

TEST REPORT

Test Report No. : UL-RPT-RP12558692-1216A V3.0

Customer : Bio-Medical Research Ltd

Model No. : Type 530

FCC ID : 2AR5N530

Technology : *Bluetooth* – Low Energy

Test Standard(s) : FCC Parts 15.207, 15.209(a) & 15.247

Test Laboratory : UL VS LTD, Basingstoke, Hampshire, RG24 8AH, United Kingdom

1. This test report shall not be reproduced except in full, without the written approval of UL VS LTD.
2. The results in this report apply only to the sample(s) tested.
3. The sample tested is in compliance with the above standard(s).
4. The test results in this report are traceable to the national or international standards.
5. Version 3.0 supersedes all previous versions.

Date of Issue: 22 August 2019

Checked by:

Ian Watch
Senior Test Engineer, Radio Laboratory

Company Signatory:

Ben Mercer
Senior Test Engineer, Radio Laboratory
UL VS LTD

The *Bluetooth*® word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL VS LTD is under licence. Other trademarks and trade names are those of their respective owners.

UL VS LTD

Unit 1-3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, UK

Telephone: +44 (0)1256 312000

Facsimile: +44 (0)1256 312001

Customer Information

Company Name:	Bio-Medical Research Ltd
Address:	Parkmore Business Park West Galway H91 NHT7 Ireland

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	07/05/2019	Initial Version	Ben Mercer
2.0	10/05/2019	Model number, SW & HW version updated	Ben Mercer
3.0	22/08/2019	Inserted AC conducted emissions results	Ian Watch

Table of Contents

Customer Information.....	2
Report Revision History	2
Table of Contents.....	3
1. Attestation of Test Results.....	4
1.1. Description of EUT	4
1.2. General Information	4
1.3. Summary of Test Results	4
1.4. Deviations from the Test Specification	4
2. Summary of Testing.....	5
2.1. Facilities and Accreditation	5
2.2. Methods and Procedures	5
2.3. Calibration and Uncertainty	6
2.4. Test and Measurement Equipment	7
3. Equipment Under Test (EUT)	9
3.1. Identification of Equipment Under Test (EUT)	9
3.2. Modifications Incorporated in the EUT	9
3.3. Additional Information Related to Testing	10
3.4. Description of Available Antennas	10
3.5. Description of Test Setup	11
4. Antenna Port Test Results	15
4.1. Transmitter Minimum 6 dB Bandwidth	15
4.2. Transmitter Duty Cycle	17
4.3. Transmitter Maximum Peak Output Power	18
5. Radiated Test Results.....	21
5.1. Transmitter Radiated Emissions <1 GHz	21
5.2. Transmitter Radiated Emissions >1 GHz	23
5.3. Transmitter Band Edge Radiated Emissions	26
6. AC Power Line Conducted Emissions Test Results.....	29
6.1. Transmitter AC Conducted Spurious Emissions	29

1. Attestation of Test Results

1.1. Description of EUT

The EUT was a Wearable EMS device containing a *Bluetooth* Low Energy module.

1.2. General Information

Specification Reference:	47CFR15.247
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247
Specification Reference:	47CFR15.207 and 47CFR15.209
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Sections 15.207 and 15.209
FCC Test Firm Registration No.:	621311
Test Dates:	28 January 2019 to 25 July 2019

1.3. Summary of Test Results

FCC Reference (47CFR)	Measurement	Result
Part 15.247(a)(2)	Transmitter Minimum 6 dB Bandwidth	✓
Part 15.35(c)	Transmitter Duty Cycle	Note 1
Part 15.247(b)(3)	Transmitter Maximum Peak Output Power	✓
Part 15.247(e)	Transmitter Power Spectral Density	Note 2
Part 15.247(d)/15.209(a)	Transmitter Radiated Emissions	✓
Part 15.247(d)/15.209(a)	Transmitter Band Edge Radiated Emissions	✓
Part 15.207	Transmitter AC Conducted Emissions	✓

Key to Results

✓ = Complied ✗ = Did not comply

Note(s):

1. The measurement was performed to assist in the calculation of the level of emissions. The EUT cannot transmit continuously and sweep triggering/signal gating cannot be implemented.
2. In accordance with ANSI C63.10 Section 11.10.1, PSD measurements are not required if the maximum conducted output power is less than the PSD limit of 8 dBm / 3 kHz. The PSD level is therefore deemed to be equal to the measured output power.

1.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

2. Summary of Testing

2.1. Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	X
Site 2	-
Site 17	-

UL VS LTD is accredited by UKAS. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2. Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Reference:	KDB 558074 D01 15.247 Meas Guidance v05r02 April 02, 2019
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules
Reference:	KDB 174176 D01 Line Conducted FAQ v01r01 June 3, 2015
Title:	AC Power-Line Conducted Emissions Frequently Asked Questions

2.3. Calibration and Uncertainty

Measuring Instrument Calibration

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value measured (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document “approximately” is interpreted as meaning “effectively” or “for most practical purposes”.

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Duty Cycle	2.4 GHz to 2.4835 GHz	95%	±1.14 %
Minimum 6 dB Bandwidth	2.4 GHz to 2.4835 GHz	95%	±4.59 %
Conducted Maximum Peak Output Power	2.4 GHz to 2.4835 GHz	95%	±1.13 dB
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±4.65 dB
Radiated Spurious Emissions	1 GHz to 25 GHz	95%	±2.94 dB
AC Conducted Spurious Emissions	0.15 MHz to 30 MHz	95%	±1.96 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

2.4. Test and Measurement Equipment

Test Equipment Used for Transmitter Conducted Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2005	Thermohygrometer	Testo	608-H1	45046700	6 Jan 2020	12
M2036	Signal Analyser	Rohde & Schwarz	FSV30	101791	20 Apr 2019	12
G0628	Vector Signal Generator	Rohde & Schwarz	SMBV100A	261847	28 Sep 2020	36
A2524	Attenuator	AtlanTecRF	AN18W5-10	832827#2	Calibrated before use	-

Test Equipment Used for Transmitter Radiated Emissions Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0001	3m RSE Chamber	Rainford	N/A	N/A	04 Oct 2019	12
M1630	Test Receiver	Rohde & Schwarz	ESU26	100233	20 Sep 2019	12
A3154	Pre Amplifier	Com-Power	PAM-103	18020012	14 Sep 2019	12
A3155	Pre Amplifier	Com-Power	PAM-118A	18040037	14 Sep 2019	12
A553	Antenna	Chase	CBL6111A	1593	08 Oct 2019	12
A3138	Antenna	Schwarzbeck	BBHA 9120 B	00702	03 Oct 2019	12
A3139	Antenna	Schwarzbeck	HWRD750	00027	04 Oct 2019	12
A2523	Attenuator	AtlanTechRF	AN18W5-10	832827#1	04 Mar 2020	12
A3093	High Pass Filter	AtlanTechRF	AFH-03000	18051800077	29 Jun 2019	12
A3095	High Pass Filter	AtlanTechRF	AFH-07000	18051600012	29 Jun 2019	12
A3083	Low Pass Filter	AtlanTechRF	AFL-01000	18010900076	29 Jun 2019	12
A2895	Antenna	Schwarzbeck	BBHA 9170	9170-728	08 Feb 2020	12
A2896	Pre Amplifier	Schwarzbeck	BBV 9721	9721-023	08 Feb 2020	12

Test Equipment Used for Transmitter Band Edge Radiated Emissions Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0001	3m RSE Chamber	Rainford	N/A	N/A	04 Oct 2019	12
M1630	Test Receiver	Rohde & Schwarz	ESU26	100233	20 Sep 2020	12
A3155	Pre Amplifier	Com-Power	PAM-118A	18040037	14 Sep 2019	12
A3138	Antenna	Schwarzbeck	BBHA 9120 B	00702	03 Oct 2019	12
A2523	Attenuator	AtlanTechRF	AN18W5-10	832827#1	04 Mar 2020	12

Test Equipment Used for Transmitter AC Conducted Emissions

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2037	Thermohygrometer	Testo	608-H1	45124925	06 Jan 2020	12
A067	LISN	Rohde & Schwarz	ESH3-Z5	890603/002	08 Nov 2019	12
A1830	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100668	10 Apr 2020	12
M1273	Test Receiver	Rohde & Schwarz	ESIB 26	100275	18 Dec 2019	12

Test Measurement Software/Firmware Used:

Name	Version	Release Date
Rohde & Schwarz EMC32	6.30.0	2008

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	Slendertone
Model Name or Number:	Type 530
Test Sample Serial Number:	X8231281 (<i>Conducted sample</i>)
Hardware Version:	1000-0100, rev.D
Software Version:	00.02.00
FCC ID:	2AR5N530

Brand Name:	Slendertone
Model Name or Number:	Type 530
Test Sample Serial Number:	X8231222 (<i>Radiated sample #1</i>)
Hardware Version:	1000-0100, rev.D
Software Version:	00.02.00
FCC ID:	2AR5N530

Brand Name:	Slendertone
Model Name or Number:	Type 530
Test Sample Serial Number:	X8231081 (<i>Radiated sample #2</i>)
Hardware Version:	1000-0100, rev.D
Software Version:	00.02.00
FCC ID:	2AR5N530

3.2. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.3. Additional Information Related to Testing

Technology Tested:	Bluetooth Low Energy (Digital Transmission System)				
Type of Unit:	Transceiver				
Channel Spacing:	2 MHz				
Modulation:	GFSK				
Data Rate:	1 Mbps				
Power Supply Requirement(s):	Nominal	4.1 VDC (battery) & 5 VDC via 120 VAC 60 Hz adaptor			
Maximum Conducted Output Power:	1.3 dBm				
Transmit Frequency Range:	2402 MHz to 2480 MHz				
Transmit Channels Tested:	Channel ID	Channel Number	Channel Frequency (MHz)		
	Bottom	37	2402		
	Middle	17	2440		
	Top	39	2480		

3.4. Description of Available Antennas

The radio utilizes an integrated antenna, with the following maximum gain:

Frequency Range (MHz)	Antenna Gain (dBi)
2400-2480	0.5

3.5. Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Laptop PC
Brand Name:	Dell
Model Name or Number:	E5400
Serial Number:	01150

Description:	RS232 to Serial Converter
Brand Name:	MikroElektronika
Model Name or Number:	mikroBUS
Serial Number:	Not marked or stated

Description:	USB to Serial Converter
Brand Name:	Not marked or stated
Model Name or Number:	Not marked or stated
Serial Number:	Not marked or stated

Description:	Holster PCB
Brand Name:	Not marked or stated
Model Name or Number:	Not marked or stated
Serial Number:	Not marked or stated

Description:	iPhone
Brand Name:	Apple
Model Name or Number:	MLXN2B/A
Serial Number:	F17RHST8H2XX

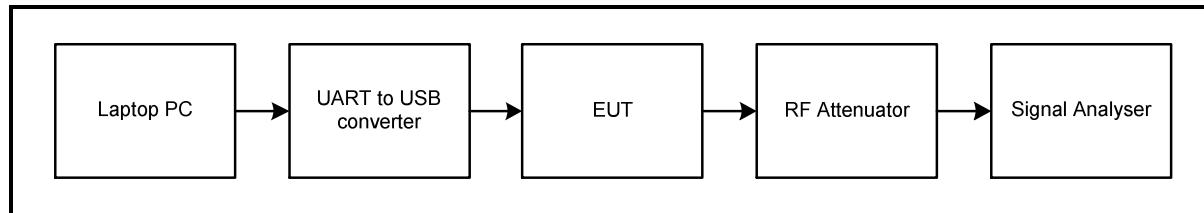
Description:	USB cable. Length 145 mm \pm 15 mm
Brand Name:	Slendertone
Model Name or Number:	4700-0021
Serial Number:	Not marked or stated

Description:	I.T.E. Power supply Input 100 VAC to 240 VAC 60 Hz / Output +5 VDC
Brand Name:	Ideal Power
Model Name or Number:	HK-AP-050A120-CP
Serial Number:	Not marked or stated

Operating Modes

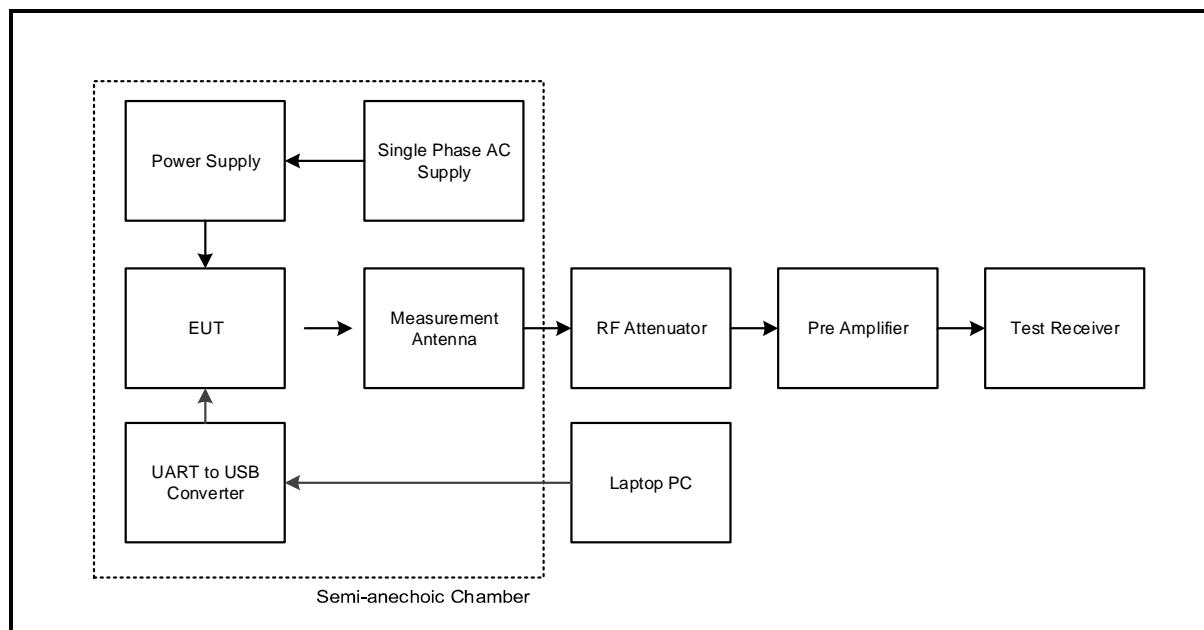
The EUT was tested in the following operating mode(s):

- Transmitting at maximum power in *Bluetooth* LE mode with modulation, maximum possible data length available and Pseudorandom Bit Sequence 9.
- During AC conducted emissions tests, frequency hopping across the operating band at full power while charging.

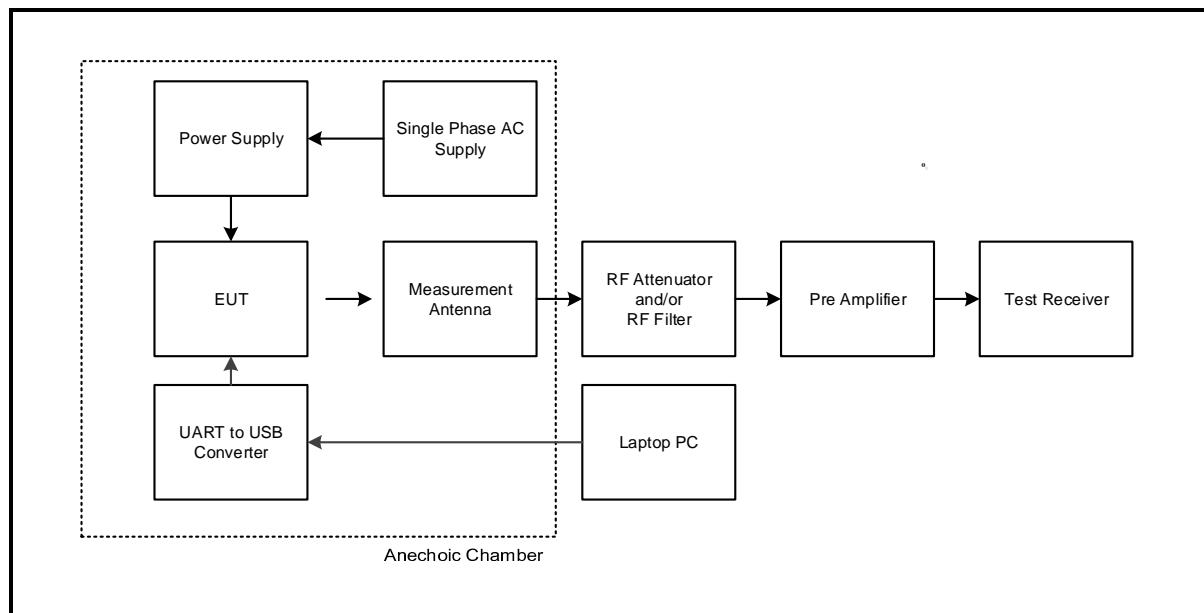

Configuration and Peripherals

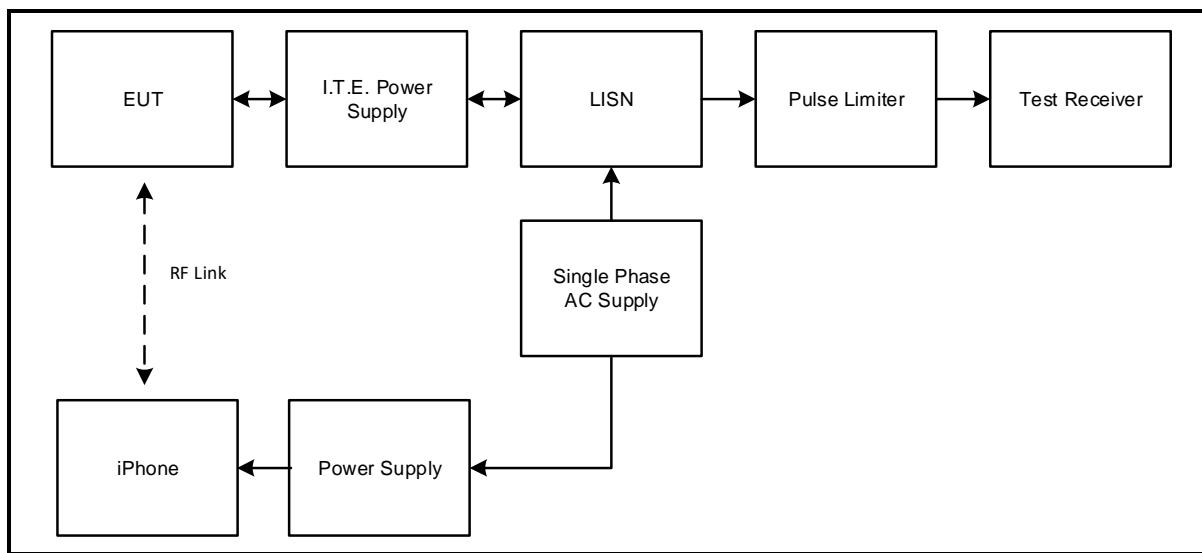
The EUT was tested in the following configuration(s):

- Transmit tests: The EUT was placed into *Bluetooth* LE test mode using a laptop PC and application *nRFgo Studio* (version 1.21.0.2) by Nordic Semiconductor ASA. *Bluetooth* Direct Test Mode was selected, Mode was set to Transmit, Payload Model was PRBS9 and Payload Length was 37 bytes. The EUT Channel was set to Single and the test channel number set as required. For radiated testing, once in the correct mode the computer was disconnected.
- The EUT was powered from its internal battery.
- Radiated spurious emissions were performed with the EUT in the position that produced worst case with respect to emissions. The Holster PCB was attached, electrodes placed in a saline solution and excited.
- AC conducted emissions tests: Connected via radio link to an iPhone as used in an end-user application following the customer's procedure in 'Video4 – App & Pairing.mp4' dated 02 January 2019. Connected to an I.T.E. power supply via USB cable. The I.T.E. power supply was connected to a single phase supply via a LISN. The EUT was powered from a 120 VAC 60 Hz single phase mains supply unless otherwise stated.


Test Setup Diagrams

Conducted Tests:




Radiated Tests:

Semi-anechoic chamber

Anechoic chamber

Test Setup for Transmitter AC Conducted Emissions

4. Antenna Port Test Results

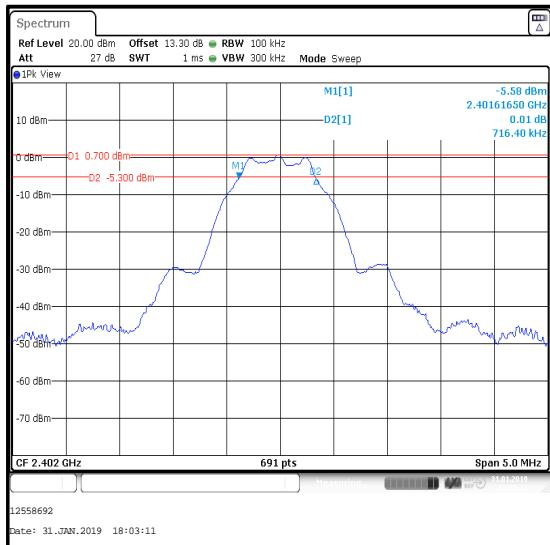
4.1. Transmitter Minimum 6 dB Bandwidth

Test Summary:

Test Engineer:	Stefan Ho	Test Date:	31 January 2019
Test Sample Serial Number:	X8231281		

FCC Reference:	Part 15.247(a)(2)
Test Method Used:	FCC KDB 558074 Section 8.2 referencing ANSI C63.10 Section 11.8.1 Option 1

Environmental Conditions:



Temperature (°C):	21
Relative Humidity (%):	34

Note(s):

1. 6 dB DTS bandwidth tests were performed using a signal analyser in accordance with ANSI C63.10 Section 11.8.1 Option 1 measurement procedure. The signal analyser resolution bandwidth was set to 100 kHz and video bandwidth to 300 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The DTS bandwidth was measured at 6 dB down from the peak of the signal.
2. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.

Transmitter Minimum 6 dB Bandwidth (continued)**Results:**

Channel	6 dB Bandwidth (kHz)	Limit (kHz)	Margin (kHz)	Result
Bottom	716.400	≥500	216.400	Complied
Middle	716.400	≥500	216.400	Complied
Top	716.400	≥500	216.400	Complied

Bottom Channel**Middle Channel****Top Channel**

4.2. Transmitter Duty Cycle

Test Summary:

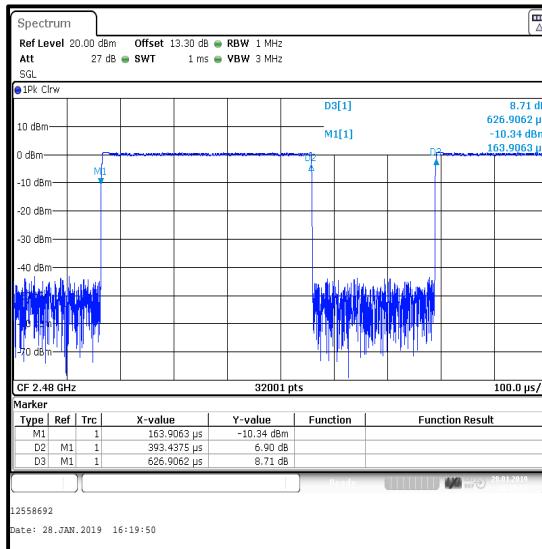
Test Engineer:	Stefan Ho	Test Date:	28 January 2019
Test Sample Serial Number:	X8231281		

FCC Reference:	Part 15.35(c)
Test Method Used:	FCC KDB 558074 Section 6.0

Environmental Conditions:

Temperature (°C):	21
Relative Humidity (%):	34

Note(s):


1. In order to assist with the determination of the average level of spurious emissions field strength, measurements were made of duty cycle to determine the transmission duration and the silent period time of the transmitter. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by using the following calculation:

$$10 \log (1 / (\text{On Time} / [\text{Period or } 100 \text{ ms whichever is the lesser}])).$$

$$10 \log (1 / (393.438 \mu\text{s} / 626.906 \mu\text{s})) = 2.0 \text{ dB}$$

Results:

Pulse Duration (μs)	Period (μs)	Duty Cycle (dB)
393.438	626.906	2.0

4.3. Transmitter Maximum Peak Output Power

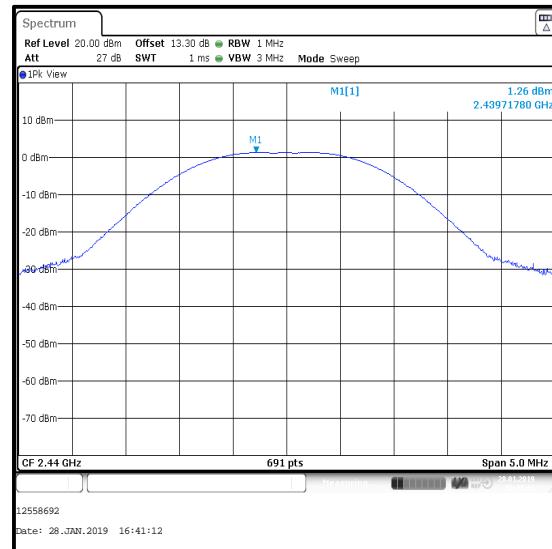
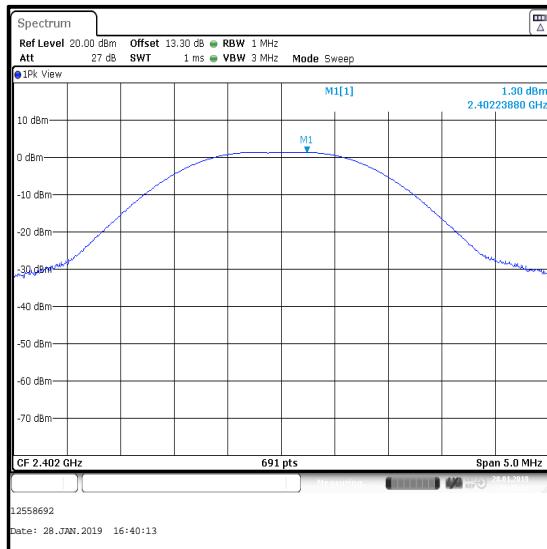
Test Summary:

Test Engineer:	Stefan Ho	Test Date:	28 January 2019
Test Sample Serial Number:	X8231281		

FCC Reference:	Part 15.247(b)(3)
Test Method Used:	FCC KDB 558074 Section 8.3.1.1 referencing ANSI C63.10 Section 11.9.1.1

Environmental Conditions:

Temperature (°C):	21
Relative Humidity (%):	34

Note(s):

1. Conducted power tests were performed using a signal analyser in accordance with ANSI C63.10 Section 11.9.1.1 RBW > DTS bandwidth procedure.
2. The signal analyser resolution bandwidth was set to 1 MHz and video bandwidth to 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 5 MHz. A marker was placed at the peak of the signal and the results recorded in the tables below.
3. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable. An RF level offset was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.
4. The conducted power was added to the declared antenna gain to obtain the EIRP.

Transmitter Maximum Peak Output Power (continued)**Results:**

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	1.3	30.0	28.7	Complied
Middle	1.3	30.0	28.7	Complied
Top	0.9	30.0	29.1	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	1.3	0.5	1.8	36.0	34.2	Complied
Middle	1.3	0.5	1.8	36.0	34.2	Complied
Top	0.9	0.5	1.4	36.0	34.6	Complied

Transmitter Maximum Peak Output Power (continued)**Results: LE****Bottom Channel****Middle Channel****Top Channel**

5. Radiated Test Results

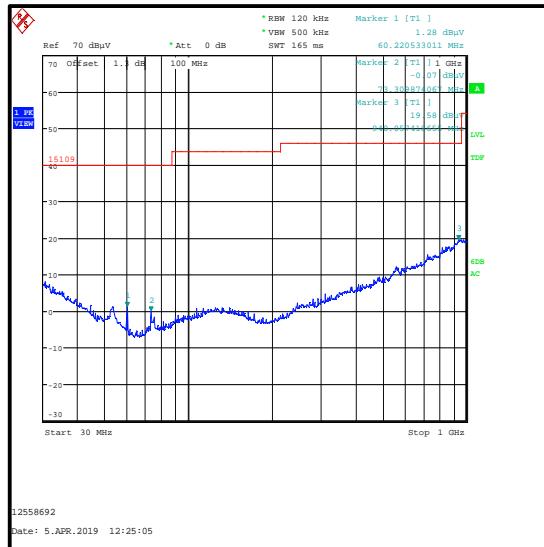
5.1. Transmitter Radiated Emissions <1 GHz

Test Summary:

Test Engineers:	John Ferdinand	Test Date:	05 April 2019
Test Sample Serial Number:	X8231222		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 6.3, 6.5, 11.11 & 11.12
Frequency Range	30 MHz to 1000 MHz

Environmental Conditions:


Temperature (°C):	18
Relative Humidity (%):	36

Note(s):

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. All emissions shown on the pre-scans were investigated and found to be ambient, > 20 dB below the appropriate limit or below the noise floor of the measurement system. Therefore the highest peak noise floor reading of the measuring receiver was recorded in the table below.
3. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
4. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 120 kHz and video bandwidth to 500 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
5. Final measurements were performed on the marker frequencies and the results entered into the table below. The test receiver resolution bandwidth was set to 120 kHz, using a CISPR quasi-peak detector and span wide enough to see the whole emission.

Transmitter Radiated Emissions (continued)**Results: Peak**

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
940.057	Horizontal	19.6	46.0	26.4	Complied

5.2. Transmitter Radiated Emissions >1 GHz

Test Summary:

Test Engineers:	John Ferdinand	Test Dates:	05 April 2019
Test Sample Serial Number:	X8231222		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 6.3, 6.6, 11.11 & 11.12
Frequency Range	1 GHz to 25 GHz

Environmental Conditions:

Temperature (°C):	18
Relative Humidity (%):	36

Note(s):

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. The emission shown on the 1 GHz to 3 GHz plot is the EUT fundamental.
3. All other emissions shown on the pre-scans were investigated and found to be ambient, > 20 dB below the appropriate limit or below the noise floor of the measurement system.
4. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT.
5. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth to 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their respective detectors during the pre-scan measurements.
6. *In accordance with ANSI C63.10 Section 6.6.4.3, Note 1, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.

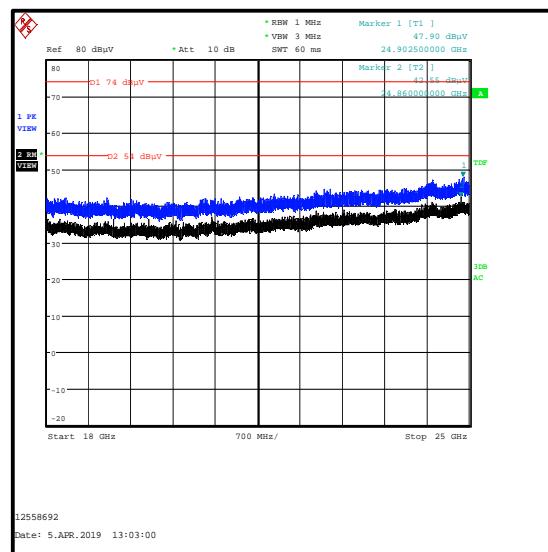
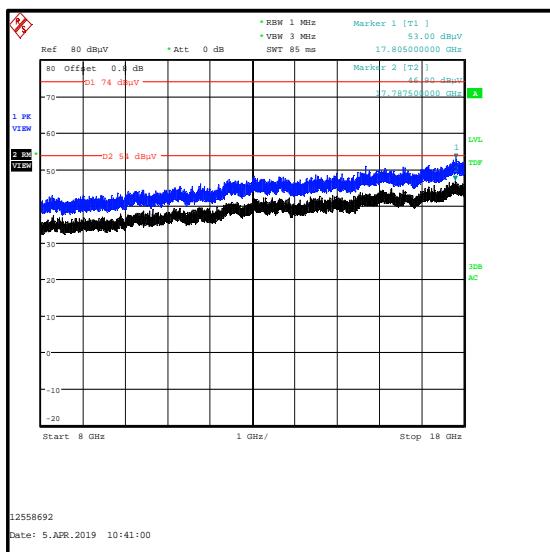
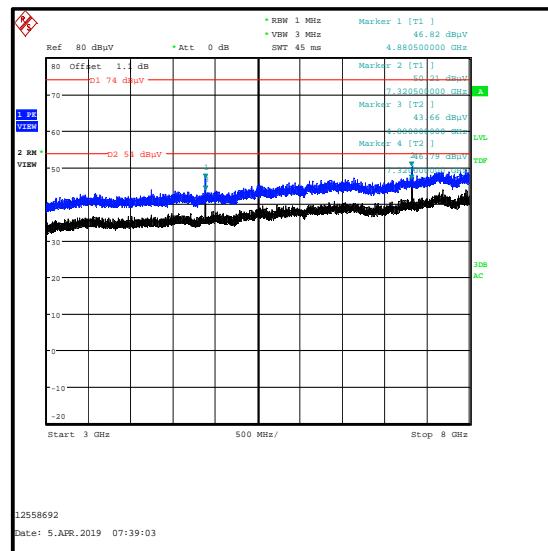
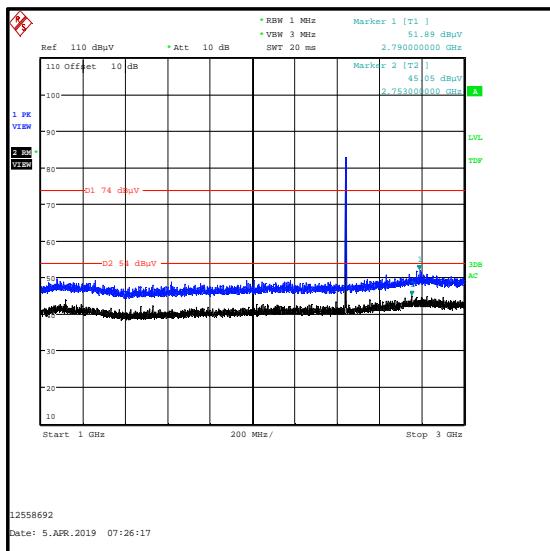
Transmitter Radiated Emissions (continued)**Results: Peak Bottom Channel**

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
4804.146	Horizontal	49.5	54.0*	4.5	Complied

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
7206.666	Horizontal	53.1	54.0*	0.9	Complied

Results: Peak Middle Channel

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
4880.050	Horizontal	50.6	54.0*	3.4	Complied





Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
7319.044	Horizontal	51.6	54.0*	2.4	Complied

Results: Peak Top Channel

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
4960.140	Horizontal	51.5	54.0*	2.5	Complied

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Result
7439.774	Horizontal	52.4	54.0*	1.6	Complied

Transmitter Radiated Emissions (continued)

5.3. Transmitter Band Edge Radiated Emissions

Test Summary:

Test Engineer:	John Ferdinand	Test Date:	04 April 2019
Test Sample Serial Number:	X8231222		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 11.11, 11.12, 11.13 & Notes below

Environmental Conditions:

Temperature (°C):	18
Relative Humidity (%):	37

Note(s):

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. The maximum peak conducted output power was previously measured. In accordance with ANSI C63.10 Section 11.11.1(a), the lower band edge measurement was performed with a peak detector and the -20 dBc limit applied.
3. As the lower band edge is adjacent to a non-restricted band, only peak measurements are required in accordance with ANSI C63.10 Section 11.11.1. The test method in Section 11.11.3 was followed: the test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. As the maximum peak conducted output power was measured using an peak detector in accordance with ANSI C63.10 Section 11.9.1.1 an out-of-band limit line was placed 20 dB (ANSI C63.10 Section 11.11.1(a)) below the peak level. A marker was placed on the band edge spot frequencies. Marker frequency and levels were recorded.
4. As the upper band edge is adjacent to a restricted band, both peak and average measurements were recorded by placing a marker at the edge of the band. For peak measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. For average measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. An RMS detector was used, sweep time was set to auto and trace mode was trace averaging over 300 sweeps. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded.
5. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with peak and RMS detectors respectively. Markers were placed on the highest point on each trace.
6. * -20 dBc limit
7. **As the EUT had a duty cycle < 98% the duty cycle correction factor has been applied to the upper band edge average result. The corrected level is shown below:

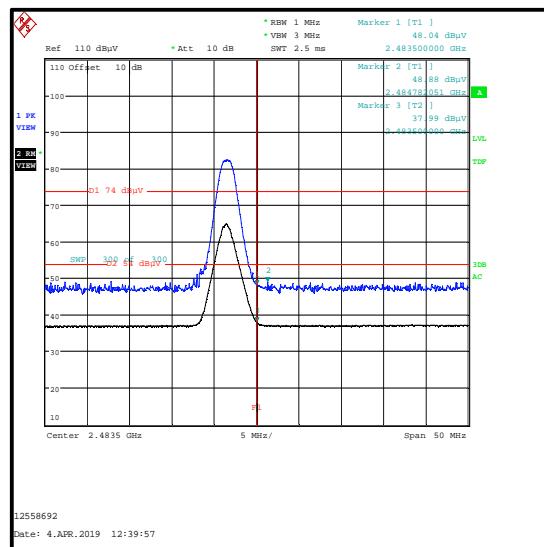
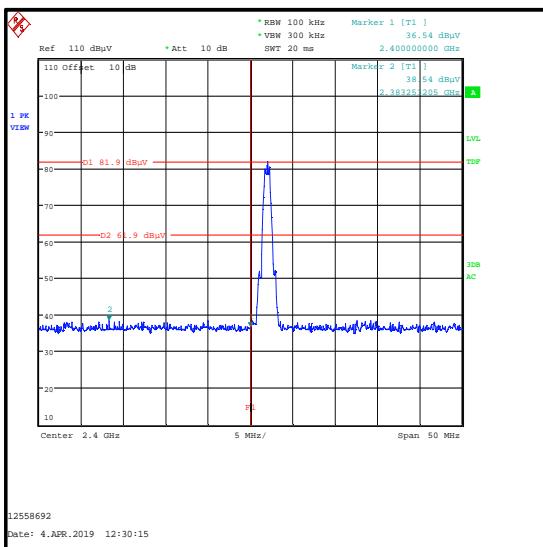
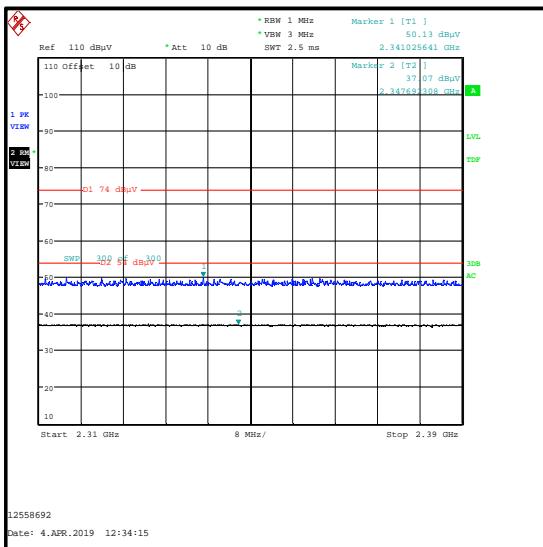
Upper Band Average result + duty cycle = Corrected band edge level

Corrected band edge level at 2483.5 MHz : 38.0 + 2.0 = 40.0 dB μ V/m

Transmitter Band Edge Radiated Emissions (continued)**Results: Peak**

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2383.253	Horizontal	38.5	61.9*	23.4	Complied
2400.000	Horizontal	36.5	61.9*	25.4	Complied
2484.782	Horizontal	48.9	74.0	25.1	Complied

Results: Average




Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Duty cycle correction (dB)	Corrected Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.500	Horizontal	38.0	2.3	40.3**	54.0	13.7	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2341.026	Horizontal	50.1	74.0	23.9	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Average

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2347.692	Horizontal	37.1	54.0	16.9	Complied

Transmitter Band Edge Radiated Emissions (continued)**Results:****Lower Band Edge****Upper Band Edge****2310 MHz to 2390 MHz Restricted Band**

6. AC Power Line Conducted Emissions Test Results

6.1. Transmitter AC Conducted Spurious Emissions

Test Summary:

Test Engineer:	Alison Johnston	Test Dates:	23 July 2019 & 25 July 2019
Test Sample Serial Number:	X8231081		

FCC Reference:	Part 15.207
Test Method Used:	ANSI C63.10 Section 6.2 / FCC KDB 174176 and notes below

Environmental Conditions:

Temperature (°C):	24
Relative Humidity (%):	52 to 61

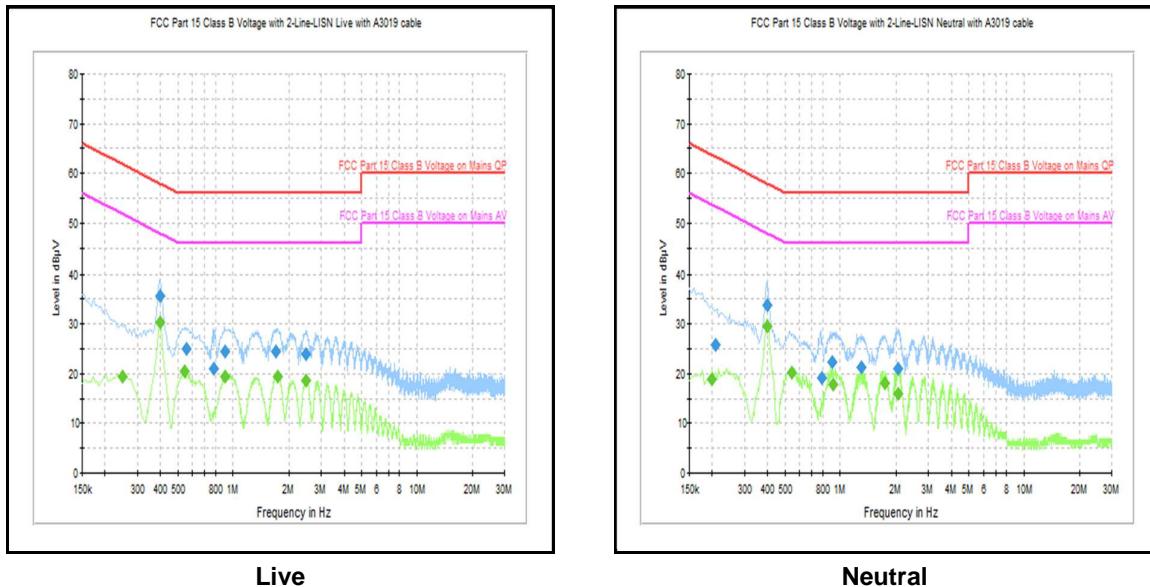
Note(s):

1. The EUT was connected to an I.T.E. power supply via USB cable. The I.T.E. power supply was connected to a 120 VAC 60 Hz single phase supply via a LISN.
2. A pulse limiter was fitted between the LISN and the test receiver.
3. In accordance with FCC KDB 174176 Q4, tests were performed with a 240 VAC 60 Hz single phase supply as this was within the voltage range marked on the power supply.
4. Pre-scans were performed and markers placed on the highest live and neutral measured levels. Final measurements were performed on the marker frequencies and the results entered into the tables below.

Transmitter AC Conducted Spurious Emissions (continued)**Results: Live / Quasi Peak / 120 VAC 60 Hz**

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.402000	Live	35.7	57.8	22.1	Complied
0.555000	Live	25.1	56.0	30.9	Complied
0.789000	Live	20.9	56.0	35.1	Complied
0.910500	Live	24.5	56.0	31.5	Complied
1.693500	Live	24.4	56.0	31.6	Complied
2.467500	Live	23.9	56.0	32.1	Complied

Results: Live / Average / 120 VAC 60 Hz


Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.249000	Live	19.4	51.8	32.4	Complied
0.402000	Live	30.4	47.8	17.4	Complied
0.541500	Live	20.6	46.0	25.4	Complied
0.910500	Live	19.4	46.0	26.6	Complied
1.734000	Live	19.3	46.0	26.7	Complied
2.485500	Live	18.5	46.0	27.5	Complied

Results: Neutral / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.208500	Neutral	25.7	63.3	37.6	Complied
0.402000	Neutral	33.8	57.8	24.0	Complied
0.793500	Neutral	19.1	56.0	36.9	Complied
0.901500	Neutral	22.3	56.0	33.7	Complied
1.306500	Neutral	21.4	56.0	34.6	Complied
2.040000	Neutral	20.9	56.0	35.1	Complied

Results: Neutral / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.199500	Neutral	18.9	53.6	34.7	Complied
0.402000	Neutral	29.6	47.8	18.2	Complied
0.541500	Neutral	20.2	46.0	25.8	Complied
0.919500	Neutral	17.9	46.0	28.1	Complied
1.729500	Neutral	18.0	46.0	28.0	Complied
2.035500	Neutral	15.9	46.0	30.1	Complied

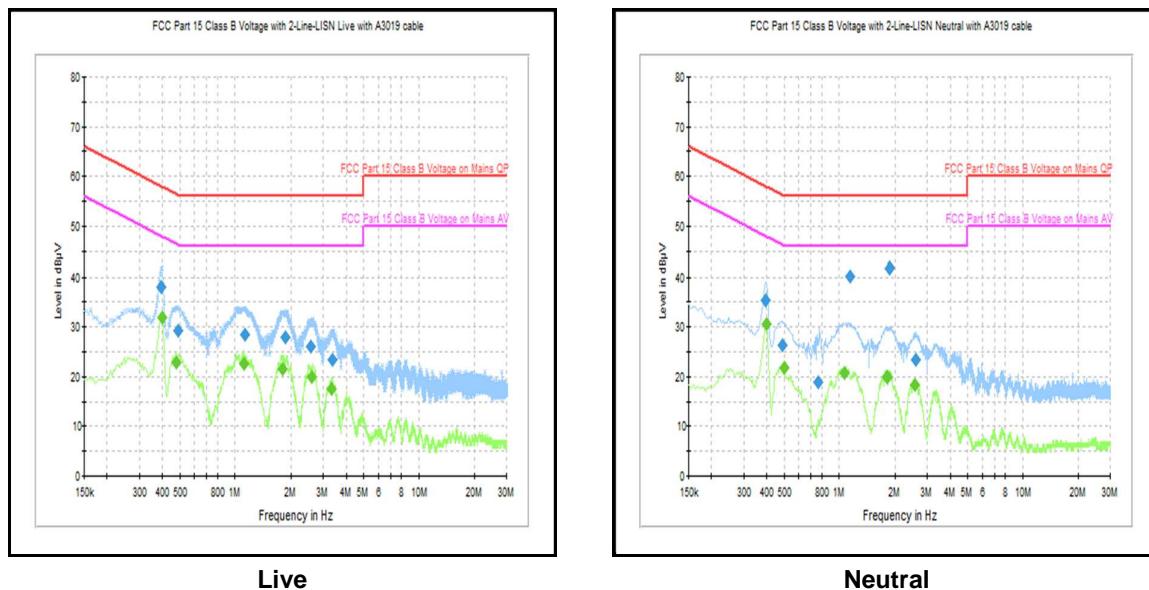
Transmitter AC Conducted Spurious Emissions (continued)**Results: 120 VAC 60 Hz**

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

Transmitter AC Conducted Spurious Emissions (continued)**Results: Live / Quasi Peak / 240 VAC 60 Hz**

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.397500	Live	37.9	57.9	20.0	Complied
0.487500	Live	29.3	56.2	26.9	Complied
1.135500	Live	28.5	56.0	27.5	Complied
1.855500	Live	27.9	56.0	28.1	Complied
2.571000	Live	26.1	56.0	29.9	Complied
3.381000	Live	23.5	56.0	32.5	Complied

Results: Live / Average / 240 VAC 60 Hz


Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.402000	Live	31.8	47.8	16.0	Complied
0.478500	Live	22.9	46.4	23.5	Complied
1.117500	Live	22.5	46.0	23.5	Complied
1.792500	Live	21.6	46.0	24.4	Complied
2.602500	Live	19.8	46.0	26.2	Complied
3.331500	Live	17.5	46.0	28.5	Complied

Results: Neutral / Quasi Peak / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.397500	Neutral	35.3	57.9	22.6	Complied
0.487500	Neutral	26.3	56.2	29.9	Complied
0.766500	Neutral	18.9	56.0	37.1	Complied
1.153500	Neutral	40.2	56.0	15.8	Complied
1.855500	Neutral	41.7	56.0	14.3	Complied
2.580000	Neutral	23.4	56.0	32.6	Complied

Results: Neutral / Average / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dB μ V)	Limit (dB μ V)	Margin (dB)	Result
0.402000	Neutral	30.6	47.8	17.2	Complied
0.501000	Neutral	21.8	46.0	24.2	Complied
1.068000	Neutral	20.7	46.0	25.3	Complied
1.797000	Neutral	19.9	46.0	26.1	Complied
1.828500	Neutral	19.9	46.0	26.1	Complied
2.553000	Neutral	18.4	46.0	27.6	Complied

Transmitter AC Conducted Spurious Emissions (continued)**Results: 240 VAC 60 Hz**

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

--- END OF REPORT ---