

FCC RADIO TEST REPORT

FCC ID: 2AR9Y-BTE64

Product: Bluetooth Earphone

Trade Name: Ibrought

Model Name: E64

Serial Model: Q62, Q8, Q63, E9, E8, E10, Q15, E20, E2, E15, E3, E6,

E68, C1, C2, C3, C6, E62, E63, E83, E88, E89, E80,

E81, E86, D10, D20, M18

Report No.: UNIA2019010413FR-01

Prepared for

Shenzhen Eminence-Top Technology CO.,LTD
309, Yintian industry Zone, Xixiang, Bao'an District, Shenzhen

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant's name Shenzhen Eminence-Top Technology CO.,LTD

Shenzhen

Manufacture's Name...... Shenzhen Eminence-Top Technology CO.,LTD

Address...... 309, Yintian industry Zone, Xixiang, Bao'an District,

Shenzhen

Product description

Product name: Bluetooth Earphone

Trade Mark....: Ibrought

Model and/or type reference .: E64, Q62, Q8, Q63, E9, E8, E10, Q15, E20, E2, E15, E3, E6, E68,

C1, C2, C3, C6, E62, E63, E83, E88, E89, E80, E81, E86, D10,

Report No.: UNIA2019010413FR-01

D20, M18

Standards FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

KDB558074 D01 V05: Guidance for Performing Compliance

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test...... Jan. 03, 2019

Date (s) of performance of tests...... Jan. 03, 2019 -- Jan. 14, 2019

Date of Issue...... Jan. 14, 2019

Test Result.....: Pass

Prepared by:

Reviewer:

Approved & Authorized Signer:

TESTINO LCHNO

ann valle/Editor

Kahn Yo

Sherwin Qian/Supervis

Liuze/Manager

Table of Contents

1		EST SUMMARY	
2	G	ENERAL INFORMATION	5
	2.1	ENVIRONMENTAL CONDITIONS	
	2.2	GENERAL DESCRIPTION OF EUT	5
	2.3	CARRIER FREQUENCY OF CHANNELS	 6
	2.4	OPARATION OF EUT DURING TESTING	 6
	2.5	DESCRIPTION OF TEST SETUP	 6
	2.6	MEASUREMENT INSTRUMENTS LIST	7
3	TE	EST CONDITIONS AND RESULTS	8
	3.1	CONDUCTED EMISSIONS TEST	
	3.2	RADIATED EMISSION TEST	9
	3.3	BAND EDGE	16
	3.4	CONDUCTED OUTPUT POWER	18
	3.5	OCCUPIED BANDWIDTH MEASUREMENT	
	3.6	Frequency Separation	26
	3.7	Number of hopping frequency	 28
	3.8	Time of Occupancy (Dwell Time)	30
	3.9	OUT-OF BAND EMISSIONS	 34
	3.10	Pseudorandom Frequency Hopping Sequence.	 44
	3.11	ANTENNA REQUIREMENT	46
4	PI	HOTOGRAPH OF TEST	47
_		LOTOGRADU OF FUT	10

TEST SUMMARY

1 TEST PROCEDURES AND RESULTS

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	N/A
FCC Part 15.247(a)(1)(i)	20dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.247(b)	Pseudorandom Frequency Hopping Sequence	PASS
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency& Time of Occupancy	PASS
FCC Part 15.247(a)(1)	Frequency Separation	PASS
FCC Part 15.205/15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS
FCC Part 15.247(g)(h)	Pseudorandom Frequency Hopping Sequence	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2 GENERAL INFORMATION

2.1 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature	Normal Temperature:	25°C
Voltage	Normal Voltage DC 3.70V	
	Relative Humidity	55 %
Other	Air Pressure	101 kPa

2.2 GENERAL DESCRIPTION OF EUT

Equipment	Bluetooth Earphone		
Trade Mark	Ibrought		
Model Name	E64		
	Q62, Q8, Q63, E9, E8, E10, Q15, E20, E2, E15, E3, E6,		
Serial No.	E68, C1, C2, C3, C6, E62, E63 ,E83, E88, E89, E80, E81,		
	E86, D10, D20, M18		
	All models have the same functionality, software and		
Model Difference	electronics, only the color, front frame shape and model		
	names may differ. Test sample model: E64		
FCC ID	2AR9Y-BTE64		
Antenna Type	Ceramic Antenna		
Antenna Gain	2.0dBi		
Frequency Range	2402MHz - 2480MHz		
Number of Channels	79		
Modulation Type	GFSK, pi/4DQPSK, 8DPSK		
Battery	55mAh 3.7V		
Power Source	3.7V from battery		
Adapter Model	N/A		

2.3 CARRIER FREQUENCY OF CHANNELS

Channel	Frequency	
Chaine	(MHz)	
00	2402	
01	2403	
i H		
	1	
77	2479	
78	2480	

2.4 OPARATION OF EUT DURING TESTING

Operating Mode

The mode is used: Transmitting mode

Low Channel	2402MHz
Middle Channel	2441MHz
High Channel	2480MHz

2.5 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

Operation of EUT during Radiation and Above1GHz Radiation testing:

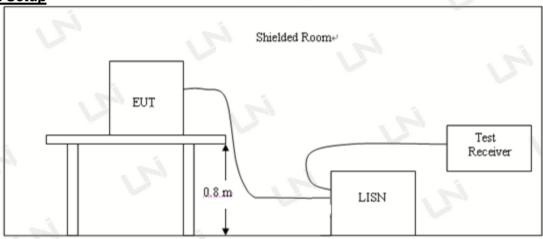
EUT

2.6 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
4		CONDUCTED	EMISSIONS TEST		
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.09.09
2	AMN	ETS	3810/2	00020199	2019.09.09
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.09.09
4	AAN	TESEQ	T8-Cat6	38888	2019.09.09
	, pj	RADIATED I	EMISSION TEST		
1	Horn Antenna	Sunol	DRH-118	A101415	2019.09.29
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.09.29
3	PREAMP	HP	8449B	3008A00160	2019.09.09
4	PREAMP	HP	8447D	2944A07999	2019.09.09
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.09.09
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.09.28
7	Signal Generator	Agilent	E4421B	MY4335105	2019.09.28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.09.28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.09.09
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.09.28
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.09.09
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.09.09
13	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2019.03.14
14	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2019.03.14
15	RF power divider	Anritsu	K241B	992289	2019.09.28
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.09.28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.09.08
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.09.08
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.09.08
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2019.01.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.11.02
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019.03.14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.10.24
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2019.05.10

3 TEST CONDITIONS AND RESULTS

3.1 CONDUCTED EMISSIONS TEST


Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

Frequency range (MHz)	Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreasing linearly with the logarithm of the frequency
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

Test Setup

Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. A wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

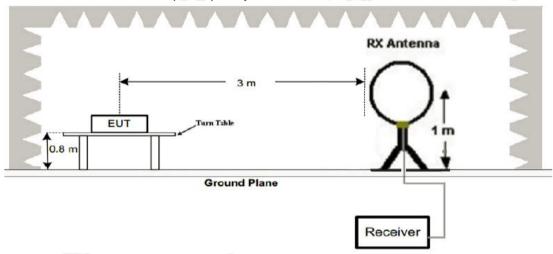
Test Result

Not application to this device

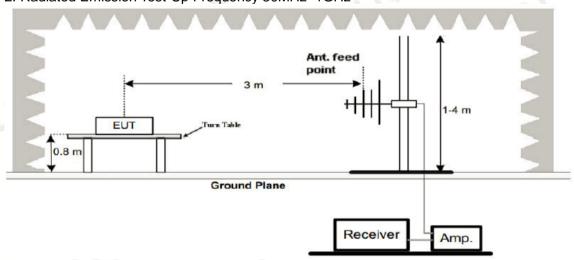
3.2 RADIATED EMISSION TEST

Radiation Limit

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

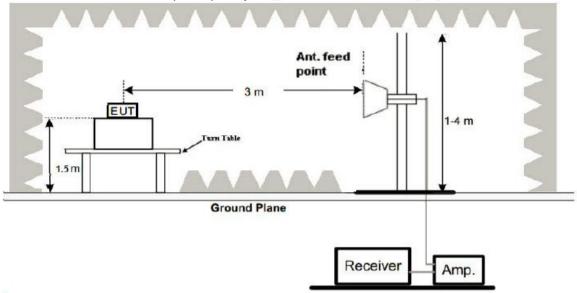

Report No.: UNIA2019010413FR-01

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz



2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9kHz to 25GHz per FCC PART 15.33(a).

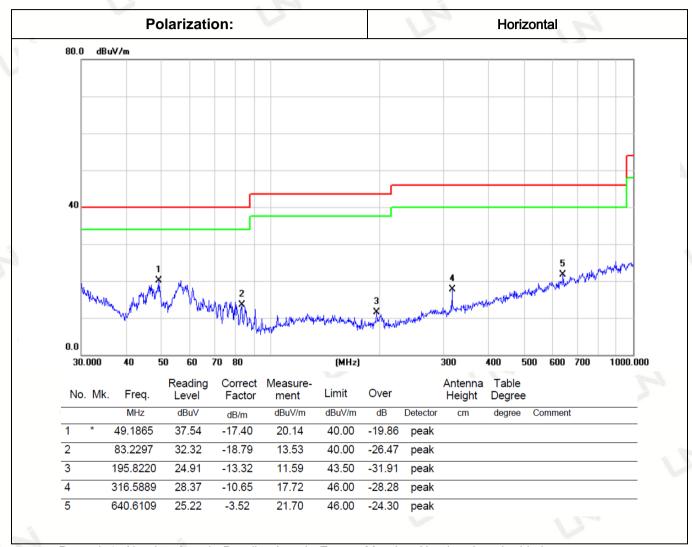
Note:

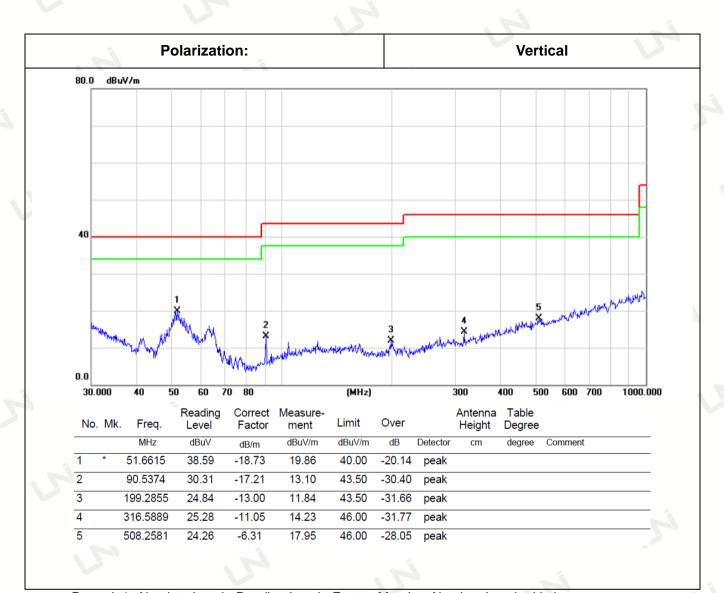
For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Result

---PASS---

Remark


- 1. All the test modes completed for test. The worst case of Radiated Emission is Middle channel, the test data of this mode was reported.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 3. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.


Below 1GHz Test Results:

Temperature:	25 ℃	Relative Humidity:	48%
Test Date:	Jan.11, 2019	Pressure:	1030hPa
Test Voltage:	DC 3.7V from battery	Polarization:	Horizontal / Vertical
Test mode	TX mode		

Remark:1. Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier 2.GFSK, pi/4DQPSK, 8DPSK all have been tested

Remark:1. Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier 2.GFSK, pi/4DQPSK, 8DPSK all have been tested

Remark:

- (1) Measuring frequencies from 9 kHz to the 1 GHz, Radiated emission test from 9kHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Page 13 of 55 Report No.: UNIA2019010413FR-01

Above 1 GHz Test Results:

Note: GFSK, Pi/4 DQPSK, 8DPSK all have been tested, only worse case 8DPSK is reported.

8DPSK: CH Low (2402MHz)

Horizontal:

Frequency (MHz)	Reading Result (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Detector Type
4804.00	58.56	-3.64	54.92	74	19.08	PK
4804.00	44.87	-3.64	41.23	54	12.77	AV
7206.00	55.37	-0.95	54.42	74	19.58	PK
7206.00	43.78	-0.95	42.83	54	11.17	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit						

Vertical:

Frequenc (MHz)	Reading Result (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Detector Type
4804.00	56.82	-3.64	53.18	74	20.82	PK
4804.00	44.29	-3.64	40.65	54	13.35	AV
7206.00	54.95	-0.95	54.00	74	20.00	PK
7206.00	40.45	-0.95	39.50	54	14.50	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Page 14 of 55 Report No.: UNIA2019010413FR-01

Note: GFSK, Pi/4 DQPSK, 8DPSK all have been tested, only worse case 8DPSK is reported.

8DPSK: CH Middle (2441MHz)

Horizontal:

Frequency (MHz)	Reading Result (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Detector Type
4882.00	58.49	-3.51	54.98	74	19.02	PK
4882.00	43.38	-3.51	39.87	54	14.13	AV
7323.00	55.26	-0.82	54.44	74	19.56	PK
7323.00	44.00	-0.82	43.18	54	10.82	AV
Remark: Fact	tor = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin=	Absolute Le	vel – Limit

Vertical:

-							
	Frequency (MHz)	Reading Result (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Detector Type
	4882.00	58.61	-3.51	55.10	74	18.90	PK
Ī	4882.00	44.02	-3.51	40.51	54	13.49	AV
٧	7323.00	54.99	-0.82	54.17	74	19.83	PK
	7323.00	44.30	-0.82	43.48	54	10.52	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Page 15 of 55 Report No.: UNIA2019010413FR-01

Note: GFSK, Pi/4 DQPSK, 8DPSK all have been tested, only worse case 8DPSK is reported.

8DPSK: CH High (2480MHz)

Horizontal:

Frequency (MHz)	Reading Result (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Detector Type
4960.00	57.19	-3.43	53.76	74	20.24	PK
4960.00	44.92	-3.43	41.49	54	12.51	AV
7440.00	55.05	-0.75	54.30	74	19.70	PK
7440.00	41.92	-0.75	41.17	54	12.83	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency (MHz)	Reading Result (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Detector Type
4960.00	58.64	-3.43	55.21	74	18.79	PK
4960.00	45.09	-3.43	41.66	54	12.34	AV
7440.00	54.80	-0.75	54.05	74	19.95	PK
7440.00	40.80	-0.75	40.05	54	13.95	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak

detection at frequency above 1GHz.

- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7) All modes of operation were investigated and the worst-case emissions are reported

Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. RBW 1MHz VBW 3MHz peak detector is for PK value; RBW 1MHz VBW 10Hz peak detector is for AV value.

Test Result

---PASS---

Note: GFSK, Pi/4 DQPSK, 8DPSK all have been tested, only worse case 8DPSK is reported.

Radiated Band Edge Test:

Operation Mode: 8DPSK-- TX CH Low (2402MHz)

Horizontal:

Frequency (MHz)	Reading Result	Factor	Emission Level	Limits (dBµV/m)	Margin (dB)	Detector Type
(IVII IZ)		1	` ' '		` '	4
2357.00	61.20	-5.8	55.40	74	18.60	PK
2357.00	38.97	-5.8	33.17	54	20.83	AV
2390.00	57.66	-5.84	51.82	74	22.18	PK
2390.00	42.08	-5.84	36.24	54	17.76	AV
2400.00	67.78	-5.84	61.94	74	12.06	PK
2400.00	45.28	-5.84	39.44	54	14.56	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2331.00	60.06	-5.8	54.26	74	19.74	PK
2331.00	37.93	-5.8	32.13	54	21.87	AV
2390.00	57.19	-5.84	51.35	74	22.65	PK
2390.00	41.75	-5.84	35.91	54	18.09	AV
2400.00	66.34	-5.84	60.50	74	13.50	PK
2400.00	45.55	-5.84	39.71	54	14.29	AV
	4 1		1	•	106	•

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Operation Mode: 8DPSK-- TX CH High (2480MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	59.80	-5.65	54.15	74	19.85	PK
2483.50	37.45	-5.65	31.80	54	22.20	AV
2500.00	57.50	-5.72	51.78	74	22.22	PK
2500.00	42.04	-5.72	36.32	54	17.68	AV
2543.80	68.76	-5.75	63.01	74	10.99	PK
2543.80	44.27	-5.75	38.52	54	15.48	AV
	3			2		

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	59.59	-5.65	53.94	74	20.06	PK
2483.50	37.98	-5.65	32.33	54	21.67	AV
2500.00	56.70	-5.72	50.98	74	23.02	PK
2500.00	40.34	-5.72	34.62	54	19.38	AV
2543.80	66.62	-5.75	60.87	74	13.13	PK
2543.80	44.41	-5.75	38.66	54	15.34	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

3.4 CONDUCTED OUTPUT POWER

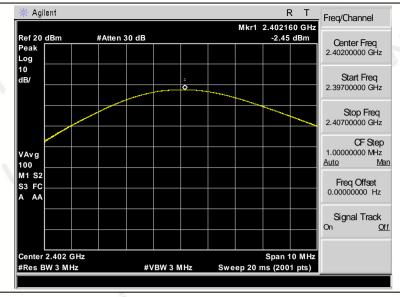
Limit

The Maximum Peak Output Power Measurement is 30dBm.

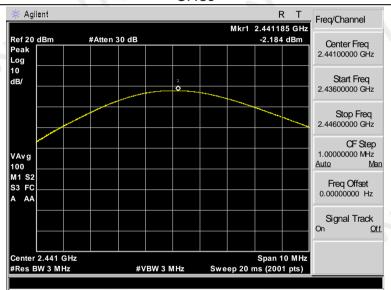
Test Procedure

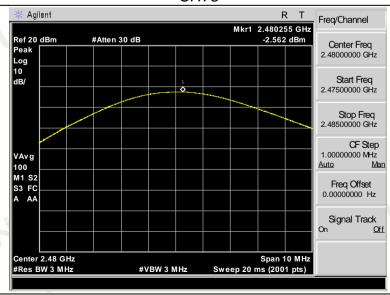
Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

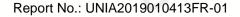
Test Configuration


Test Result

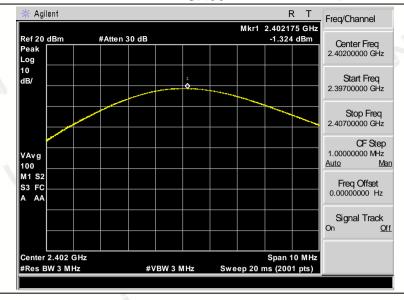
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
, ,	00	-2.450	11	
GFSK	39	-2.184	30	Pass
, Fi	78	-2.562		
	00	-1.324	i Hi	
pi/4DQPSK	39	-1.000	30	Pass
	78	-1.493		
	00	-1.334	The	
8DPSK	39	-0.951	30	Pass
	78	-1.450	1.	

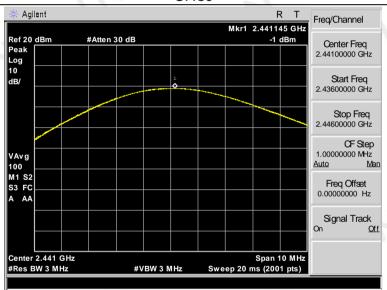

Note: 1.The test results including the cable lose.

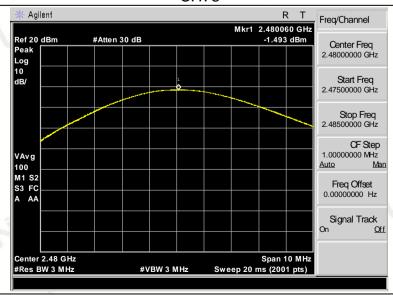

GFSK Modulation


CH00


CH39

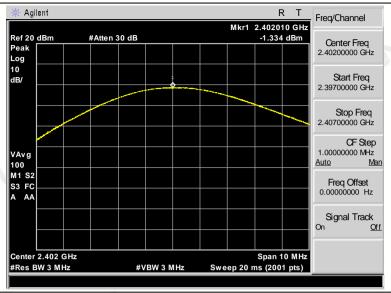


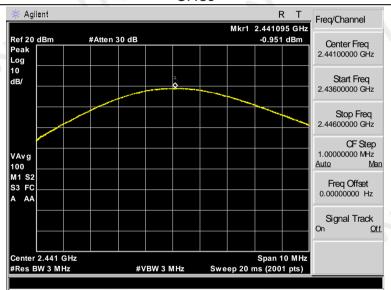


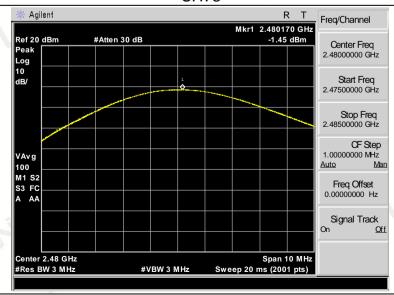


CH00

CH39







CH00

CH39

Page 22 of 55 Report No.: UNIA2019010413FR-01

3.5 OCCUPIED BANDWIDTH MEASUREMENT

Limit

For frequency hopping systems operating in the 2400MHz - 2483.5MHz no limit for 20dB bandwidth.

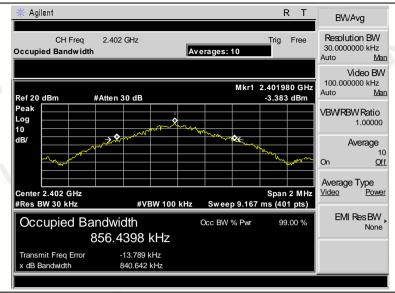
FCC Part15(15.247), Subpart C						
Section	Test Item	Frequency Range (MHz)	Result			
15.247(a)(2)	20dB BW	2400-2483.5	PASS			

Test Procedure

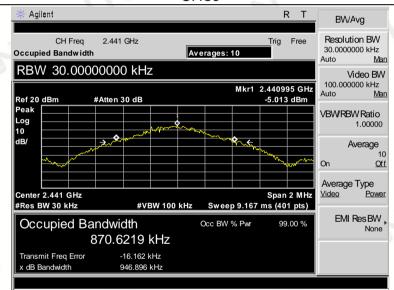
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

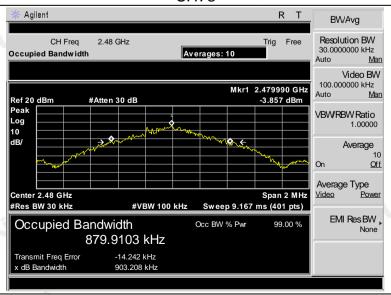
Test Configuration

Test Result


---PASS----

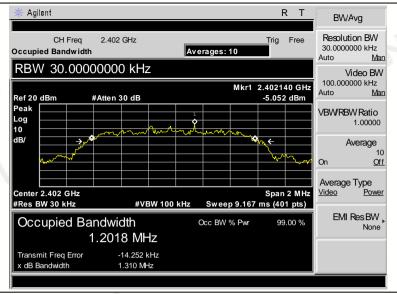
Modulation	Channel	-20dB bandwidth (MHz)	Result
	CH00	0.841	-i
GFSK	CH39	0.947	7.
120	CH78	0.903	
ej .	CH00	1.310	The state of the s
pi/4DQPSK	CH39	1.187	Pass
	CH78	1.303	12
The state of the s	CH00	1.132	
8DPSK	CH39	1.203	12
The state of the s	CH78	1.326	

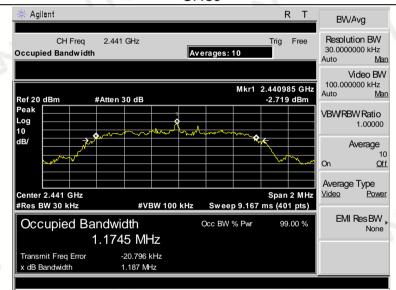


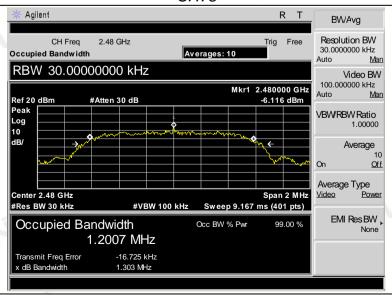

GFSK Modulation

CH00

CH39

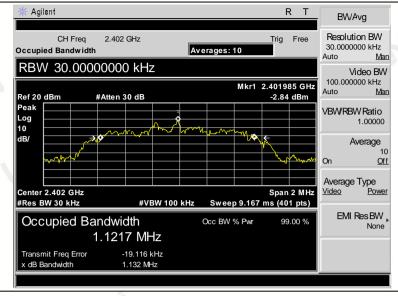


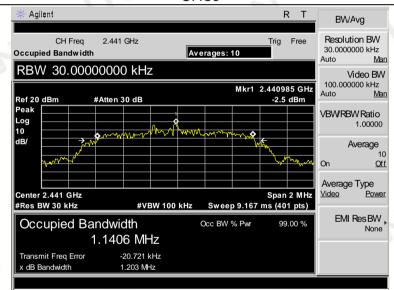


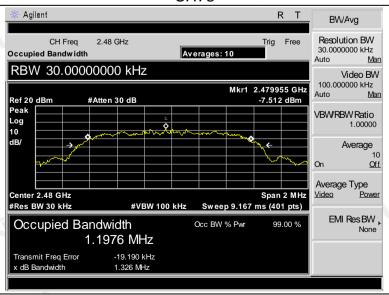

pi/4DQPSK Modulation

CH00

CH39






8DPSK Modulation

CH00

CH39

3.6 Frequency Separation

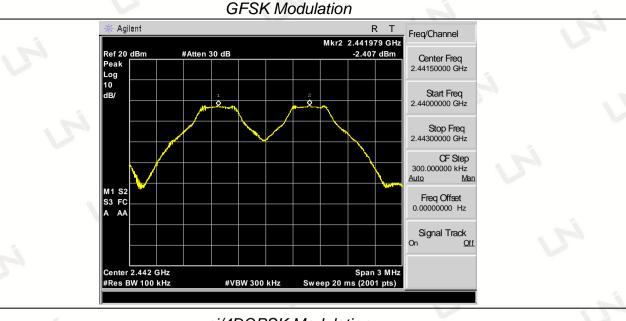
LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

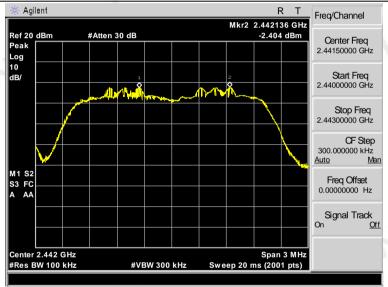
TEST PROCEDURE

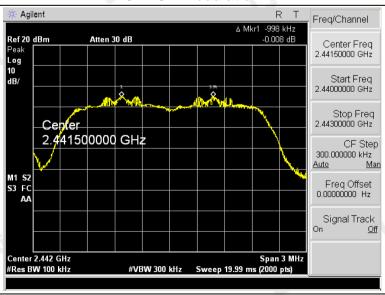
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

Test Configuration


TEST RESULTS

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
OFOK	CH39		25KHz or 2/3*20dB	Dana	
GFSK	CH40	1.000	bandwidth	Pass	
:: '/4DODOK	CH39	0.004	25KHz or 2/3*20dB	Davis	
pi/4DQPSK	CH40	0.991	bandwidth	Pass	
oppou	CH39	0.000	25KHz or 2/3*20dB		
8DPSK	CH40	0.998	bandwidth	Pass	


Note:We have tested all mode at high, middle and low channel, and recorded worst case at middle



pi/4DQPSK Modulation

8DPSK Modulation

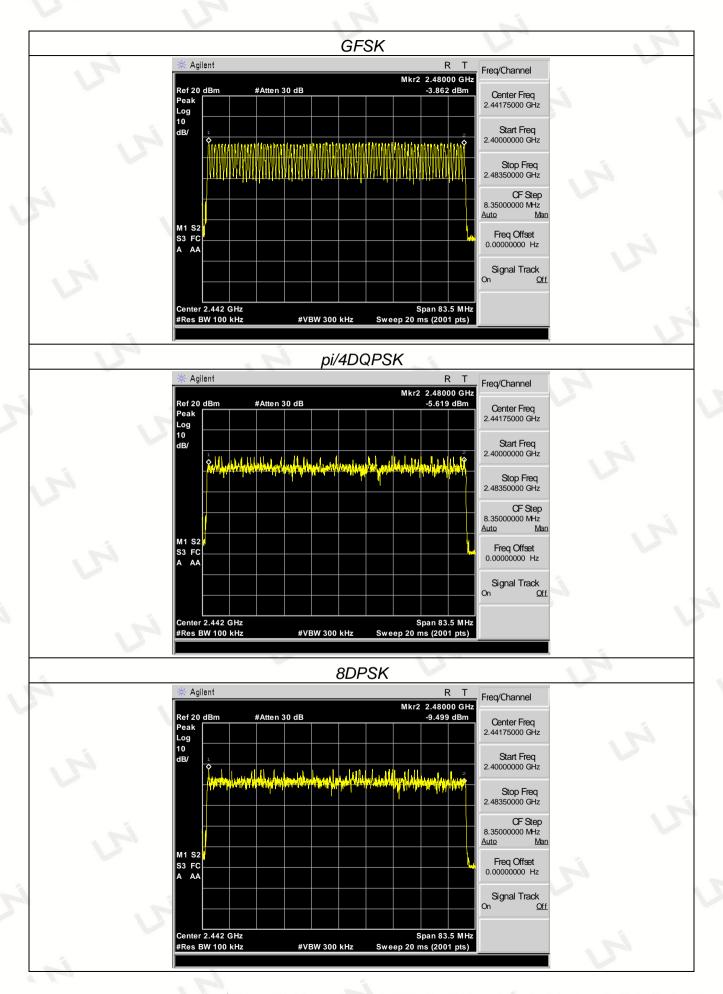
3.7 Number of hopping frequency


Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.


Test Configuration

Test Results

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		7
pi/4DQPSK	79	≥15	Pass
8DPSK	79	T.	151

3.8 Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

Modulation	Packet	Pulse time (ms)	Dwell time (ms)	Limit (second)	Result
GFSK	DH1	0.410	131.200		Pass
	DH3	1.660	265.600	0.4	
	DH5	2.925	312.000	T.	
π/4DQPSK	2-DH1	0.400	128.000		
	2-DH3	1.660	265.600	0.4	Pass
	2-DH5	2.925	312.000	12	
8DPSK	3-DH1	0.420	134.400		
	3-DH3	1.660	265.600	0.4	Pass
	3-DH5	2.900	309.333	1	

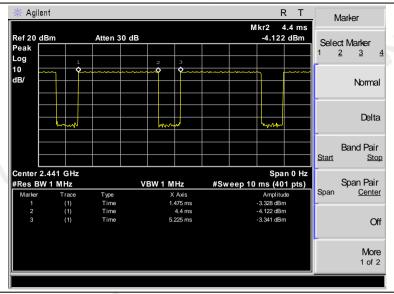
Note:

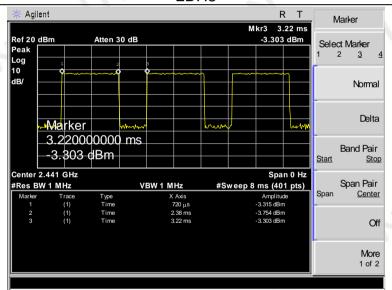
- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- 2. Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

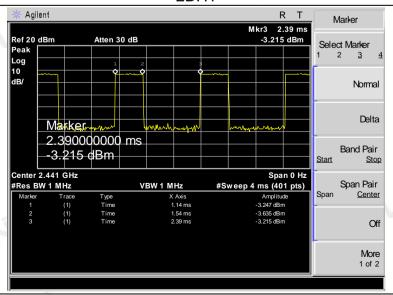
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

Report No.: UNIA2019010413FR-01 **GFSK** DH5 Agilent Marker 3.55 ms -3.433 dBm Select Marker Normal Delta Start Center 2.441 GHz Span Pair VBW 1 MHz #Res BW 1 MHz #Sweep 10 ms (401 pts) Off More 1 of 2 DH3 Agilent Marker r1 1.74 ms -3.314 dBm Mkr1 Atten 30 dB Ref 20 dBm Select Marker 2 3 Normal Delta Band Pair Start Center 2.441 GHz #Res BW 1 MHz Span 0 Hz #Sweep 8 ms (401 pts) Span Pair VBW 1 MHz Off More 1 of 2 DH1 * Agilent Marker r3 1.38 ms -3.404 dBm Atten 30 dB Ref 20 dBm Select Marker Log 10 dB/ Normal Delta Marker 1.380000000 ms Band Pair -3.404 dBm Start Center 2.441 GHz #Res BW 1 MHz Span 0 Hz #Sweep 4 ms (401 pts) VBW 1 MHz Span Pair Center Off


More 1 of 2

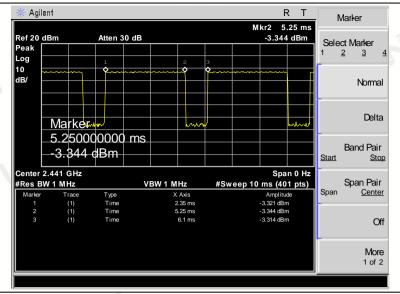

pi/4DQPSK

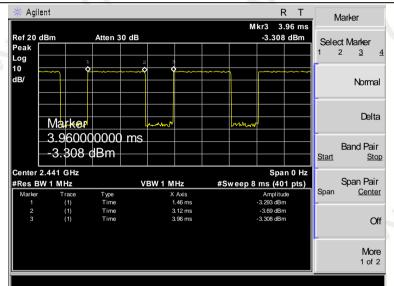
Report No.: UNIA2019010413FR-01


2DH5

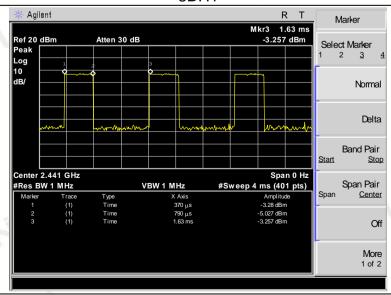
2DH3

2DH1





8DPSK


3DH5

3DH3

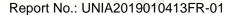
3DH1

3.9 OUT-OF BAND EMISSIONS

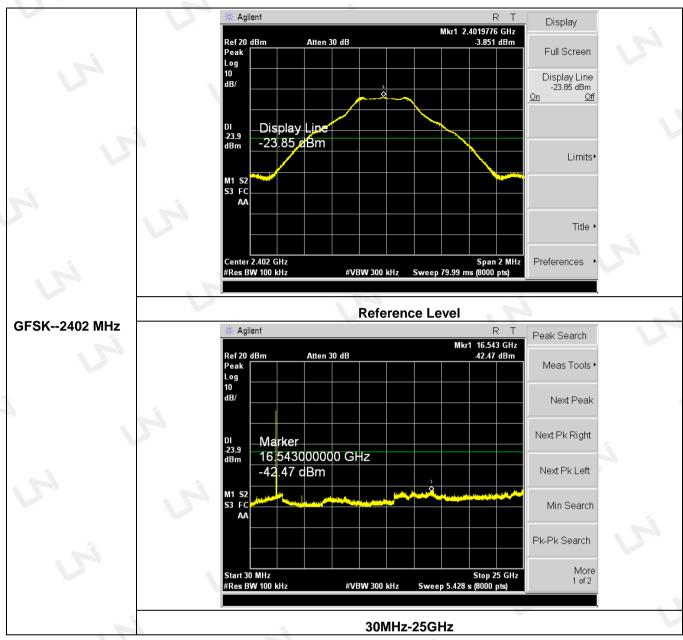
Limit

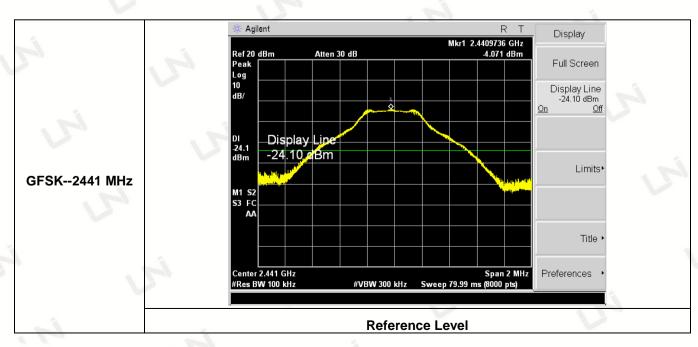
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

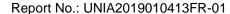

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

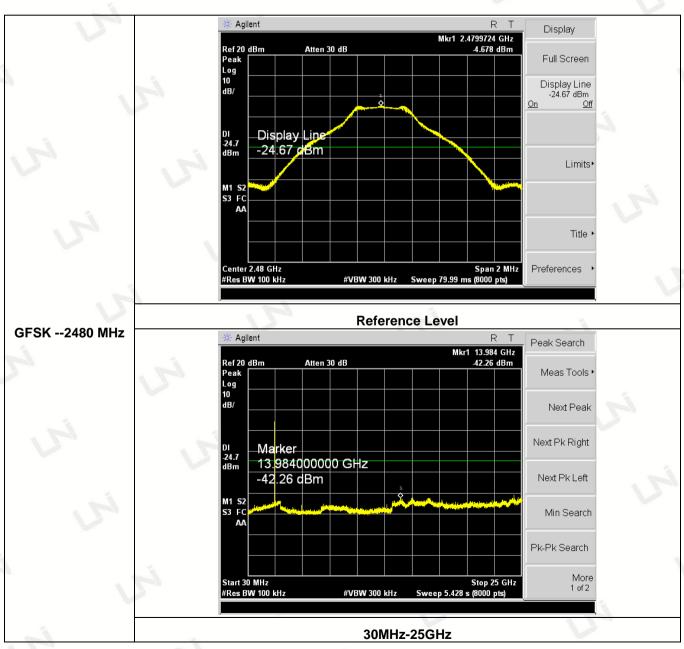
Test Configuration



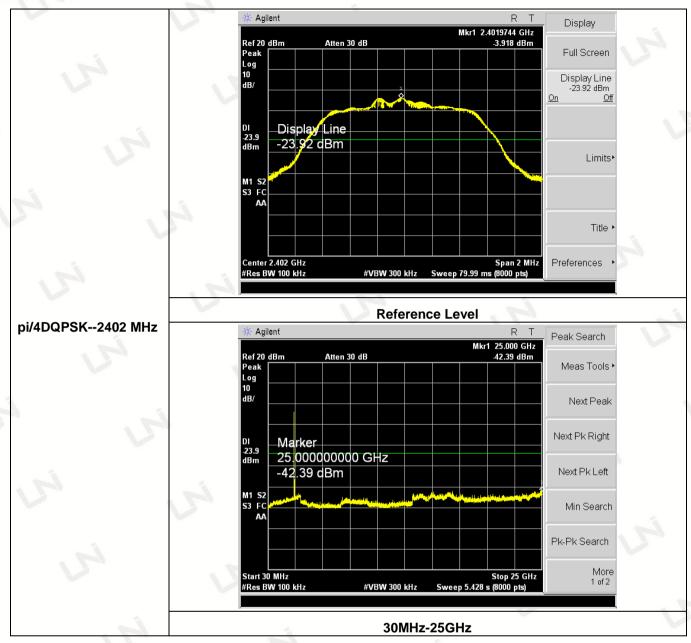

Test Results

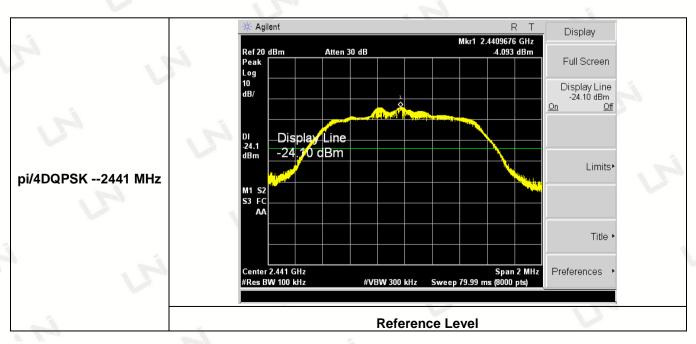
Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

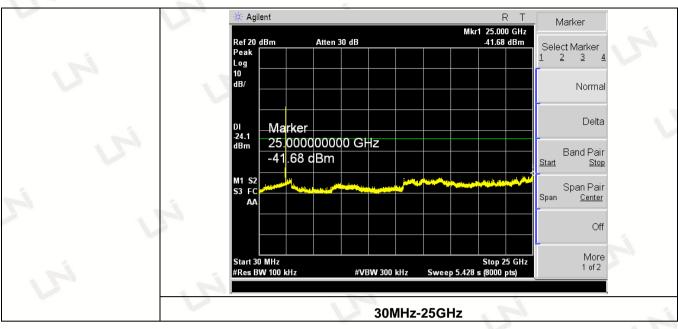


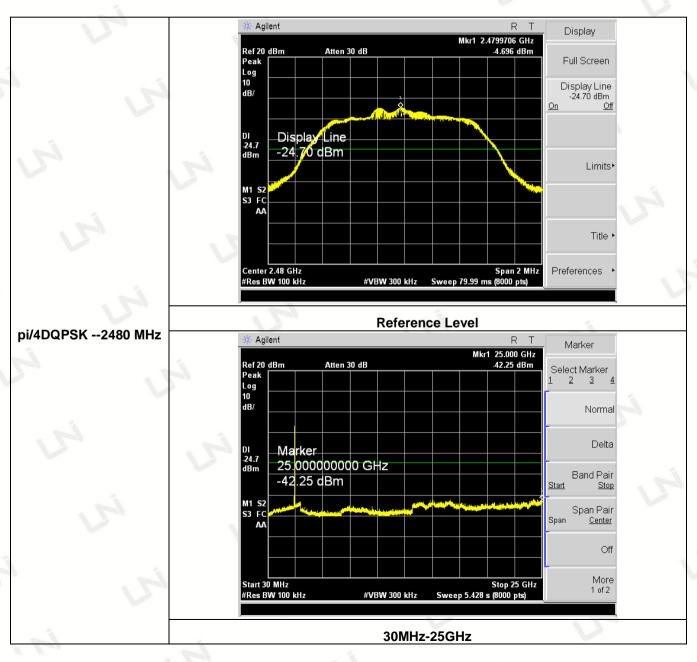


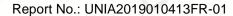
LN

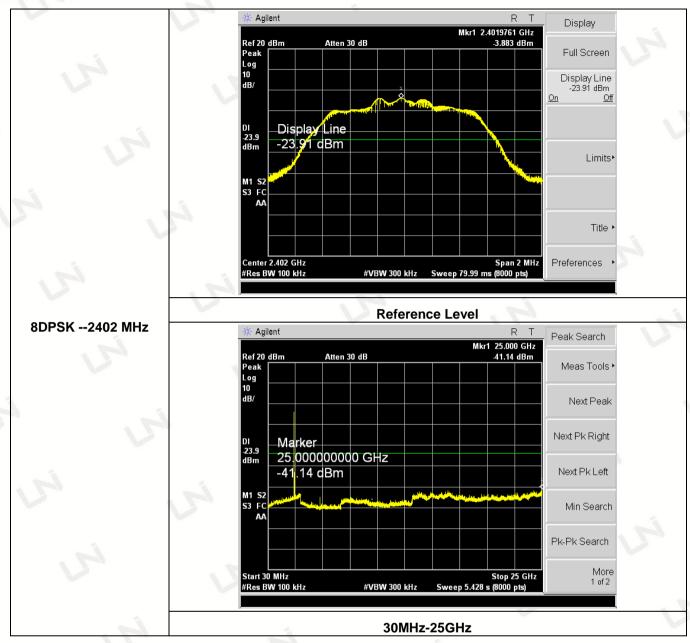


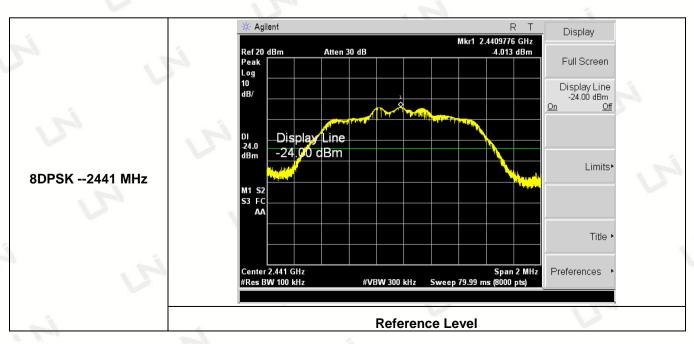


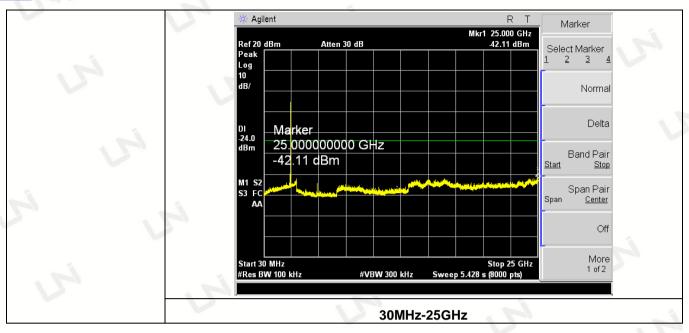


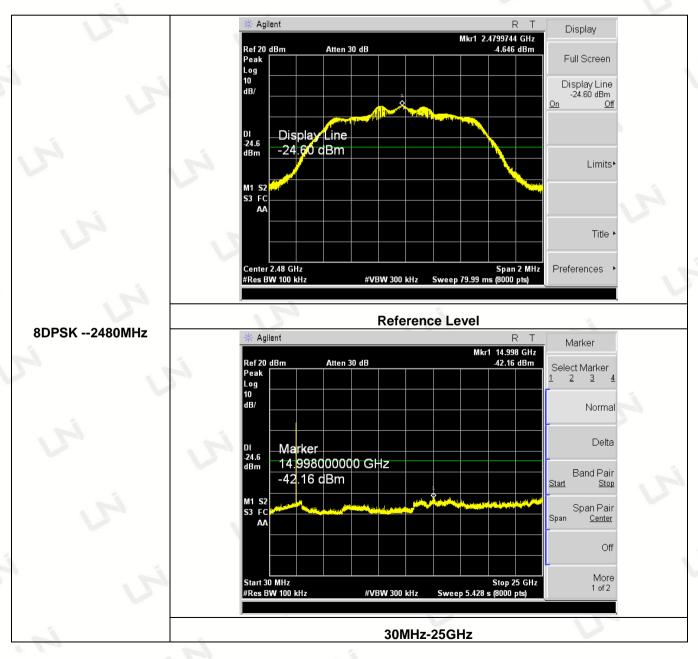


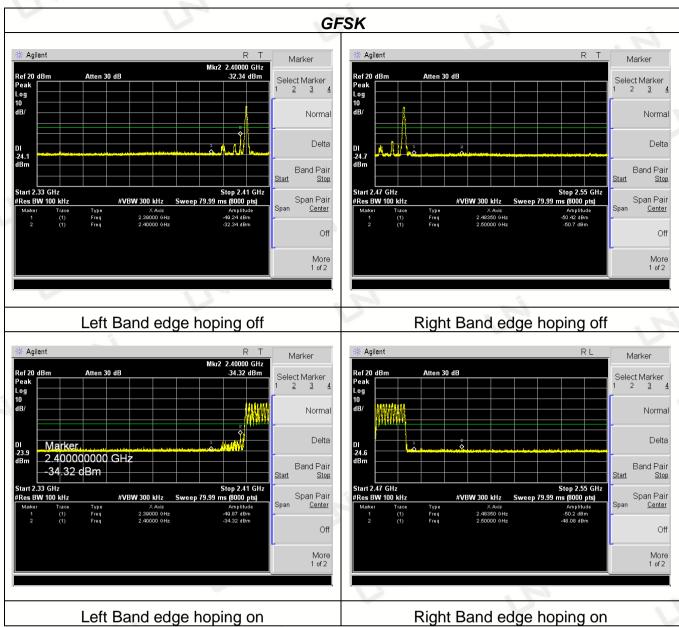


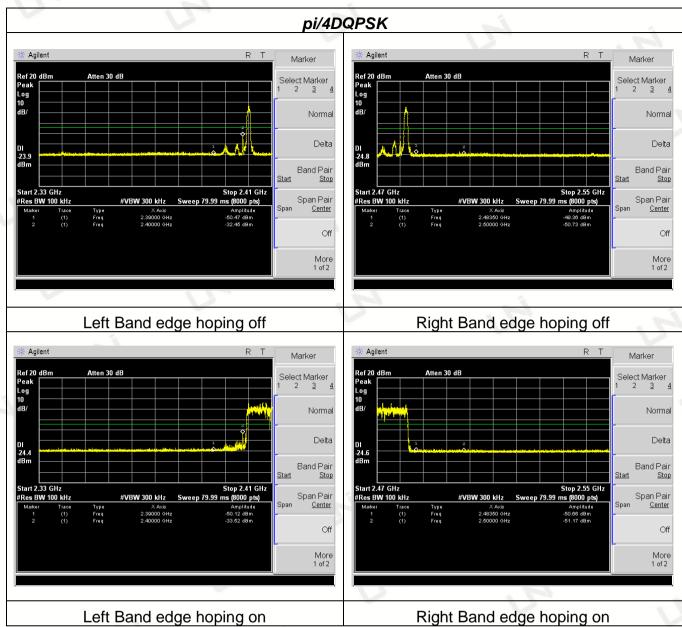

Page 38 of 55 Report No.: UNIA2019010413FR-01

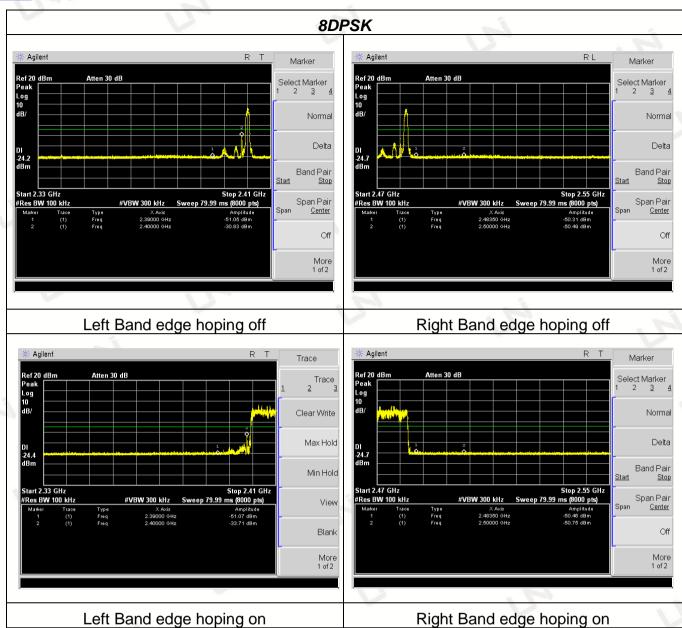






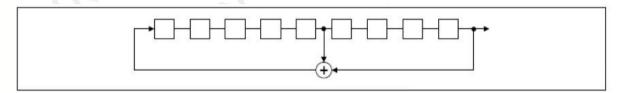

LNi





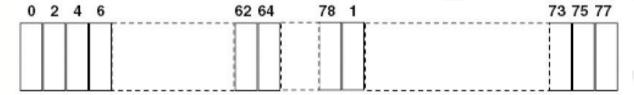
3.10 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (g) (h) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

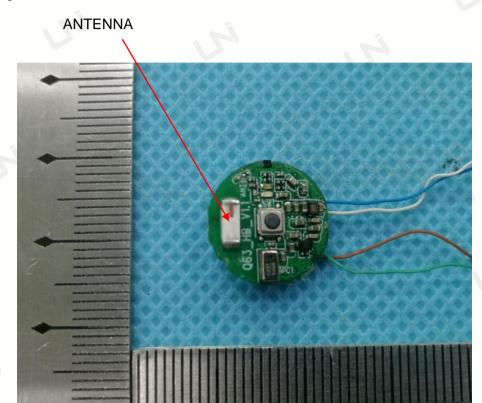
Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.


3.11 ANTENNA REQUIREMENT

Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

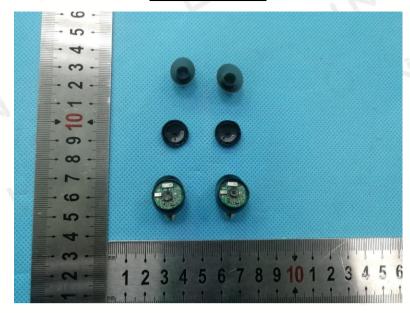
Antenna Connected Construction

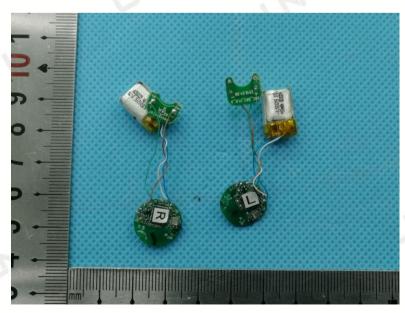
The antenna used in this product is an Integral Antenna, the directional gains of antenna used for transmitting is 2.0dBi.

4 PHOTOGRAPH OF TEST

5 PHOTOGRAPH OF EUT

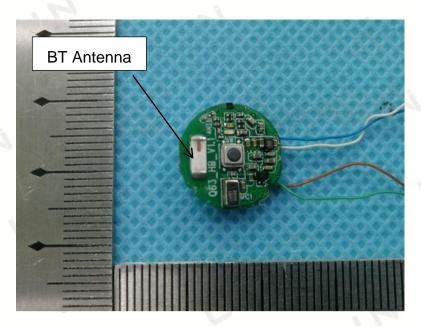
External Photos

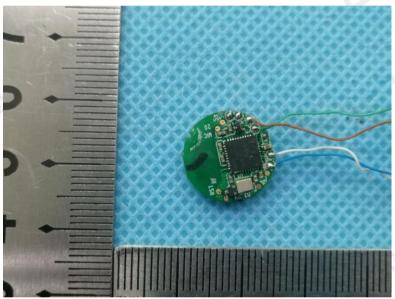


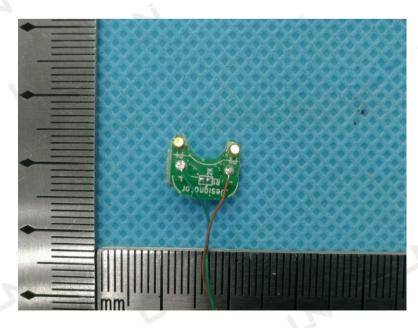

LN

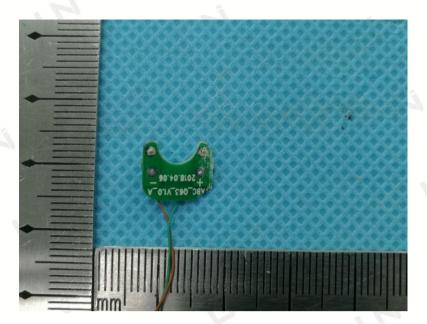
Report No.: UNIA2019010413FR-01

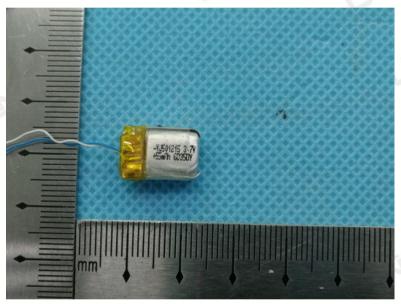
Internal Photos

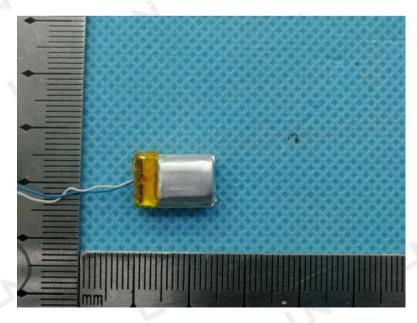


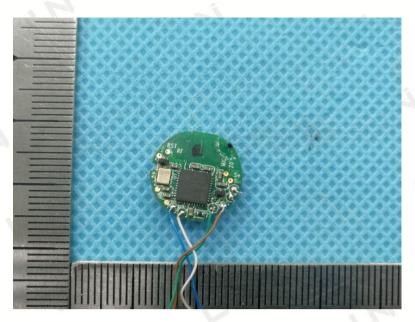


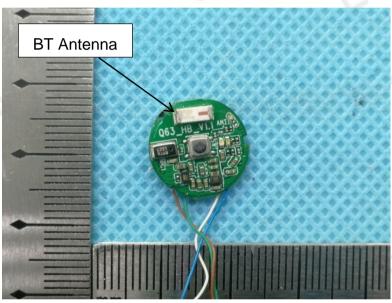


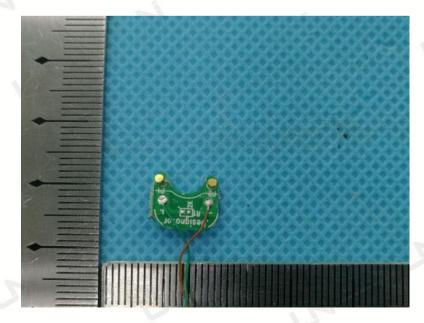


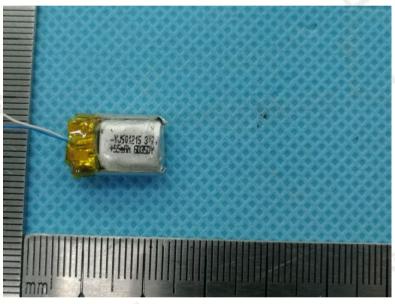


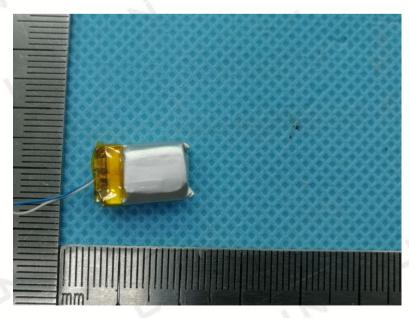












End of Report *******