a single unpotted sample set to continuous advertising mode for modulated carrier measurements.

### **3.1.5 Functional Exerciser**

Normal operating EUT functionality was verified by observation of transmitted signal.

### **3.1.6 Modifications Made**

There were no modifications made to the EUT by this laboratory.

### **3.1.7 Production Intent**

The EUT appears production ready.

### **3.1.8 Declared Exemptions and Additional Product Notes**

None.

## 4 Emissions

### 4.1 General Test Procedures

#### 4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

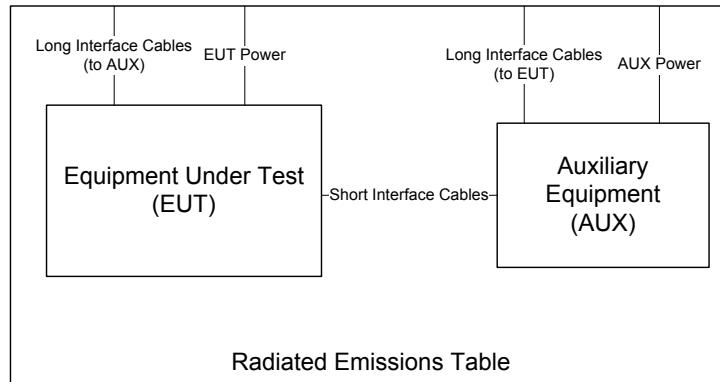



Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulations. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, the broadband probes employed are 10cm diameter single-axis shielded transducers and measurements are repeated and summed over three axes.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4 × 5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to dB $\mu$ V/m at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where  $P_R$  is the power recorded on spectrum analyzer, in dBm,  $K_A$  is the test antenna factor in dB/m,  $K_G$  is the combined pre-amplifier gain and cable loss in dB,  $K_E$  is duty correction factor (when applicable) in dB, and  $C_F$  is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

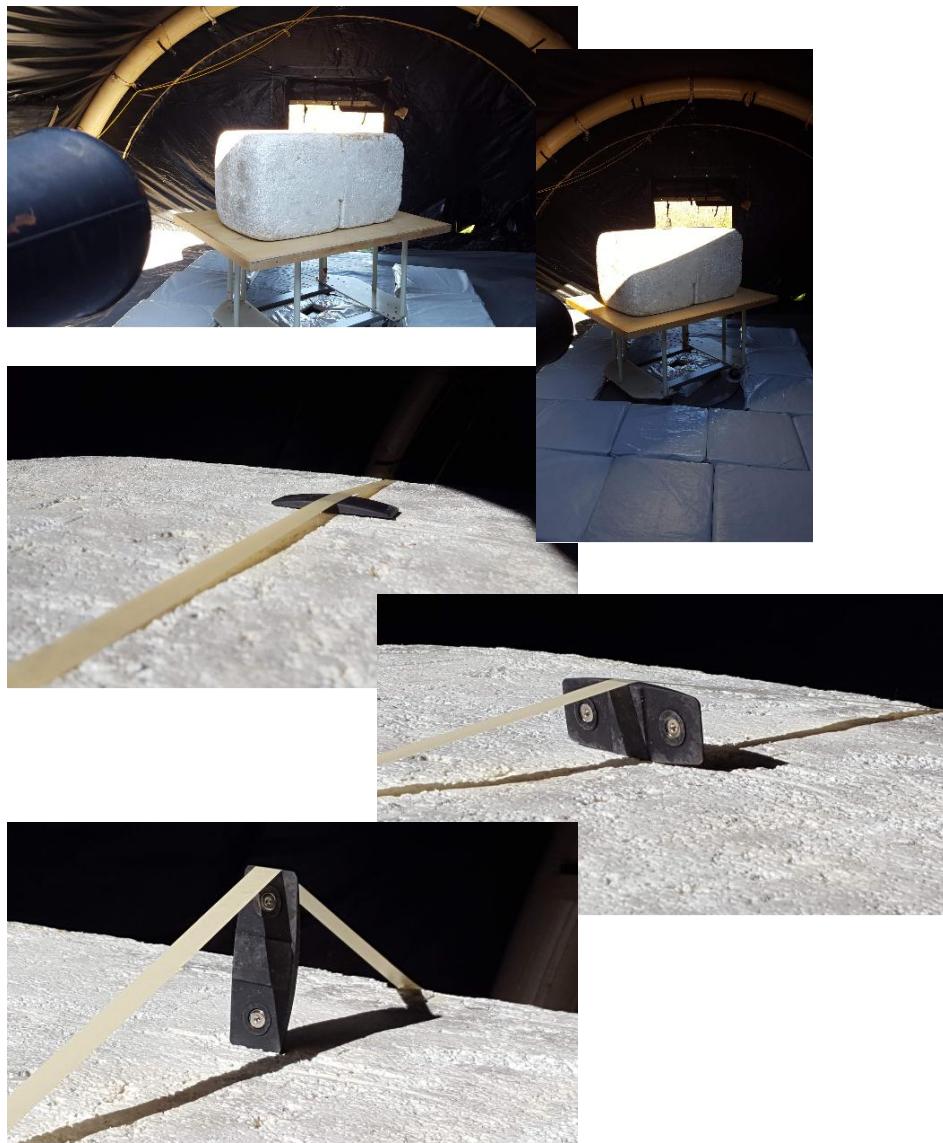



Figure 4: Radiated Emissions Test Setup Photograph(s).

#### 4.1.2 Conducted Emissions Test Setup and Procedures

**Battery Power Conducted Spurious** The EUT is not subject to measurement of power line conducted emissions as it is powered solely by its internal battery.

#### 4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case the EUT is designed for operation from a battery power source, the extreme test voltages are evaluated over the range specified in the test standard; no less than  $\pm 10\%$  of the nominal battery voltage declared by the manufacturer. For all battery operated equipment, worst case intentional and spurious emissions are re-checked employing a new (fully charged) battery.

## 4.2 Intentional Emissions

### 4.2.1 Duty and Transmission Cycle, Pulsed Operation

The details and results of testing the EUT for pulsed operation are summarized in Table 4.

Table 4: Pulsed Emission Characteristics (Duty Cycle).

| Frequency Range<br>$f > 1\,000$ MHz | Det<br>Pk | IFBW<br>3 MHz | VBW<br>10 MHz | Test Date:<br>10-Oct-18          |
|-------------------------------------|-----------|---------------|---------------|----------------------------------|
|                                     |           |               |               | Test Engineer:<br>Joseph Brunett |
|                                     |           |               |               | EUT<br>PUULSE BLE                |
|                                     |           |               |               | Meas. Distance:<br>Conducted     |

| Pulsed Operation / Duty Cycle |                         |                     |                |                     |                        |                  |                   |                               |
|-------------------------------|-------------------------|---------------------|----------------|---------------------|------------------------|------------------|-------------------|-------------------------------|
| Transmit Mode                 | Symbol Rate<br>(Msym/s) | Data Rate<br>(Mbps) | Voltage<br>(V) | Oper. Freq<br>(MHz) | Tx Cycle Time*<br>(ms) | On-Time*<br>(ms) | Duty Cycle<br>(%) | Power Duty Correction<br>(dB) |
| CW                            | -                       | -                   | 3.7            | 2440.0              | -                      | -                | -                 | 0.0                           |

\* Duty cycle is not applied for demonstrating compliance for this device. Only peak data is used to demonstrate compliance.

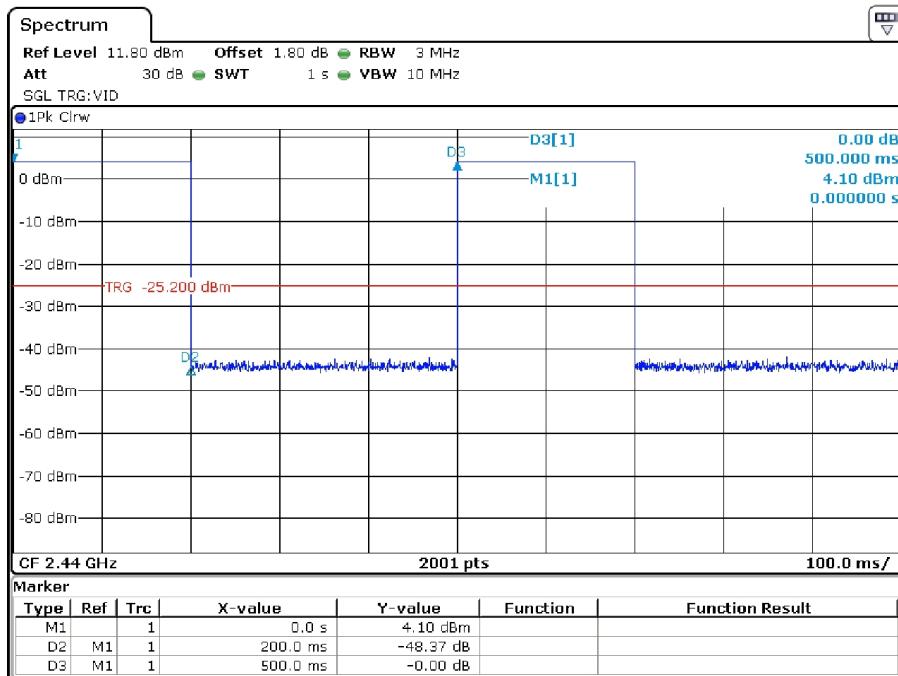



Figure 5: Pulsed Emission Characteristics (Duty Cycle).

#### 4.2.2 Fundamental Emission Bandwidth

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available packet length and minimum packet spacing. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 6 dB bandwidth is measured for the lowest, middle, and highest channels available. The results of this testing are summarized in Table 5. Plots showing measurements employed obtain the emission bandwidths reported are provided in Figure 6.

Table 5: Intentional Emission Bandwidth.

| Frequency Range<br>$f > 1\ 000\ \text{MHz}$ | Det<br>Pk | IFBW<br>30 kHz | VBW<br>1 MHz | Test Date:<br>10/10/18 | Test Engineer:<br>Joseph Burnett | EUT<br>PUULSE BLE | Meas. Distance:<br>30 cm |
|---------------------------------------------|-----------|----------------|--------------|------------------------|----------------------------------|-------------------|--------------------------|
|---------------------------------------------|-----------|----------------|--------------|------------------------|----------------------------------|-------------------|--------------------------|

| Occupied Bandwidth |                         |                     |                |                     |                  |                        |                  |                   |           |
|--------------------|-------------------------|---------------------|----------------|---------------------|------------------|------------------------|------------------|-------------------|-----------|
| Transmit Mode      | Symbol Rate<br>(Msym/s) | Data Rate<br>(Mbps) | Voltage<br>(V) | Oper. Freq<br>(MHz) | 6 dB BW<br>(MHz) | 6 dB BW Limit<br>(MHz) | 99% OBW<br>(MHz) | 20 dB BW<br>(MHz) | Pass/Fail |
| Advertising        | 1.0                     | 1.0                 | 3.7            | 2402.0              | 0.589            | 0.500                  | 1.178            | 1.031             | Pass      |
|                    |                         |                     |                | 2425.0              | 0.587            | 0.500                  | 1.184            | 1.067             | Pass      |
|                    |                         |                     |                | 2480.0              | 0.605            | 0.500                  | 1.145            | 1.061             | Pass      |

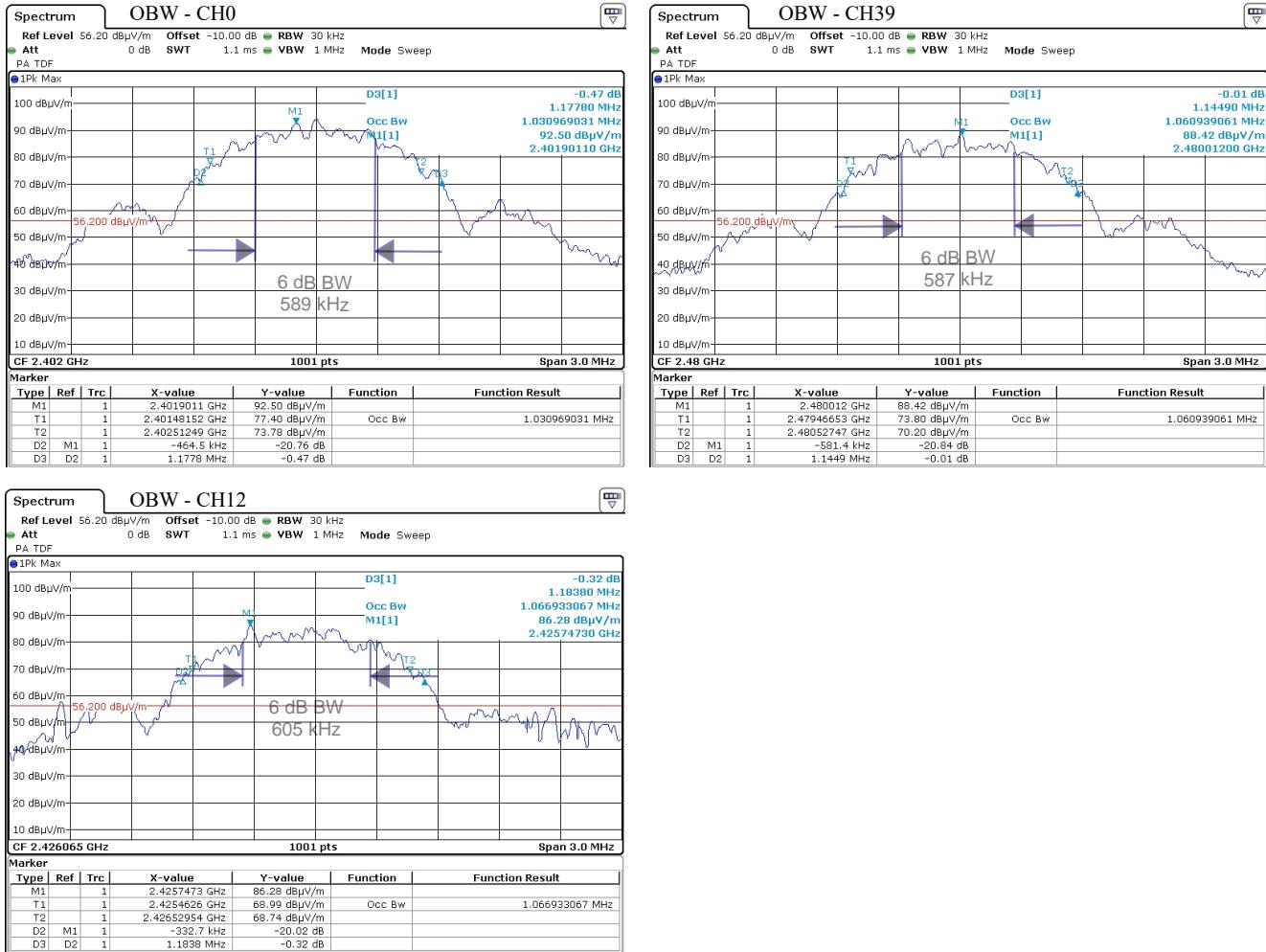



Figure 6: Intentional Emission Bandwidth.

#### 4.2.3 Effective Isotropic Radiated Power

The EUT's radiated power is computed from field strength measurements made at 3 meters from the EUT. The test receiver bandwidth was set to be greater than the measured emission bandwidth of the EUT to capture the true peak. The results of this testing are summarized in Table 6.

Table 6: Effective Isotropic Radiated Power Results.

| Frequency Range<br>f > 1 000 MHz |      |         | Det<br>Pk/Avg | IF Bandwidth<br>3 MHz |              |                    | Video Bandwidth<br>10 MHz |            |          | Test Date:<br>12-Oct-18 | Test Engineer:<br>J. Brunett | EUT:<br>PULSE BLE | Meas. Distance:<br>3m | FCC/IC                  |            |
|----------------------------------|------|---------|---------------|-----------------------|--------------|--------------------|---------------------------|------------|----------|-------------------------|------------------------------|-------------------|-----------------------|-------------------------|------------|
| #                                | Mode | Channel | Freq.<br>MHz  | Ant.<br>Used          | Ant.<br>Pol. | Table Azim.<br>deg | Ant Height<br>m           | Ka<br>dB/m | Kg<br>dB | E3(Pk)<br>dB $\mu$ V/m  | EIRP (Pk)<br>dBm             | Pout* (Pk)<br>dBm | Ant Gain<br>dBi       | EIRP (Avg) Limit<br>dBm | Pass<br>dB |
| 1                                | CW   | L       | 2402.0        | HQR2TO18S01           | H/V          | 90.0               | 1.9                       | 30.5       | -0.3     | 91.5                    | -3.7                         | 3.7               | -7.4                  | 30.0                    | 33.7       |
| 2                                |      | M       | 2440.0        | HQR2TO18S01           | H/V          | 90.0               | 1.9                       | 30.7       | -0.3     | 89.4                    | -5.8                         | 3.6               | -9.4                  | 30.0                    | 35.8       |
| 3                                |      | H       | 2480.0        | HQR2TO18S01           | H/V          | 90.0               | 1.9                       | 30.8       | -0.3     | 88.7                    | -6.5                         | 3.6               | -10.1                 | 30.0                    | 36.5       |
| 4                                |      |         |               |                       |              |                    |                           |            |          |                         |                              |                   |                       |                         |            |
| #                                | Mode | Channel | Freq.<br>MHz  | Supply<br>Voltage     | Ant.<br>Pol. | Table Azim.<br>deg | Ant Height<br>m           | Ka<br>dB/m | Kg<br>dB | E3(Pk)<br>dB $\mu$ V/m  |                              |                   |                       |                         |            |
| 5                                | CW   | L       | 2402.0        | 3.7                   | H/V          | 90.0               | 1.9                       | 30.5       | -0.3     | 91.5                    |                              |                   |                       |                         |            |
| 6                                |      |         | 2402.0        | 3.5                   | H/V          | 90.0               | 1.9                       | 30.5       | -0.3     | 91.5                    |                              |                   |                       |                         |            |
| 7                                |      |         | 2402.0        | 3.3                   | H/V          | 90.0               | 1.9                       | 30.5       | -0.3     | 91.5                    |                              |                   |                       |                         |            |
| 8                                |      |         |               |                       |              |                    |                           |            |          |                         |                              |                   |                       |                         |            |

\* Measured conducted from the radio using conducted test sample.

\*\* Measured radiated at 3 meter distance. Peak power measured with IFBW > OBW per DTS Procedures 9.1.1 RBW > DTS bandwidth

#### 4.2.4 Power Spectral Density

For this test, field strength emissions are made at 3 meters with the EUT oriented for maximum emission. The spectrum is first scanned for maximum spectral peaks, the span and receiver bandwidth are then reduced until the power spectral density in field strength is measured in the prescribed receiver bandwidth. A sweep time of 100 seconds is maintained to ensure peak signals are captured in each frequency bin. The results of this testing are summarized in Table 7. Plots showing how these measurements were made are depicted in Figure 7.

Table 7: Power Spectral Density Results.

|                                       |                       |                              |                                  |                                         |
|---------------------------------------|-----------------------|------------------------------|----------------------------------|-----------------------------------------|
| <b>Frequency Range</b><br>2400-2483.5 | <b>Detector</b><br>Pk | <b>IF Bandwidth</b><br>3 MHz | <b>Video Bandwidth</b><br>10 MHz | <b>Test Date:</b><br>12-Oct-18          |
|                                       |                       |                              |                                  | <b>Test Engineer:</b><br>Joseph Brunett |
| <b>Equipment Used:</b> RSFSV30001     |                       |                              |                                  | <b>EUT:</b><br>PUULSE BLE               |
|                                       |                       |                              |                                  | <b>Meas. Distance:</b><br>Conducted     |

| FCC/IC |         |                 |           |                            |                      |              |
|--------|---------|-----------------|-----------|----------------------------|----------------------|--------------|
| Mode   | Channel | Frequency (MHz) | Ant. Used | PSDcond (meas)* (dBm/3kHz) | PSD Limit (dBm/3kHz) | Pass By (dB) |
| CW     | L       | 2402.0          | Cond.     | 3.7                        | 8.00                 | 4.3          |
|        | M       | 2440.0          | Cond.     | 3.6                        | 8.00                 | 4.4          |
|        | H       | 2480.0          | Cond.     | 3.6                        | 8.00                 | 4.4          |

\* PSD measured conducted out the the EUT antenna port following FCC DTS PKPSD procedure.

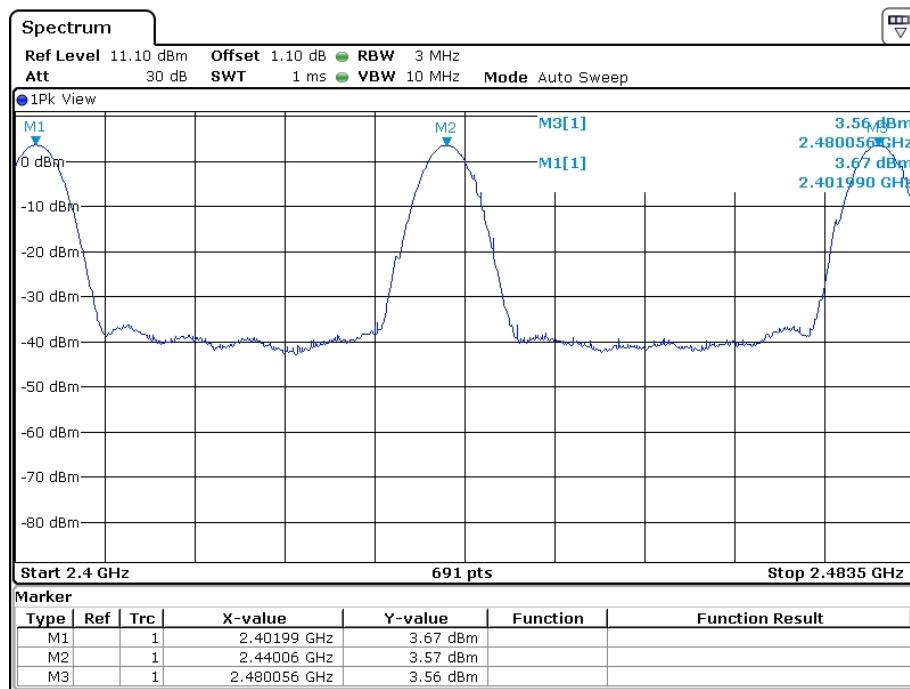



Figure 7: Power Spectral Density Plots.

## 4.3 Unintentional Emissions

### 4.3.1 Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 8. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 8: Transmit Chain Spurious Emissions.

| Frequency Range       | Det    | IF Bandwidth | Video Bandwidth | Test Date:      | 12-Oct-18                       |
|-----------------------|--------|--------------|-----------------|-----------------|---------------------------------|
| 25 MHz $f < 1000$ MHz | Pk/QPk | 120 kHz      | 300 kHz         | Test Engineer:  | J. Brunett                      |
| $f > 1000$ MHz        | Pk/Avg | 1 MHz        | 3 MHz           | EUT:            | PUULSE BLE                      |
|                       |        |              |                 | Mode:           | Modulated (BE+SPUR) / CW (HARM) |
|                       |        |              |                 | Meas. Distance: | 3m                              |

| #                                                     | Freq. Start MHz | Freq. Stop MHz | Ant. Used   | Ant. Pol. | Table Azim. deg | Ant Height m | Ka dB/m | Kg dB | E3(Pk) dB $\mu$ V/m | E3 Pk Lim dB $\mu$ V/m | E3(Avg) dB $\mu$ V/m | E3 Avg Lim dB $\mu$ V/m | Pass dB    | FCC/IC                    |
|-------------------------------------------------------|-----------------|----------------|-------------|-----------|-----------------|--------------|---------|-------|---------------------|------------------------|----------------------|-------------------------|------------|---------------------------|
| <b>1</b> Fundamental Restricted Band Edge (Low Side)  |                 |                |             |           |                 |              |         |       |                     |                        |                      |                         |            |                           |
| 2                                                     | 2390.0          | 2390.0         | HQR2TO18S01 | H/V       | 90              | 1.9          | 30.5    | -0.3  | 48.2                | 74.0                   |                      | 54.0                    | 5.8        | all channels; 1MBps       |
| <b>3</b> Fundamental Restricted Band Edge (High Side) |                 |                |             |           |                 |              |         |       |                     |                        |                      |                         |            |                           |
| 4                                                     | 2483.5          | 2483.5         | HQR2TO18S01 | H/V       | 90              | 1.9          | 30.8    | -0.3  | 49.5                | 74.0                   |                      | 54.0                    | 4.5        | all channels; 1MBps       |
| <b>5</b> Harmonic / Spurious Emissions**              |                 |                |             |           |                 |              |         |       |                     |                        |                      |                         |            |                           |
| 6                                                     | 4804.0          | 4804.0         | HQR2TO18S01 | H/V       | 90              | 2.2          | 32.3    | -0.5  | 41.0                | 74.0                   |                      | 54.0                    | 13.0       | max all, CW               |
| 7                                                     | 4880.0          | 4805.0         | HQR2TO18S01 | H/V       | 100             | 2.2          | 32.3    | -0.5  | 41.2                | 74.0                   |                      | 54.0                    | 12.8       | max all, CW               |
| 8                                                     | 4960.0          | 4806.0         | HQR2TO18S01 | H/V       | 100             | 2.2          | 32.3    | -0.5  | 45.6                | 74.0                   |                      | 54.0                    | 8.4        | max all, CW               |
| 9                                                     | 4000.0          | 6000.0         | HQR2TO18S01 | H/V       | all             | all          | 32.6    | -0.6  | 45.6                | 74.0                   |                      | 54.0                    | 8.4        | all channels; max all, CW |
| 10                                                    | 7206.0          | 7206.0         | HQR2TO18S01 | H/V       | 0               | 1.9          | 33.2    | -0.7  | 51.5                | 74.0                   |                      | 54.0                    | 2.5        | max all, CW, noise        |
| 11                                                    | 7320.0          | 7320.0         | HQR2TO18S01 | H/V       | 0               | 1.9          | 33.3    | -0.7  | 51.6                | 74.0                   |                      | 54.0                    | 2.4        | max all, CW, noise        |
| 12                                                    | 7440.0          | 7440.0         | HQR2TO18S01 | H/V       | 0               | 1.9          | 33.4    | -0.7  | 52.7                | 74.0                   |                      | 54.0                    | <b>1.3</b> | max all, CW, noise        |
| 13                                                    | 6000.0          | 8400.0         | HQR2TO18S01 | H/V       | all             | all          | 34.3    | -0.8  | 52.7                | 74.0                   |                      | 54.0                    | 1.3        | max all, CW, noise        |
| 14                                                    | 8400.0          | 12500.0        | HQR2TO18S01 | H/V       | all             | all          | 35.6    | -1.1  | 41.1                | 74.0                   |                      | 54.0                    | 12.9       | max all, CW, noise        |
| 15                                                    | 12500.0         | 18000.0        | HQR2TO18S01 | H/V       | all             | all          | 34.2    | -1.6  | 43.7                | 74.0                   |                      | 54.0                    | 10.3       | max all, CW, noise        |
| 16                                                    | 18000.0         | 26500.0        | HRNK01      | H/V       | all             | all          | 32.0    | 0.0   | 33.9                | 74.0                   |                      | 54.0                    | 20.1       | max all, CW, noise        |
| 17                                                    |                 |                |             |           |                 |              |         |       |                     |                        |                      |                         |            |                           |
| 18                                                    |                 |                |             |           |                 |              |         |       |                     |                        |                      |                         |            |                           |

EUT measured in each of Flat, Side, End orientations. Worst case emission from all three orientations reported here.

\*\* No other spurious emissions from the EUT were observed within 20 dB of the regulatory limit.

#### 4.3.2 Relative Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions relative to the fundamental in a 100 kHz receiver bandwidth (at the nominal voltage and temperature) are provided in Figure 8 below.

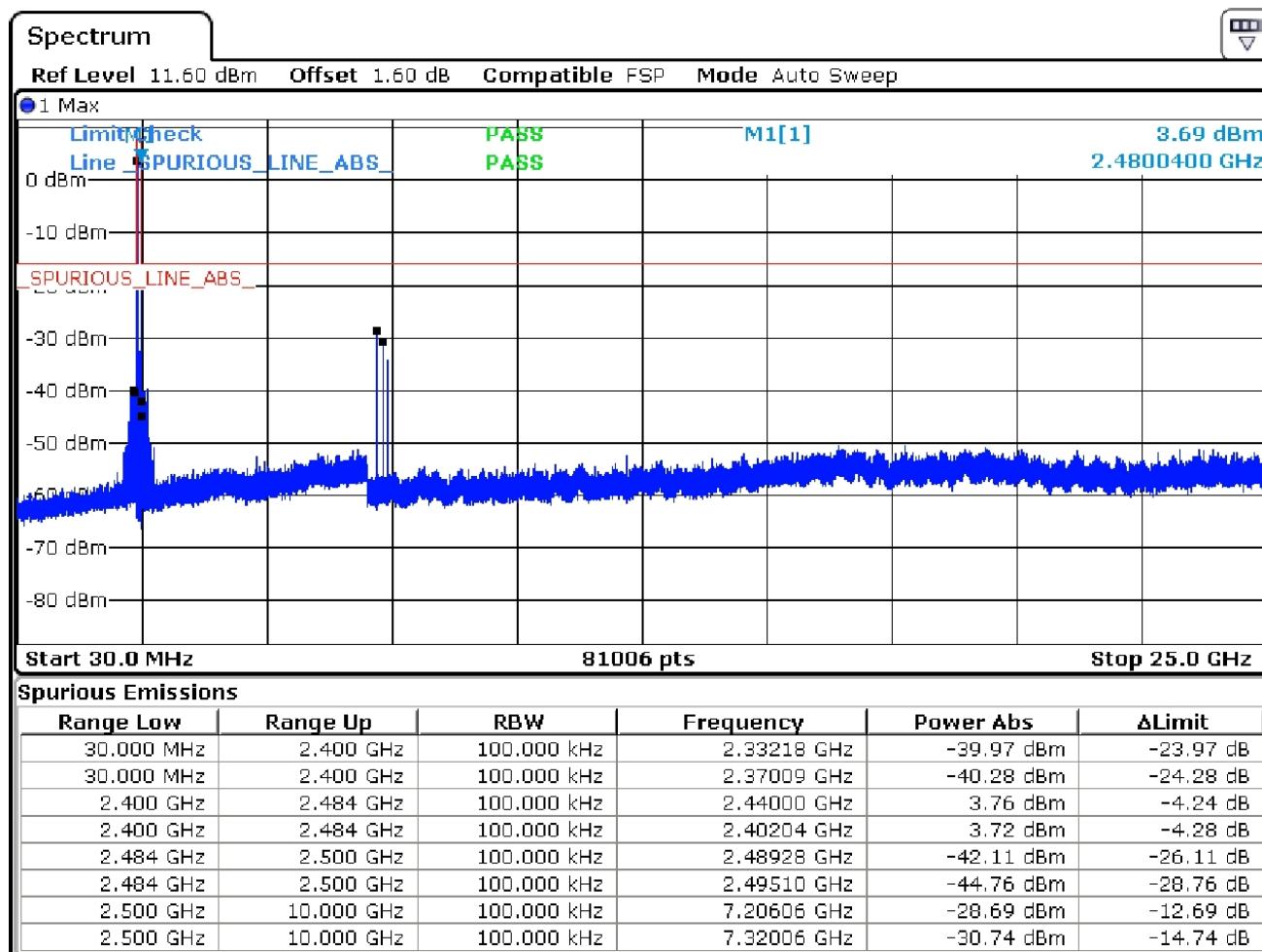



Figure 8: Conducted Transmitter Emissions Measured.

#### 4.3.3 General Radiated Spurious

The results for the measurement of general spurious emissions (emissions arising from digital circuitry) at the nominal voltage and temperature are provided in Table 9. Radiation from digital components are measured up to 1000 MHz or to the highest frequency required by the applied standards, whichever is greater.

Table 9: Radiated Digital Spurious Emissions.

| Frequency Range       | Det    | IF Bandwidth | Video Bandwidth | Test Date:      | 8-Oct-18       |
|-----------------------|--------|--------------|-----------------|-----------------|----------------|
| 25 MHz $f < 1000$ MHz | Pk/QPk | 120 kHz      | 300 kHz         | Test Engineer:  | Joseph Brunett |
| $f > 1000$ MHz        | Pk     | 1 MHz        | 3 MHz           | EUT:            | PUULSE BLE     |
| $f > 1000$ MHz        | Avg    | 1 MHz        | 3 MHz           | EUT Mode:       | Advertising    |
|                       |        |              |                 | Meas. Distance: | 3 meters       |

| Digital Spurious Emissions |                   |           |              |              |              |       |                 |                      |                    |         |                    | FCC/IC + CE(CISPR) |                    |         |
|----------------------------|-------------------|-----------|--------------|--------------|--------------|-------|-----------------|----------------------|--------------------|---------|--------------------|--------------------|--------------------|---------|
| Test Freq. # MHz           | Antenna Type Used | Test Pol. | Pr (Pwr Rx.) |              | E-Field @ 3m |       | FCC/IC Class B  |                      | CE Class B         |         | FCC/IC Class A     |                    | CE Class A         |         |
|                            |                   |           | Pk dBm       | QPk/Avg dBm* | Ka dB        | Kg dB | Pk dB $\mu$ V/m | QPk/Avg dB $\mu$ V/m | E3lim dB $\mu$ V/m | Pass dB | E3lim dB $\mu$ V/m | Pass dB            | E3lim dB $\mu$ V/m | Pass dB |
| 1 84.3                     | BICEMC001         | H         |              |              | 2.8          | -1.7  | 32.4            |                      | 40.0               | 7.6     | 40.5               | 8.1                | 49.5               | 17.1    |
| 2 84.3                     | BICEMC001         | V         |              |              | 2.8          | -1.7  | 33.1            |                      | 40.0               | 6.9     | 40.5               | 7.4                | 49.5               | 16.4    |
| 3 220.0                    | LOGEMC001         | H         |              |              | 11.4         | -3.0  | 33.4            |                      | 46.0               | 12.6    | 40.5               | 7.1                | 56.9               | 23.5    |
| 4 220.0                    | LOGEMC001         | V         |              |              | 11.4         | -3.0  | 29.2            |                      | 46.0               | 16.8    | 40.5               | 11.3               | 56.9               | 27.7    |
| 5 305.9                    | LOGEMC001         | H         |              |              | 13.9         | -3.7  | 28.9            |                      | 46.0               | 17.1    | 47.5               | 18.6               | 56.9               | 28.0    |
| 6 305.9                    | LOGEMC001         | V         |              |              | 13.9         | -3.7  | 30.1            |                      | 46.0               | 15.9    | 47.5               | 17.4               | 56.9               | 26.8    |
| 7 472.7                    | LOGEMC001         | H         |              |              | 17.0         | -4.8  | 27.8            |                      | 46.0               | 18.2    | 47.5               | 19.7               | 56.9               | 29.1    |
| 8 472.7                    | LOGEMC001         | V         |              |              | 17.0         | -4.8  | 29.0            |                      | 46.0               | 17.0    | 47.5               | 18.5               | 56.9               | 27.9    |
| 9 752.7                    | LOGEMC001         | H         |              |              | 21.0         | -6.3  | 28.9            |                      | 46.0               | 17.1    | 47.5               | 18.6               | 56.9               | 28.0    |
| 10 752.7                   | LOGEMC001         | V         |              |              | 21.0         | -6.3  | 32.8            |                      | 46.0               | 13.2    | 47.5               | 14.7               | 56.9               | 24.1    |
| 11 872.2                   | LOGEMC001         | H         |              |              | 22.2         | -6.9  | 30.4            |                      | 46.0               | 15.6    | 47.5               | 17.1               | 56.9               | 26.5    |
| 12 872.2                   | LOGEMC001         | V         |              |              | 22.2         | -6.9  | 31.9            |                      | 46.0               | 14.1    | 47.5               | 15.6               | 56.9               | 25.0    |
| 13                         |                   |           |              |              |              |       |                 |                      |                    |         |                    |                    |                    |         |
| 14                         |                   |           |              |              |              |       |                 |                      |                    |         |                    |                    |                    |         |
| 15                         |                   |           |              |              |              |       |                 |                      |                    |         |                    |                    |                    |         |

\*QPk detection below 1 GHz, Avg detection at or above 1 GHz with receiver bandwidth as specified at top of table.

## 5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of  $k = 2$ .

Table 10: Measurement Uncertainty.

| Measured Parameter                                 | Measurement Uncertainty <sup>†</sup>                                                   |
|----------------------------------------------------|----------------------------------------------------------------------------------------|
| Radio Frequency Conducted Emm. Amplitude           | $\pm(f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$<br>$\pm1.9 \text{ dB}$ |
| Radiated Emm. Amplitude (30 – 200 MHz)             | $\pm4.0 \text{ dB}$                                                                    |
| Radiated Emm. Amplitude (200 – 1000 MHz)           | $\pm5.2 \text{ dB}$                                                                    |
| Radiated Emm. Amplitude ( $f > 1000 \text{ MHz}$ ) | $\pm3.7 \text{ dB}$                                                                    |

<sup>†</sup>Ref: CISPR 16-4-2:2011+A1:2014



FEDERAL COMMUNICATIONS COMMISSION  
Laboratory Division  
7435 Oakland Mills Road  
Columbia, MD 21046

July 06, 2018

National Voluntary Laboratory Accreditation Program  
100 Bureau Drive  
Gaithersburg, MD 20899-2140

Attention: Timothy Rasinski  
Re: Accreditation of AHD (Amber Helm Development, L.C.)  
Designation Number: US3348  
Test Firm Registration #: 639064

Dear Sir or Madam:

We have been notified by National Voluntary Laboratory Accreditation Program that AHD (Amber Helm Development, L.C.) has been accredited as a testing laboratory.

At this time AHD (Amber Helm Development, L.C.) is hereby recognized to perform compliance testing on equipment subject to Declaration Of Conformity (DOC) and Certification of the Commission's Rules.

This recognition will expire upon expiration of the accreditation or notification of withdrawal of recognition. Any questions about this recognition should be submitted as an inquiry to the FCC Knowledge Database at [www.fcc.gov/kdb](http://www.fcc.gov/kdb).

Sincerely,

George Tammill  
Electronics Engineer



Figure 9: Accreditation Documents