

TEST REPORT

Report No.	CISRR25022815501
Project No.	CISR250228155
FCC ID	2AR4Z-ADV5531T
Applicant	Aiyos Technology Co., Ltd.
Address	Floor 3, Building A, Xueziwei Industrial Park, Shajing Town, BaoAn District, Shenzhen, 518000, China
Manufacturer	Aiyos Technology Co., Ltd.
Address	Floor 3, Building A, Xueziwei Industrial Park, Shajing Town, BaoAn District, Shenzhen, 518000, China
Product Name	Smart board
Trade Mark	N/A
Model/Type reference	ADV5531T(EDU)
Listed Model(s)	ADV4331T(EDU), ADV6531T(EDU), ADV7531T(EDU), ADV8631T(EDU), ADV9831T(EDU), ADV10031T(EDU), ADV11031T(EDU), ADV11531T(EDU)
Standard	47 CFR Part 15.247
Test date	May 15, 2025 to May 19, 2025
Issue date	May 20, 2025
Test result	Complied

Lucas Huang

Prepared by: Lucas Huang

Genry Long

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	3
2. TEST DESCRIPTION	4
3. SUMMARY	5
3.1. Product Description *	5
3.2. Radio Specification Description *	5
3.3. Modification of EUT	6
3.4. Deviation from standards	6
3.5. Testing Site	6
4. TEST CONFIGURATION	7
4.1. Test frequency list	7
4.2. Descriptions of test mode	7
4.3. Support unit used in test configuration	7
4.4. Test sample information	7
4.5. Environmental conditions	7
4.6. Statement of the measurement uncertainty	8
4.7. Equipment Used during the Test	8
5. TEST RESULTS	10
5.1. Evaluation Results (Evaluation)	10
5.1.1. Antenna Requirement	10
5.2. Radio Spectrum Matter Test Results (RF)	11
5.2.1. Conducted Emission at AC power line	11
5.2.2. 6dB Bandwidth	14
5.2.3. Maximum Conducted Output Power	15
5.2.4. Power Spectral Density	16
5.2.5. Conducted band edge and spurious emission	17
5.2.6. Radiated band edge emission	18
5.2.7. Radiated Spurious Emission (below 1GHz)	28
5.2.8. Radiated Spurious Emission (Above 1GHz)	38
6. TEST SETUP PHOTOS	64
7. EXTERNAL AND INTERNAL PHOTOS	66
7.1. External Photos	66
7.2. Internal Photos	70

1. REPORT VERSION

Version No.	Issue date	Description
00	May 20, 2025	Original

2. TEST DESCRIPTION

No.	Test Item	Standard Requirement	Result
1	Antenna Requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	6dB Bandwidth	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR 15.247(e)	Pass
6	Conducted band edge and spurious emission	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Radiated band edge emission	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated Spurious Emission (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated Spurious Emission (Above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass

Note:

- The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Product Description *

Main unit information:	
Product Name:	Smart board
Trade Mark:	N/A
Model No.:	ADV5531T(EDU)
Listed Model(s):	ADV4331T(EDU) ,ADV6531T(EDU) ,ADV7531T(EDU), ADV8631T(EDU) ,ADV9831T(EDU) ,ADV10031T(EDU), ADV11031T(EDU),ADV11531T(EDU)
Model difference:	The series model is the same product, there are not any different in material or color changed, with only different model names due to marketing sales.
Power supply:	AC 100-240V, 50/60Hz
Hardware version:	N/A
Software version:	N/A
Accessory unit information:	
Battery information:	N/A

3.2. Radio Specification Description *

Modulation type:	802.11b: DSSS(CCK, DQPSK, DBPSK); 802.11g/n(HT20)/n(HT40): OFDM(BPSK, QPSK, 16QAM, 64QAM)
Operation frequency:	802.11b/g/n(HT20): 2412MHz to 2462MHz; 802.11n(HT40): 2422MHz to 2452MHz
Channel number:	802.11b/g/n(HT20): 11 Channels; 802.11n(HT40): 7 Channels
Channel separation:	5MHz
Antenna type:	External Antenna
Antenna gain:	4.89dBi

Note:

- 1) *: Since the above information is provided by the applicant relevant results or conclusions of this report are only made for these information, Bangce is not responsible for the authenticity, integrity and results of the information and/or the validity of the conclusion.
- 2) Operation frequency list as follow:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447	/	/

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Deviation from standards

None

3.5. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen, Guangdong, China
Contact information	Tel: 86-755-2319 6848, email: service@cis-cn.net Website: http://www.cis-cn.net/
FCC registration number	736346
FCC designation number	CN1372

4. TEST CONFIGURATION

4.1. Test frequency list

Bandwidth (MHz)	Lowest Channel (LCH) (MHz)	Middle Channel (MCH) (MHz)	Highest Channel (HCH) (MHz)
20	2412	2437	2462
40	2422	2437	2452

4.2. Descriptions of test mode

No	Test mode	Description
TM1	802.11b mode	Keep the EUT in 802.11b transmitting mode at lowest, middle and highest channel.
TM2	802.11g mode	Keep the EUT in 802.11g transmitting mode at lowest, middle and highest channel.
TM3	802.11n(HT20) mode	Keep the EUT in 802.11n(HT20) transmitting mode at lowest, middle and highest channel.
TM4	802.11n(HT40) mode	Keep the EUT in 802.11n(HT40) transmitting mode at lowest, middle and highest channel.
TM5	Link mode	Keep the EUT in WiFi linking mode with AE.

4.3. Support unit used in test configuration

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Item	Equipment name	Trade Name	Model No.
1	--	--	--

4.4. Test sample information

Type	Sample No.
Engineer sample	CISR250228155-S01
Normal sample	CISR250228155-S02

4.5. Environmental conditions

Type	Requirement
Temperature:	15~35°C
Relative Humidity:	25~75%
Air Pressure:	860~1060mbar

4.6. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	1.63dB
2	Peak Output Power	1.34dB
3	Power Spectral Density	1.34dB
4	6dB Bandwidth	0.002%
5	Duty cycle	-
6	Conducted Band Edge and Spurious Emission	1.93dB
7	Radiated Band Edge Emission	3.76dB for 30MHz-1GHz 3.80dB for above 1GHz
8	Radiated Spurious Emission	3.76dB for 30MHz-1GHz 3.80dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=1.96$.

4.7. Equipment Used during the Test

Conducted Emission at AC power line						
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2025-01-08	2026-01-07
2	Artificial power network	Schwarzbeck	NSLK812 7	8127-01096	2025-01-08	2026-01-07
3	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2025-01-08	2026-01-07
4	Artificial power network	Schwarzbeck	ENV216	/	2025-01-08	2026-01-07

6dB Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands						
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	MXG RF Signal Generator	Agilent	N5181A	MY50145362	2025-01-08	2026-01-07
2	Spectrum analyzer	R&S	FSV-40N	102130	2025-01-08	2026-01-07
3	Vector Signal Generator	Agilent	N5182A	MY50142364	2025-01-08	2026-01-07
4	Power Meter	WCS	WCS-PM	WCSPM23040 5A	2025-01-08	2026-01-07

Emissions in frequency bands (above 1GHz) Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz)						
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2025-01-08	2026-01-07
2	Amplifier	Tonscend	TAP9K3G 40	AP23A806027 0	2025-01-08	2026-01-07
3	Prime amplifier	Tonscend	TAP0101 8050	AP23A806028 0	2025-01-08	2026-01-07
4	9*6*6 anechoic chamber	SKET	9.3*6.3*6	N/A	2024-09-02	2027-09-01
5	Spectrum analyzer	Agilent	N9020A	MY50530263	2025-01-08	2026-01-07
6	Spectrum analyzer	R&S	FSV-40N	102130	2025-01-08	2026-01-07
7	Bilog Antenna	Schwarzbeck	VULB 9163	1463	2023-01-09	2026-01-08
8	Horn Antenna	SCHWARZBECK	BBHA 9120 D	2487	2023-01-09	2026-01-08
9	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	2023-01-09	2026-01-08
10	RF Cable	Tonscend	Cable 1	/	2025-01-08	2026-01-07
11	RF Cable	Tonscend	Cable 2	/	2025-01-08	2026-01-07
12	RF Cable	SKET	Cable 3	/	2025-01-08	2026-01-07
13	L.I.S.N.#1	Schwarzbeck	NSLK812 7	/	2025-01-08	2026-01-07
14	L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	2025-01-08	2026-01-07
15	Horn Antenna	SCHWARZBECK	BBHA917 0	1130	2023-01-09	2026-01-08
16	Preamplifier	Tonscend	TAP1804 0048	AP21C806126	2025-01-08	2026-01-07
17	Variable-frequency power source	Pinhong	PH1110	/	2025-01-08	2026-01-07
18	6dB Attenuator	SKET	DC-6G	/	2025-01-08	2026-01-07
19	Antenna tower	SKT	Bk-4AT-BS	AT202104010 1-V1	2025-01-08	2026-01-07

5. TEST RESULTS

5.1. Evaluation Results (Evaluation)

5.1.1. Antenna Requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

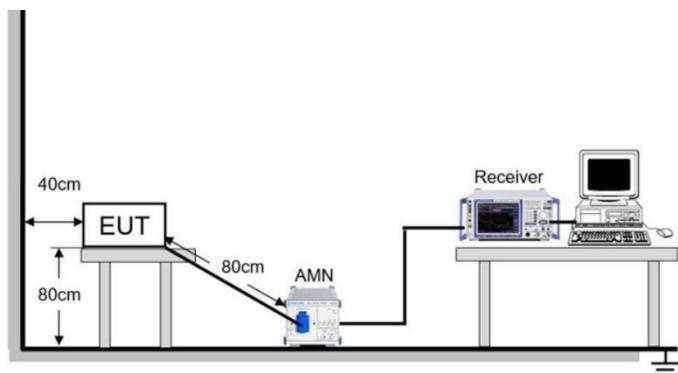
5.1.1.1. Test Result

Pass

5.1.1.2. Conclusion:

The EUT antenna is External Antenna(4.89dBi), It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used. Antenna structure please refer to the EUT internal photographs antenna photo. The type of antenna connector is Against-SMA.

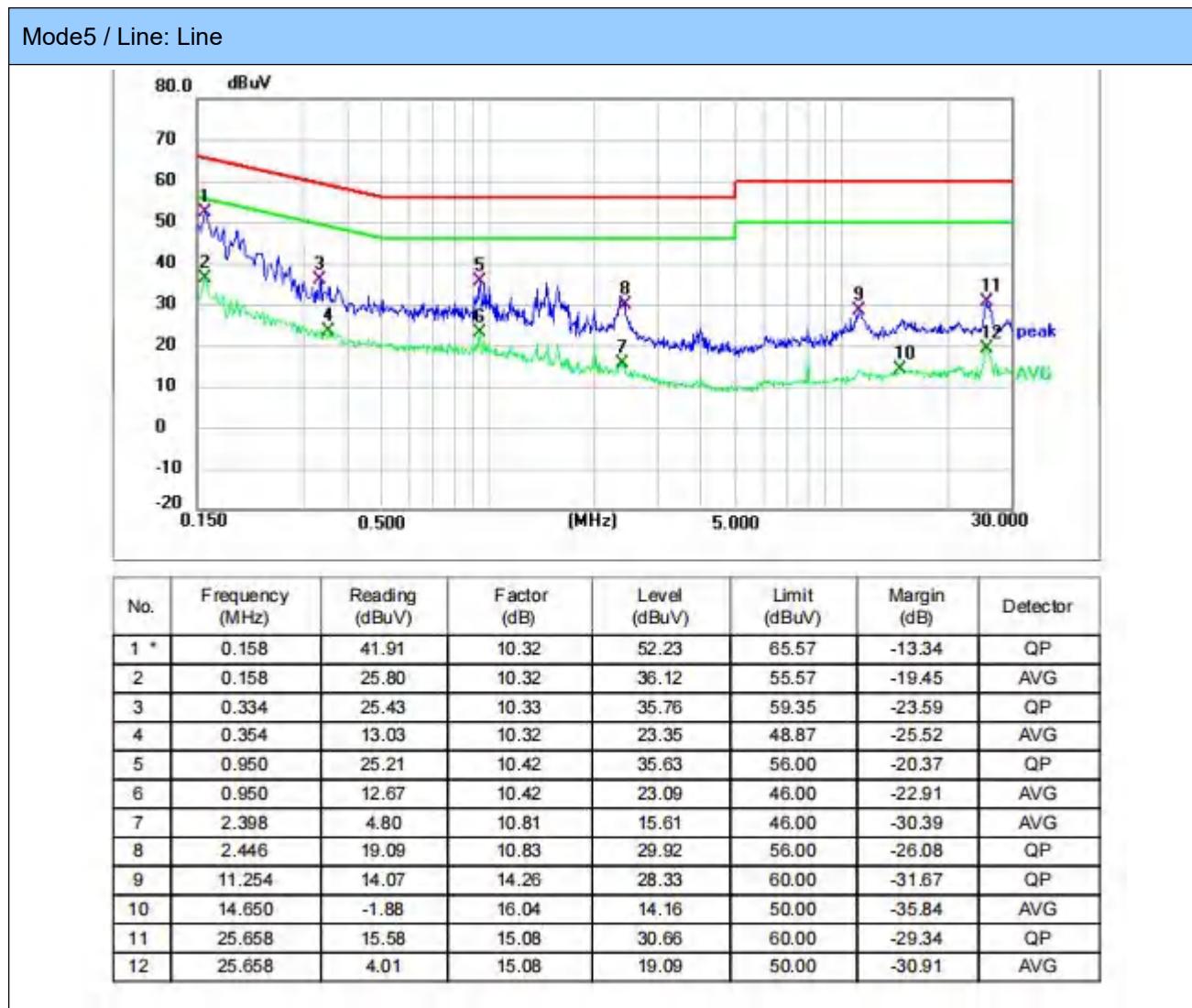
5.2. Radio Spectrum Matter Test Results (RF)

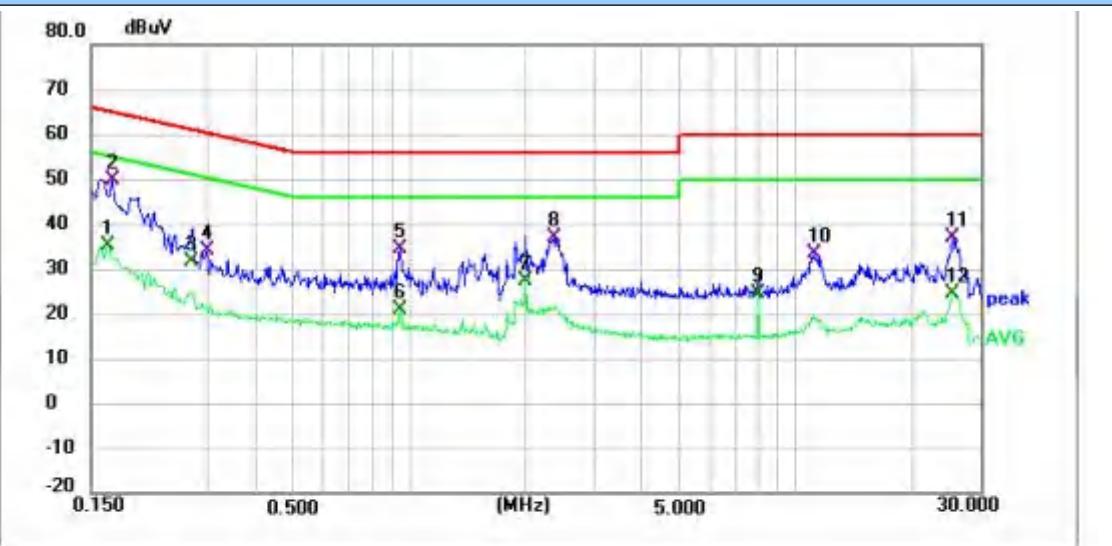

5.2.1. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a). Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).			
Test Limit:	Frequency of emission (MHz)		Conducted limit (dB μ V)	
			Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
5-30		60	50	
*Decreases with the logarithm of the frequency.				
Test Method:	ANSI C63.10-2020 section 6.2			
Procedure:	1. The EUT was setup according to ANSI C63.10 requirements. 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs) 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. 8. During the above scans, the emissions were maximized by cable manipulation.			

5.2.1.1. E.U.T. Operation

Operating Environment:					
Temperature:	22.5 °C	Humidity:	56.3 %	Atmospheric Pressure:	103 kPa
Pre test mode:	TM5				
Final test mode:	TM5				


5.2.1.2. Test Setup Diagram


5.2.1.3. Test Result

Pass

5.2.1.4. Test Data

Mode5 / Line: Neutral

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.166	24.80	10.32	35.12	55.16	-20.04	AVG
2 *	0.170	39.64	10.32	49.96	64.96	-15.00	QP
3	0.273	21.17	10.34	31.51	51.03	-19.52	AVG
4	0.298	23.73	10.35	34.08	60.30	-26.22	QP
5	0.946	24.21	10.42	34.63	56.00	-21.37	QP
6	0.950	10.44	10.42	20.86	46.00	-25.14	AVG
7	2.002	16.57	10.71	27.28	46.00	-18.72	AVG
8	2.366	26.10	10.81	36.91	56.00	-19.09	QP
9	8.002	11.23	13.06	24.29	50.00	-25.71	AVG
10	11.166	19.35	14.10	33.45	60.00	-26.55	QP
11	25.514	21.73	15.30	37.03	60.00	-22.97	QP
12	25.514	9.33	15.30	24.63	50.00	-25.37	AVG

Note:

- 1). Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)
- 2). Margin = Result - Limit

5.2.2. 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8
Procedure:	<p>11.8.1 Option 1 The steps for the first option are as follows:</p> <ul style="list-style-type: none"> a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW $\geq [3 \times \text{RBW}]$. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the “-6 dB down amplitude”. If a marker is below this “-6 dB down amplitude” value, then it shall be as close as possible to this value. <p>11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW $\geq 3 \times \text{RBW}$, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.</p>

5.2.2.1. E.U.T. Operation

Operating Environment:					
Temperature:	22.8 °C	Humidity:	56.7 %	Atmospheric Pressure:	103 kPa
Pre test mode:	TM1, TM2, TM3, TM4				
Final test mode:	TM1, TM2, TM3, TM4				

5.2.2.2. Test Setup Diagram

5.2.2.3. Test Result

Pass

5.2.2.4. Test Data

Please Refer to Appendix for Details.

5.2.3. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.2.3.1. E.U.T. Operation

Operating Environment:					
Temperature:	22.8 °C	Humidity:	56.7 %	Atmospheric Pressure:	103 kPa
Pre test mode:	TM1, TM2, TM3, TM4				
Final test mode:	TM1, TM2, TM3, TM4				

5.2.3.2. Test Setup Diagram

5.2.3.3. Test Result

Pass

5.2.3.4. Test Data

Please Refer to Appendix for Details.

Note:

Directional gain = GANT Max + Array Gain=4.89+3.01=7.90dBi;

Array Gain = $10 \log (NANT/ Nss)$ dB=3.01dB;

5.2.4. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

5.2.4.1. E.U.T. Operation

Operating Environment:					
Temperature:	22.8 °C	Humidity:	56.7 %	Atmospheric Pressure:	103 kPa
Pre test mode:	TM1, TM2, TM3, TM4				
Final test mode:	TM1, TM2, TM3, TM4				

5.2.4.2. Test Setup Diagram

5.2.4.3. Test Result

Pass

5.2.4.4. Test Data

Please Refer to Appendix for Details.

Note:

Directional gain = GaNT Max + Array Gain=4.89+3.01=7.90dBi;

Array Gain = $10 \log (N_{ANT}/N_{ss})$ dB=3.01dB;

5.2.5. Conducted band edge and spurious emission

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

5.2.5.1. E.U.T. Operation

Operating Environment:					
Temperature:	22.8 °C	Humidity:	56.7 %	Atmospheric Pressure:	103 kPa
Pre test mode:	TM1, TM2, TM3, TM4				
Final test mode:	TM1, TM2, TM3, TM4				

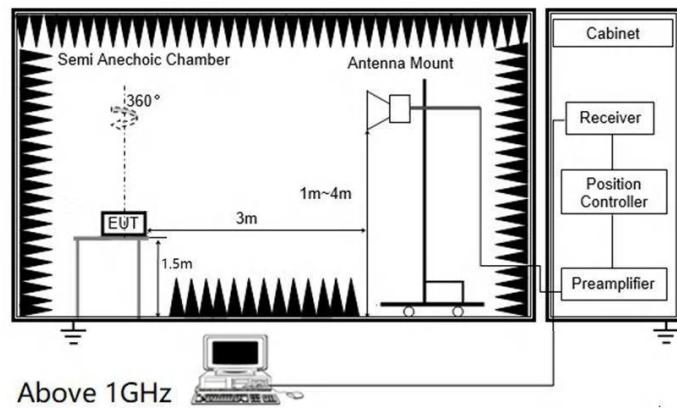
5.2.5.2. Test Setup Diagram

5.2.5.3. Test Result

Pass

5.2.5.4. Test Data

Please Refer to Appendix for Details.

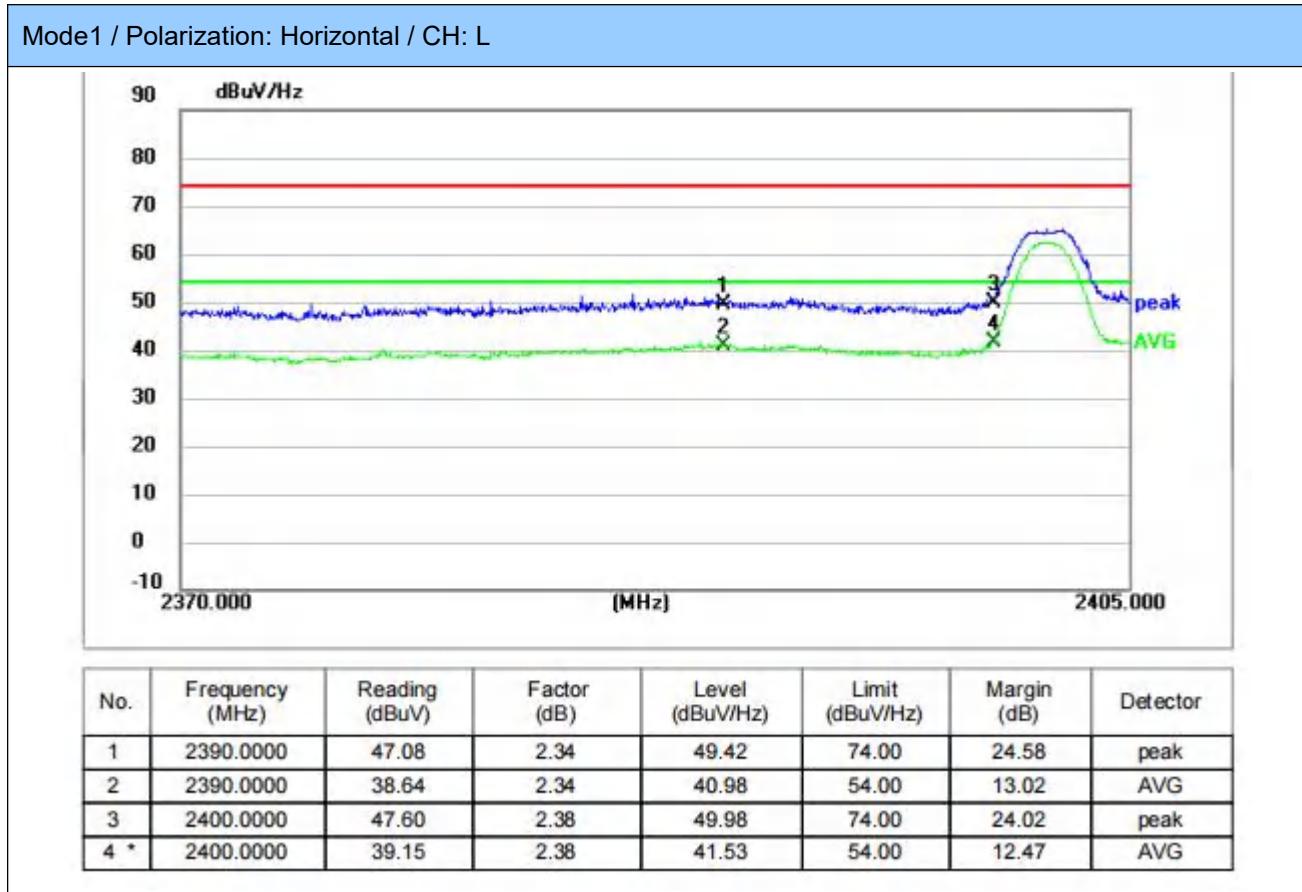

5.2.6. Radiated band edge emission

Test Requirement:	Refer to 47 CFR 15.247(d). In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
<p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p> <p>In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p>			
Test Method:	ANSI C63.10-2020 section 6.10		
Procedure:	<ol style="list-style-type: none"> 1. EUT was setup and tested according to ANSI C63.10 . 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters. 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement. 5. Use the following spectrum analyzer settings: <ol style="list-style-type: none"> a) Span shall wide enough to fully capture the emission being measured b) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement <p>For average measurement: use duty cycle correction factor method (DCCF), Averager level = Peak level + DCCF</p>		

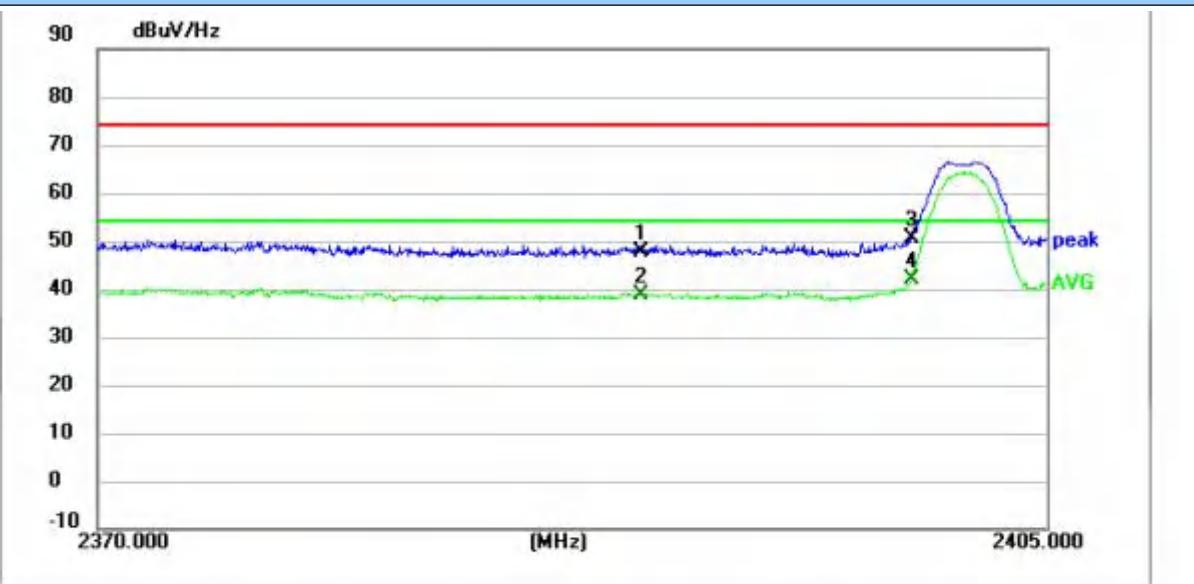
5.2.6.1. E.U.T. Operation

Operating Environment:					
Temperature:	22.7 °C	Humidity:	56.2 %	Atmospheric Pressure:	102 kPa
Pre test mode:	TM1, TM2, TM3, TM4				
Final test mode:	TM1, TM2, TM3, TM4				

5.2.6.2. Test Setup Diagram

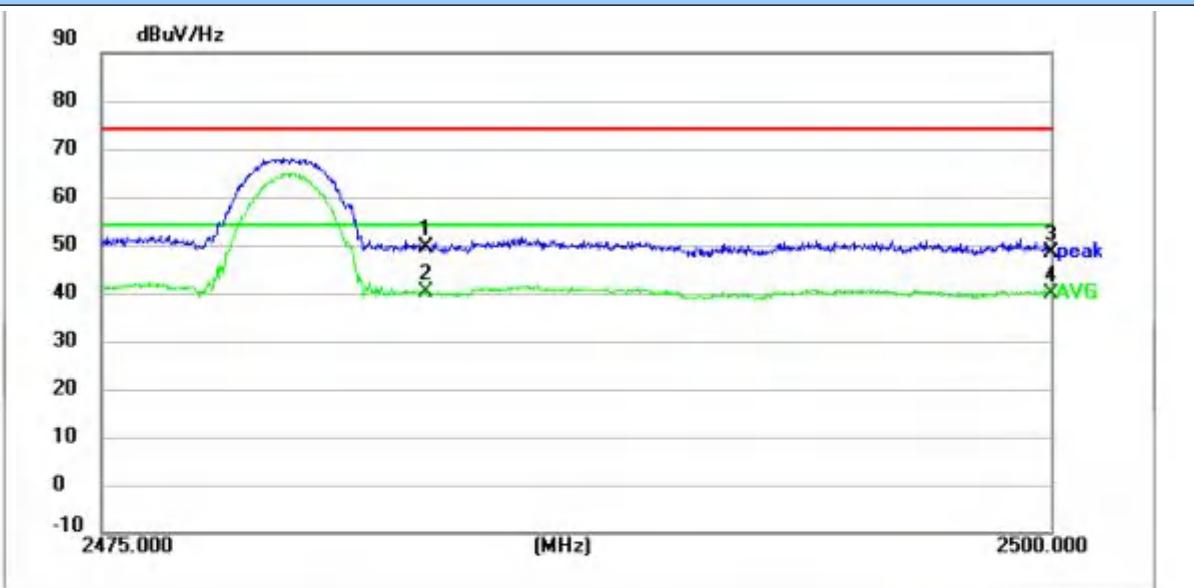

5.2.6.3. Test Result

Pass

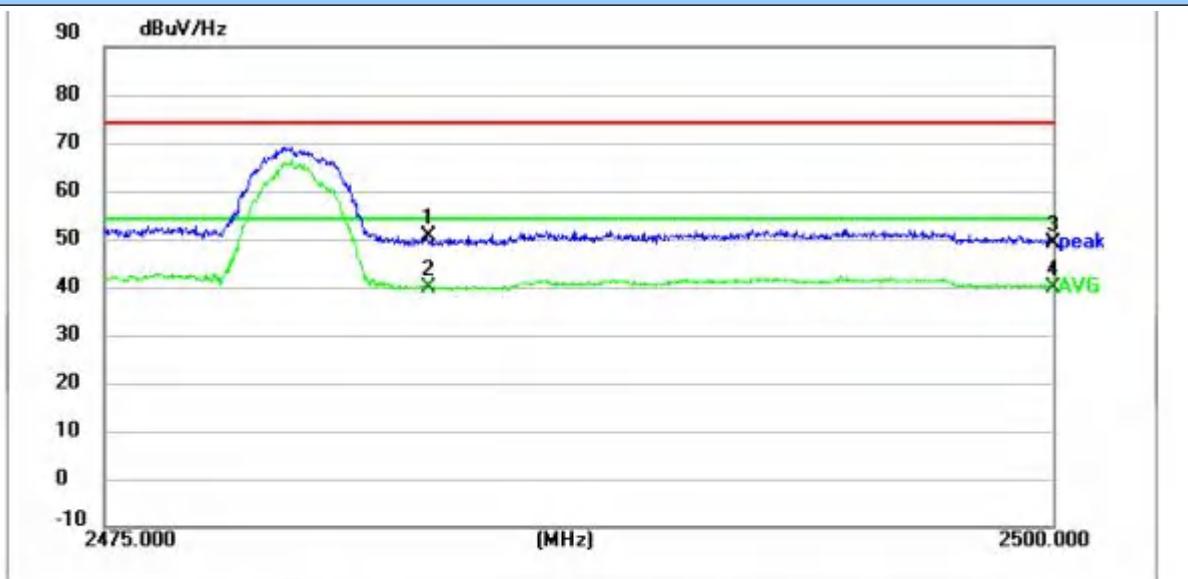

5.2.6.4. Test Data

Have pre-scan all test mode, found 802.11b mode which it was worst case, so only show the worst case's data on this report.

Ant0:

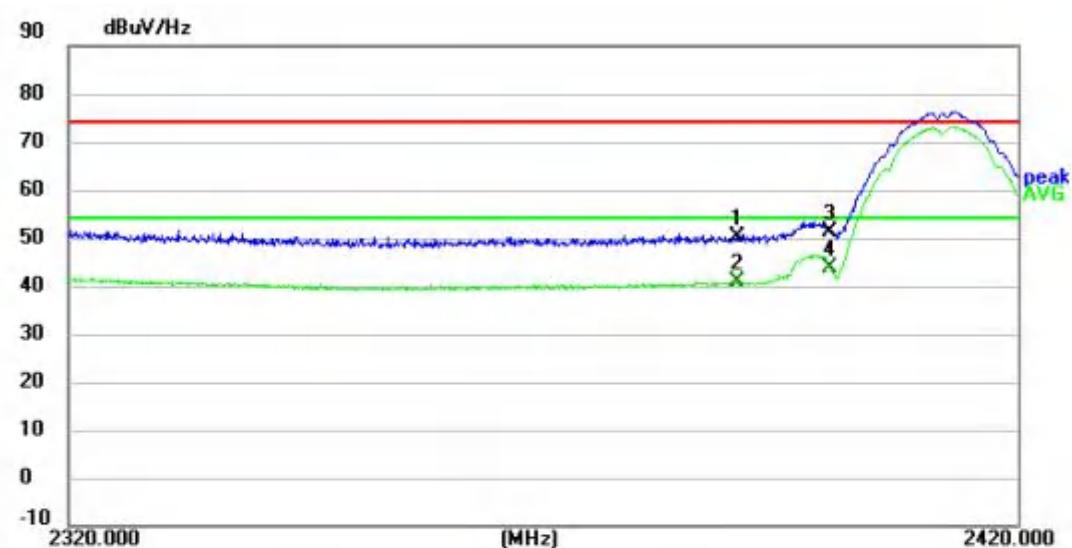


Mode1 / Polarization: Vertical / CH: L

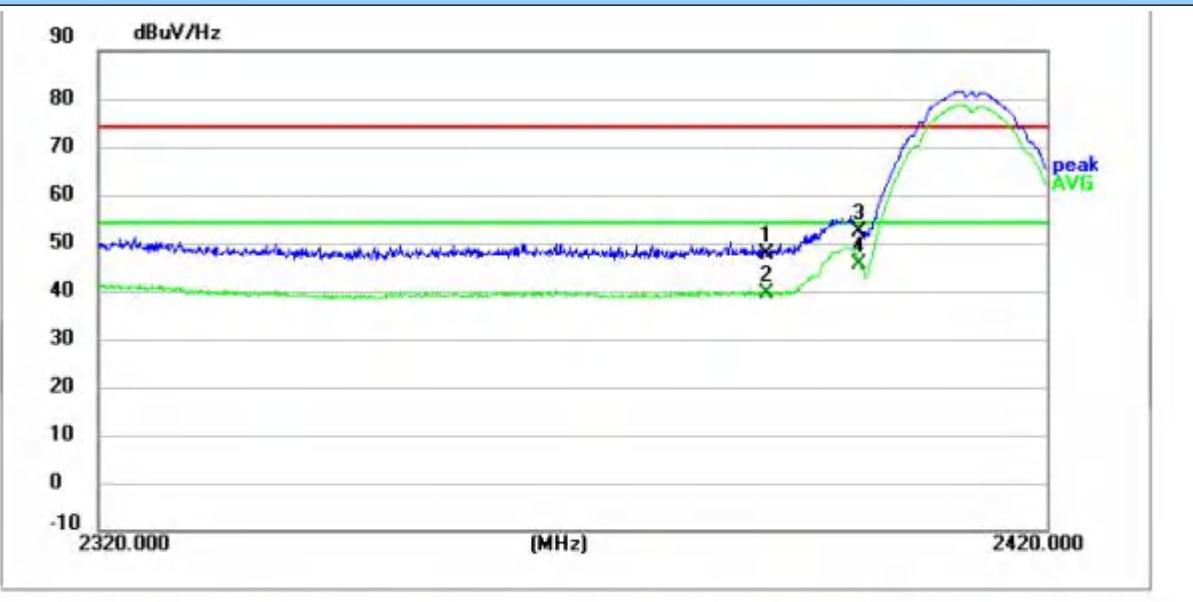

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2390.0000	45.26	2.34	47.60	74.00	26.40	peak
2	2390.0000	36.54	2.34	38.88	54.00	15.12	AVG
3	2400.0000	48.02	2.38	50.40	74.00	23.60	peak
4 *	2400.0000	39.67	2.38	42.05	54.00	11.95	AVG

Mode1 / Polarization: Horizontal / CH: H

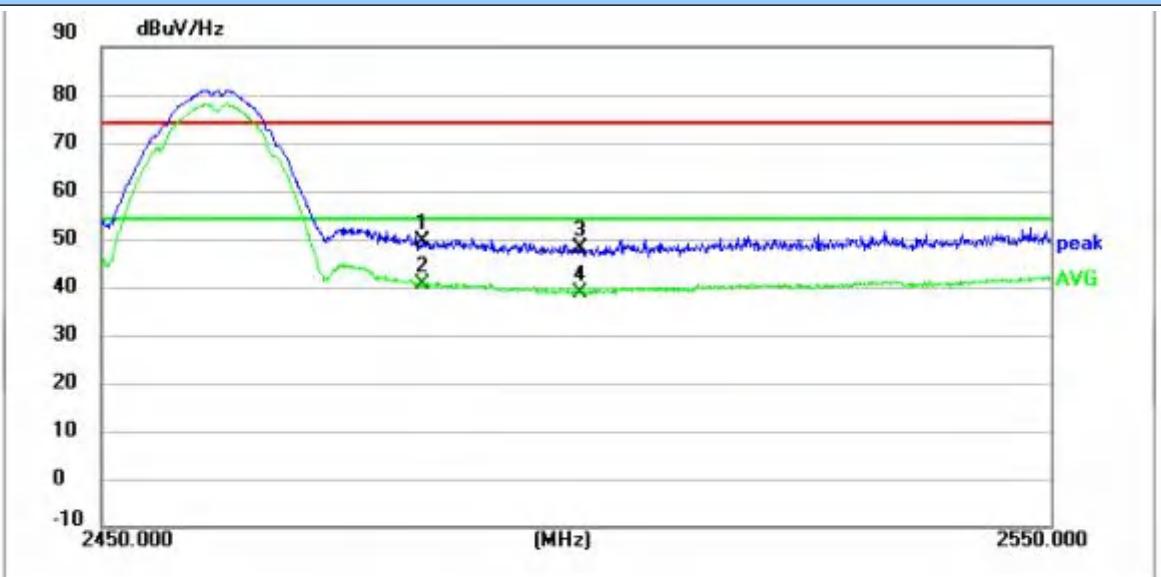
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2483.5000	46.87	2.66	49.53	74.00	24.47	peak
2 *	2483.5000	37.54	2.66	40.20	54.00	13.80	Avg
3	2500.0000	45.60	2.80	48.40	74.00	25.60	peak
4	2500.0000	37.09	2.80	39.89	54.00	14.11	Avg


Mode1 / Polarization: Vertical / CH: H

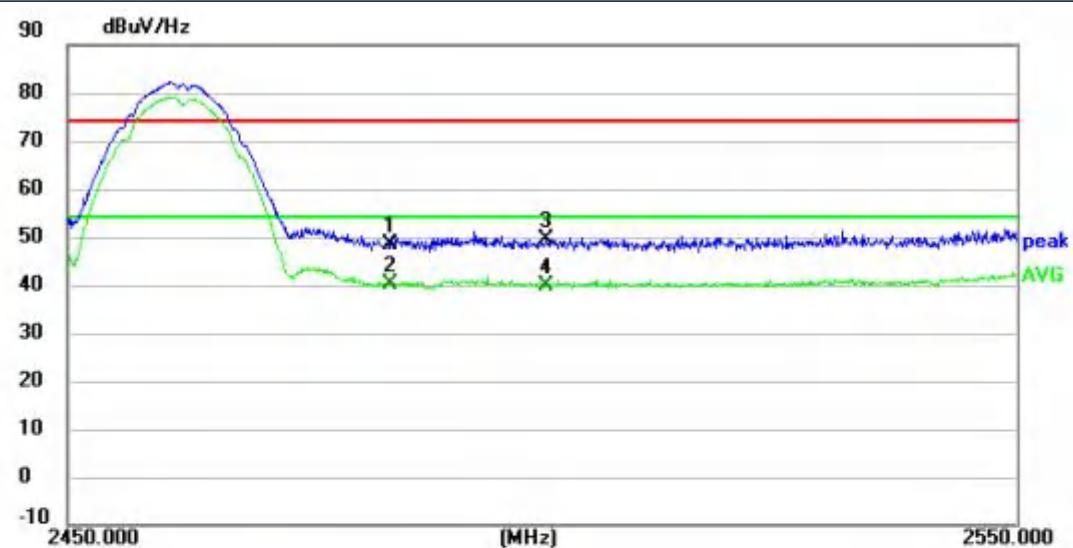
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2483.5000	47.87	2.66	50.53	74.00	23.47	peak
2 *	2483.5000	37.21	2.66	39.87	54.00	14.13	Avg
3	2500.0000	46.34	2.80	49.14	74.00	24.86	peak
4	2500.0000	36.95	2.80	39.75	54.00	14.25	Avg


Ant1:

Mode1 / Polarization: Horizontal / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2390.0000	47.71	2.34	50.05	74.00	23.95	peak
2	2390.0000	38.40	2.34	40.74	54.00	13.26	AVG
3	2400.0000	48.83	2.38	51.21	74.00	22.79	peak
4 *	2400.0000	41.22	2.38	43.60	54.00	10.40	AVG

Mode1 / Polarization: Vertical / CH: L

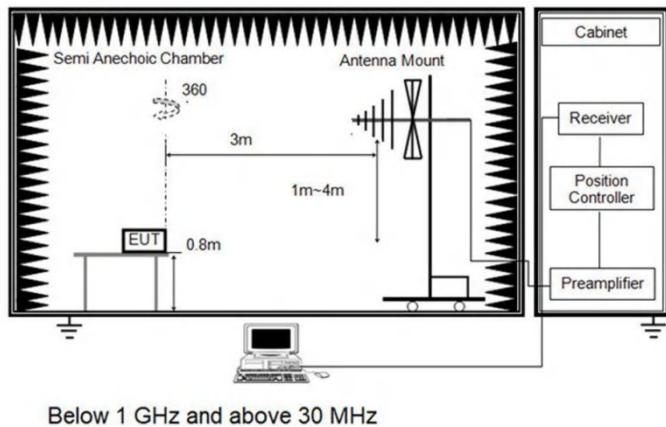

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2390.0000	45.29	2.34	47.63	74.00	26.37	peak
2	2390.0000	37.06	2.34	39.40	54.00	14.60	Avg
3	2400.0000	49.80	2.38	52.18	74.00	21.82	peak
4 *	2400.0000	43.02	2.38	45.40	54.00	8.60	Avg

Mode1 / Polarization: Horizontal / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2483.5000	46.72	2.66	49.38	74.00	24.62	peak
2 *	2483.5000	37.82	2.66	40.48	54.00	13.52	AVG
3	2500.0000	45.11	2.80	47.91	74.00	26.09	peak
4	2500.0000	36.02	2.80	38.82	54.00	15.18	AVG

Mode1 / Polarization: Vertical / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2483.5000	45.57	2.66	48.23	74.00	25.77	peak
2 *	2483.5000	37.50	2.66	40.16	54.00	13.84	AVG
3	2500.0000	46.58	2.80	49.38	74.00	24.62	peak
4	2500.0000	37.20	2.80	40.00	54.00	14.00	AVG

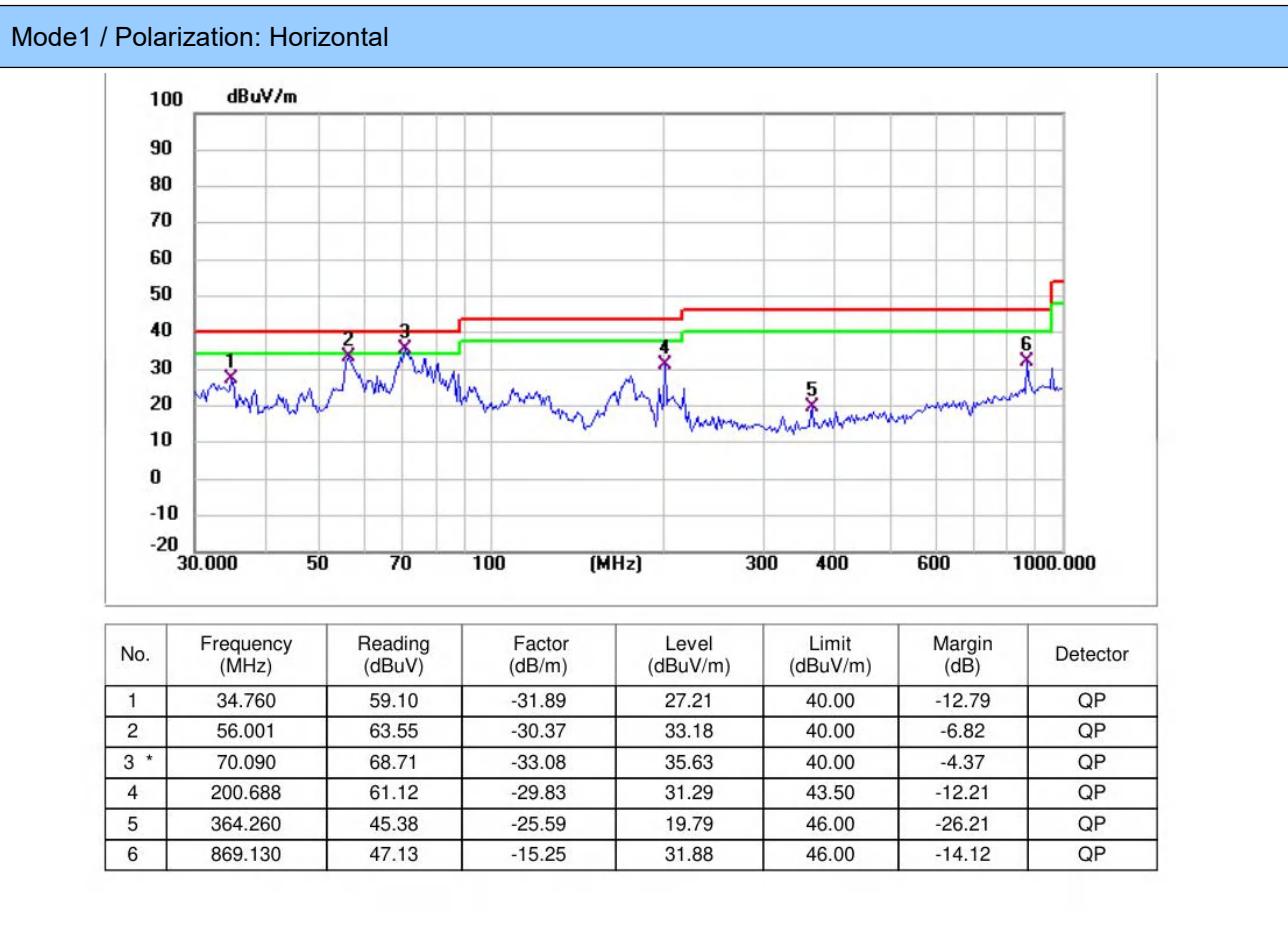

5.2.7. Radiated Spurious Emission (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d). In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
<p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p> <p>In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p>			
Test Method:	ANSI C63.10-2020 section 6.6.4		
Procedure:	<ol style="list-style-type: none"> 1. The EUT was setup and tested according to ANSI C63.10. 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum power setting and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings <ol style="list-style-type: none"> a) Span shall wide enough to fully capture the emission being measured; b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; <p>If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.</p> 		

5.2.7.1. E.U.T. Operation

Operating Environment:					
Temperature:	22.7 °C	Humidity:	56.2 %	Atmospheric Pressure:	102 kPa
Pre test mode:	TM1, TM2, TM3, TM4				
Final test mode:	TM1, TM2, TM3, TM4				

5.2.7.2. Test Setup Diagram


5.2.7.3. Test Result

Pass

5.2.7.4. Test Data

Note: The test is conducted in MIMO mode., found CH1(802.11b) mode and CH1(802.11g) mode which it was worst case, so only show the worst case's data on this report.

Ant0:

Mode1 / Polarization: Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	43.506	52.58	-29.76	22.82	40.00	-17.18	QP
2	70.584	62.40	-33.16	29.24	40.00	-10.76	QP
3	124.569	55.47	-32.70	22.77	43.50	-20.73	QP
4	200.688	54.97	-29.83	25.14	43.50	-18.36	QP
5	361.714	42.05	-25.55	16.50	46.00	-29.50	QP
6 *	952.094	49.62	-13.99	35.63	46.00	-10.37	QP

Mode2 / Polarization: Horizontal / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	53.6931	59.42	-29.97	29.45	40.00	10.55	QP
2	109.7960	59.41	-30.48	28.93	43.50	14.57	QP
3 *	160.3454	67.96	-32.97	34.99	43.50	8.51	QP
4	271.3245	61.30	-28.23	33.07	46.00	12.93	QP
5	374.6225	60.14	-25.51	34.63	46.00	11.37	QP
6	869.1300	52.47	-15.25	37.22	46.00	8.78	QP

Mode2 / Polarization: Vertical / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	49.7066	60.32	-29.12	31.20	40.00	8.80	QP
2	106.7587	58.66	-30.69	27.97	43.50	15.53	QP
3	200.6880	56.90	-29.83	27.07	43.50	16.43	QP
4	312.1792	56.59	-26.84	29.75	46.00	16.25	QP
5	422.0577	60.87	-24.23	36.64	46.00	9.36	QP
6	566.6221	55.33	-20.15	35.18	46.00	10.82	QP

Ant1

Mode1 / Polarization: Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	53.6931	60.42	-29.97	30.45	40.00	-9.55	QP
2	141.3296	68.00	-34.10	33.90	43.50	-9.60	QP
3	269.4282	61.29	-28.28	33.01	46.00	-12.99	QP
4	374.6225	59.64	-25.51	34.13	46.00	-11.87	QP
5	665.8034	48.25	-17.70	30.55	46.00	-15.45	QP
6 *	952.0937	50.60	-13.99	36.61	46.00	-9.39	QP

Mode1 / Polarization: Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	49.7066	58.82	-29.12	29.70	40.00	-10.30	QP
2	106.7587	59.66	-30.69	28.97	43.50	-14.53	QP
3	158.1123	58.06	-33.07	24.99	43.50	-18.51	QP
4	200.6880	57.90	-29.83	28.07	43.50	-15.43	QP
5	305.6800	56.25	-27.02	29.23	46.00	-16.77	QP
6 *	422.0577	60.87	-24.23	36.64	46.00	-9.36	QP

Mode2 / Polarization: Horizontal / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	41.4215	46.71	-30.36	16.35	40.00	-23.65	QP
2	71.5805	47.57	-33.32	14.25	40.00	-25.75	QP
3	139.3610	51.10	-34.14	16.96	43.50	-26.54	QP
4 *	229.2930	55.48	-29.06	26.42	46.00	-19.58	QP
5	607.7866	42.32	-19.01	23.31	46.00	-22.69	QP
6	851.0353	40.80	-15.61	25.19	46.00	-20.81	QP

Mode2 / Polarization: Vertical / CH: L

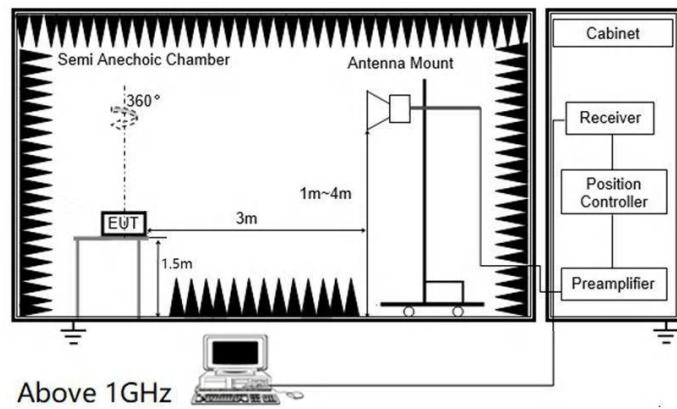
Note:

1) For 9 kHz ~ 30 MHz Measurement

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

2) Level= Reading + Factor; Factor =Antenna Factor+ Cable Loss- Preamp Factor

3) Margin = Limit – Level


5.2.8. Radiated Spurious Emission (Above 1GHz)

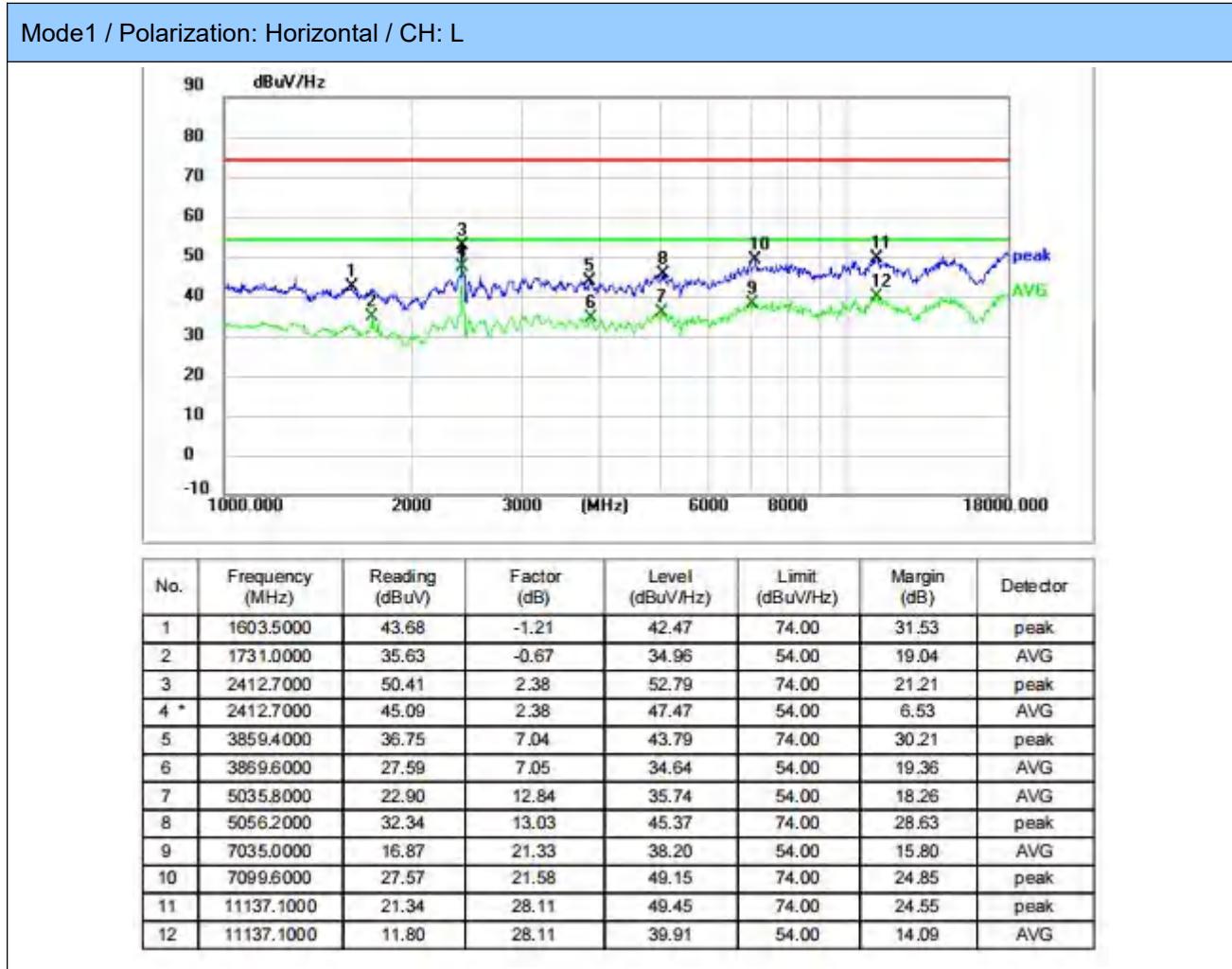
Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
<p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p> <p>In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p>			
Test Method:	ANSI C63.10-2020 section 6.6.4		
Procedure:	<ol style="list-style-type: none"> 1. The EUT was setup and tested according to ANSI C63.10. 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum power setting and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings <ol style="list-style-type: none"> a) Span shall wide enough to fully capture the emission being measured; b) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement For average measurement: use duty cycle correction factor method (DCCF)Averager level = Peak level + DCCF 		

5.2.8.1. E.U.T. Operation

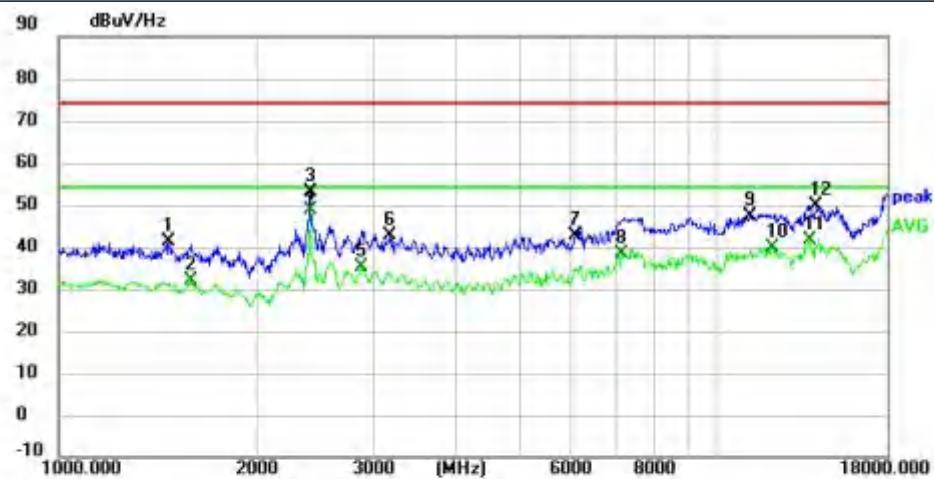
Operating Environment:					
Temperature:	22.7 °C	Humidity:	56.2 %	Atmospheric Pressure:	102 kPa
Pre test mode:	TM1, TM2, TM3, TM4				
Final test mode:	TM1, TM2, TM3, TM4				

5.2.8.2. Test Setup Diagram

5.2.8.3. Test Result

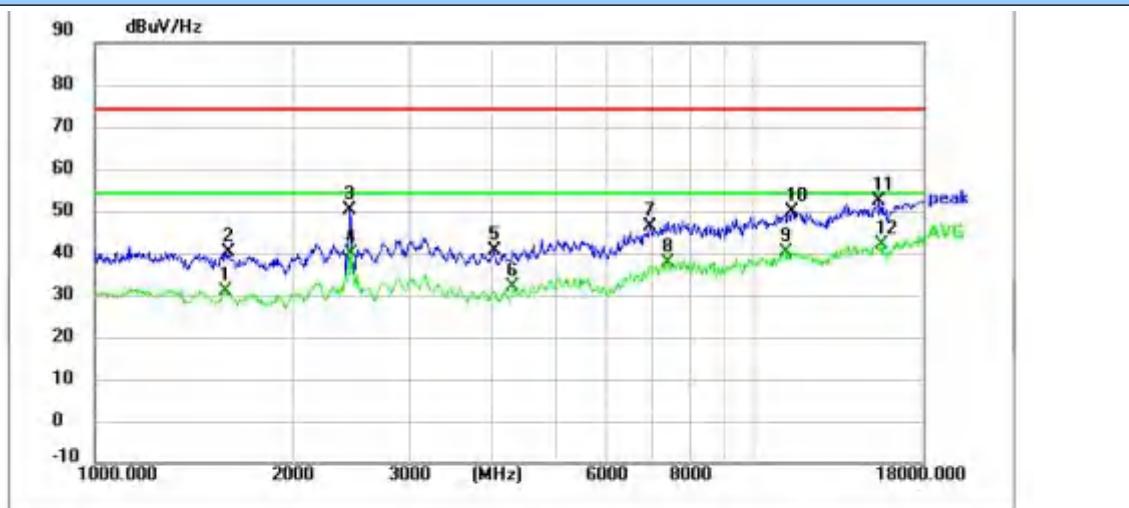

Pass

5.2.8.4. Test Data

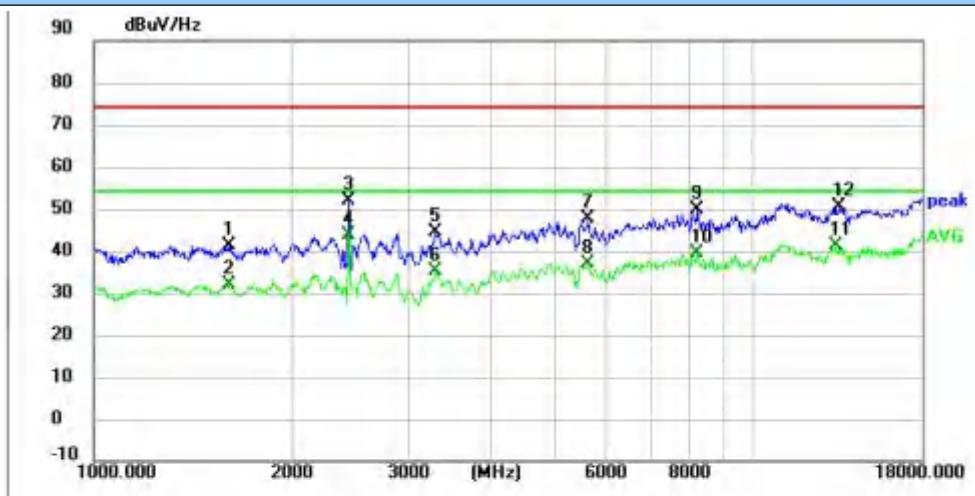

Note:

1. In order to prevent the amplifier from saturating, we add a band-stop filter that filters out the main frequency.
2. 18GHz-25GHz is the background of the site, there is no radiated spurious.
3. Note: The test is conducted in MIMO mode., found 802.11b and 802.11g which it was worst case, so only show the worst case's data on this report.

Ant0:



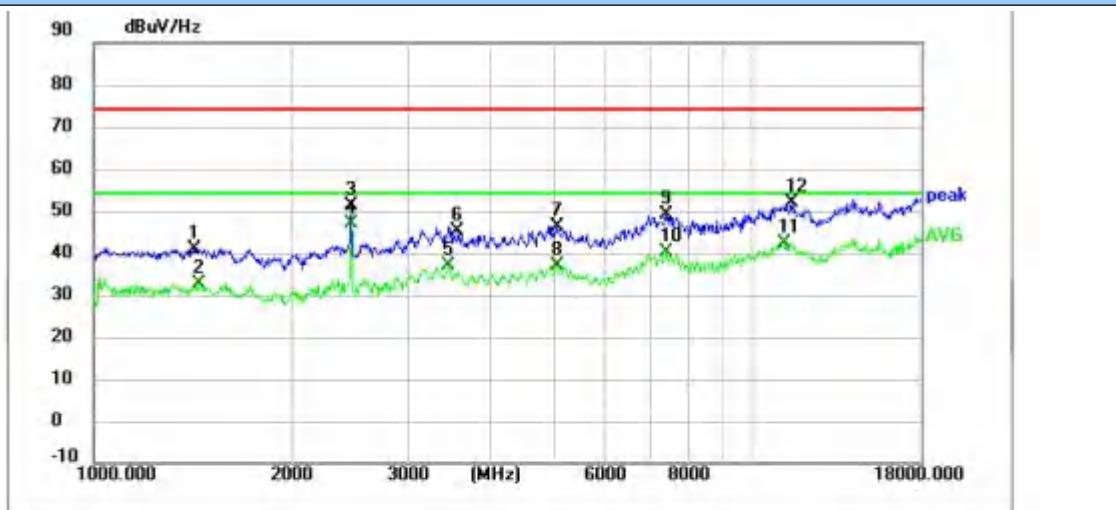
Mode1 / Polarization: Vertical / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1467.5000	42.59	-1.33	41.26	74.00	32.74	peak
2	1586.5000	33.06	-1.27	31.79	54.00	22.21	Avg
3	2412.7000	50.64	2.38	53.02	74.00	20.98	peak
4 *	2412.7000	46.48	2.38	48.86	54.00	5.14	Avg
5	2885.3000	29.58	5.75	35.33	54.00	18.67	Avg
6	3186.2000	36.24	6.51	42.75	74.00	31.25	peak
7	6064.3000	27.11	15.72	42.83	74.00	31.17	peak
8	7131.9000	16.82	21.57	38.39	54.00	15.61	Avg
9	11172.8000	19.11	28.15	47.26	74.00	26.74	peak
10	12112.9000	11.99	27.81	39.80	54.00	14.20	Avg
11	13777.2000	52.77	-11.18	41.59	54.00	12.41	Avg
12	14095.1000	60.66	-10.71	49.95	74.00	24.05	peak

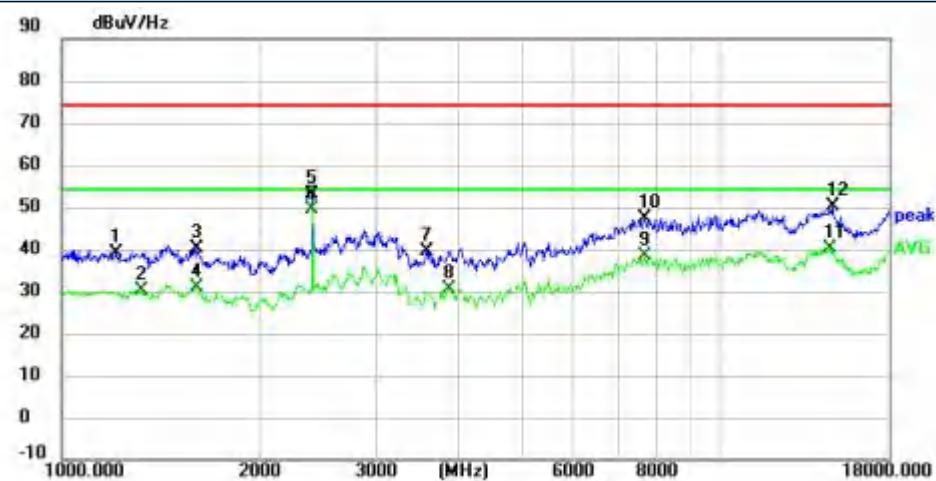
Mode1 / Polarization: Horizontal / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1583.1000	32.04	-1.27	30.77	54.00	23.23	AVG
2	1595.0000	41.42	-1.24	40.18	74.00	33.82	peak
3	2439.9000	47.70	2.39	50.09	74.00	23.91	peak
4	2443.3000	37.43	2.39	39.82	54.00	14.18	AVG
5	4032.8000	33.20	7.30	40.50	74.00	33.50	peak
6	4315.0000	23.92	7.99	31.91	54.00	22.09	AVG
7	6956.8000	25.26	21.01	46.27	74.00	27.73	peak
8	7400.5000	15.54	22.12	37.66	54.00	16.34	AVG
9	11143.9000	12.05	28.11	40.16	54.00	13.84	AVG
10	11429.5000	21.38	28.29	49.67	74.00	24.33	peak
11	15422.8000	64.10	-11.77	52.33	74.00	21.67	peak
12	15654.0000	54.61	-12.66	41.95	54.00	12.05	AVG

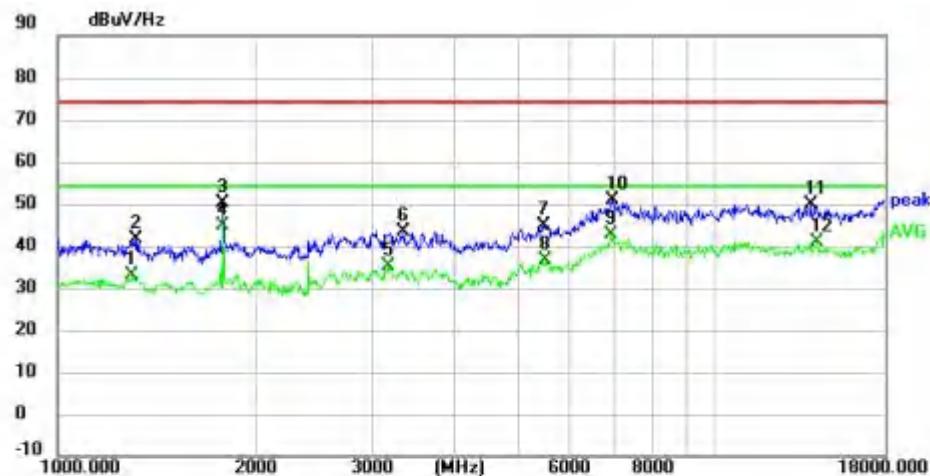
Mode1 / Polarization: Vertical / CH: M


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1605.2000	42.29	-1.21	41.08	74.00	32.92	peak
2	1605.2000	33.04	-1.21	31.83	54.00	22.17	Avg
3	2434.8000	49.65	2.39	52.04	74.00	21.96	peak
4 *	2439.9000	41.45	2.39	43.84	54.00	10.16	Avg
5	3295.0000	38.01	6.44	44.45	74.00	29.55	peak
6	3301.8000	28.78	6.42	35.20	54.00	18.80	Avg
7	5618.9000	32.75	14.79	47.54	74.00	26.46	peak
8	5618.9000	22.23	14.79	37.02	54.00	16.98	Avg
9	8233.5000	26.99	22.76	49.75	74.00	24.25	peak
10	8233.5000	16.55	22.76	39.31	54.00	14.89	Avg
11	13345.4000	52.84	-11.58	41.26	54.00	12.74	Avg
12	13501.8000	62.09	-11.50	50.59	74.00	23.41	peak

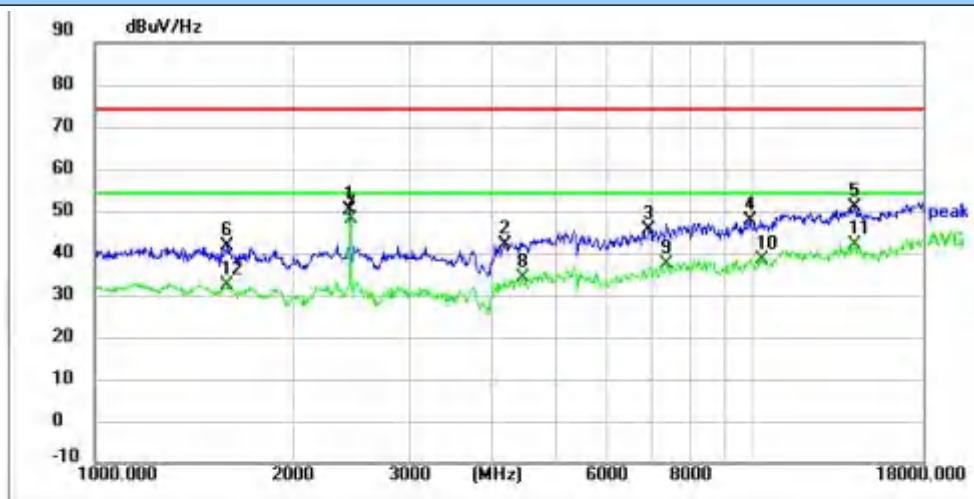
Mode1 / Polarization: Horizontal / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1589.9000	39.37	-1.25	38.12	74.00	35.88	peak
2	1606.9000	31.08	-1.21	29.87	54.00	24.13	AVG
3	2462.0000	49.62	2.49	52.11	74.00	21.89	peak
4 *	2462.0000	44.25	2.49	46.74	54.00	7.26	AVG
5	3164.1000	28.68	6.43	35.11	54.00	18.89	AVG
6	3397.0000	36.26	6.46	42.72	74.00	31.28	peak
7	5039.2000	32.28	12.90	45.18	74.00	28.82	peak
8	5329.9000	22.48	13.65	36.13	54.00	17.87	AVG
9	7380.1000	27.32	22.12	49.44	74.00	24.56	peak
10	7380.1000	17.16	22.12	39.28	54.00	14.72	AVG
11	13071.7000	64.08	-12.09	51.99	74.00	22.01	peak
12	13172.0000	54.88	-11.96	42.92	54.00	11.08	AVG

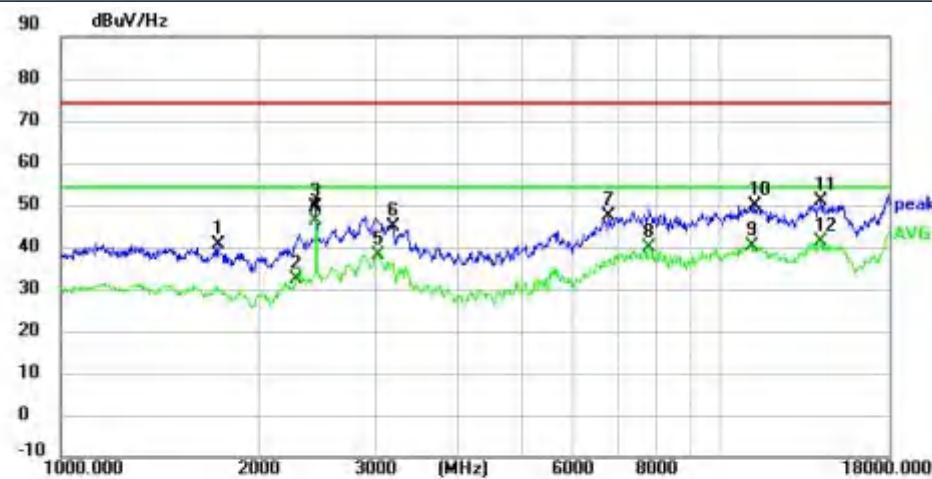
Mode1 / Polarization: Vertical / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1419.9000	42.38	-1.53	40.85	74.00	33.15	peak
2	1443.7000	33.97	-1.37	32.60	54.00	21.40	Avg
3	2462.0000	48.61	2.49	51.10	74.00	22.90	peak
4 *	2462.0000	44.34	2.49	46.83	54.00	7.17	Avg
5	3458.2000	30.57	6.24	36.81	54.00	17.19	Avg
6	3572.1000	38.95	6.33	45.28	74.00	28.72	peak
7	5064.7000	33.28	13.03	46.31	74.00	27.69	peak
8	5064.7000	23.90	13.03	36.93	54.00	17.07	Avg
9	7400.5000	26.89	22.12	49.01	74.00	24.99	peak
10	7400.5000	18.10	22.12	40.22	54.00	13.78	Avg
11	11142.2000	14.35	28.11	42.46	54.00	11.54	Avg
12	11444.8000	23.54	28.28	51.82	74.00	22.18	peak

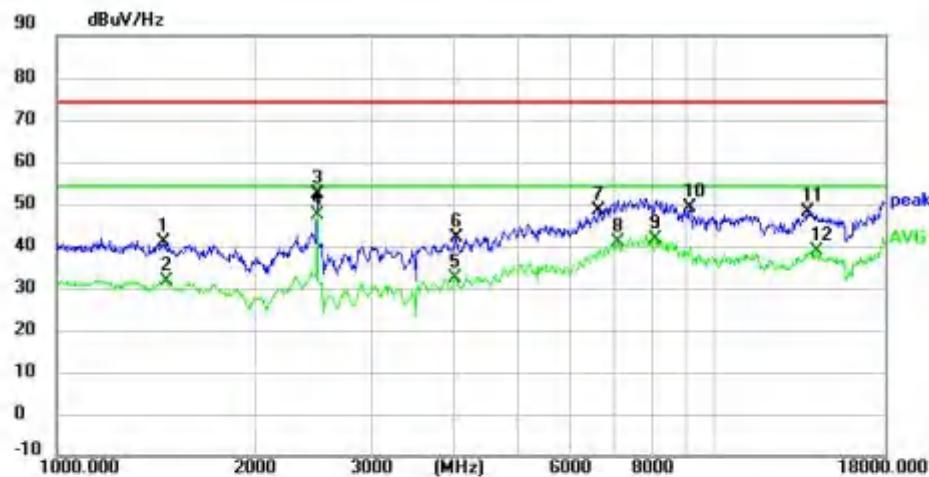
Mode2/ Polarization: Horizontal / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1207.4000	40.82	-1.55	39.27	74.00	34.73	peak
2	1323.0000	31.91	-1.63	30.28	54.00	23.72	Avg
3	1605.2000	41.43	-1.21	40.22	74.00	33.78	peak
4	1605.2000	32.12	-1.21	30.91	54.00	23.09	Avg
5	2404.2000	50.77	2.38	53.15	74.00	20.85	peak
6 *	2404.2000	47.10	2.38	49.48	54.00	4.52	Avg
7	3589.1000	33.18	6.34	39.52	74.00	34.48	peak
8	3878.1000	23.33	7.05	30.38	54.00	23.62	Avg
9	7672.5000	15.66	22.67	38.33	54.00	15.67	Avg
10	7679.3000	24.73	22.66	47.39	74.00	26.61	peak
11	14662.9000	50.92	-10.63	40.29	54.00	13.71	Avg
12	14804.0000	60.70	-10.68	50.02	74.00	23.98	peak

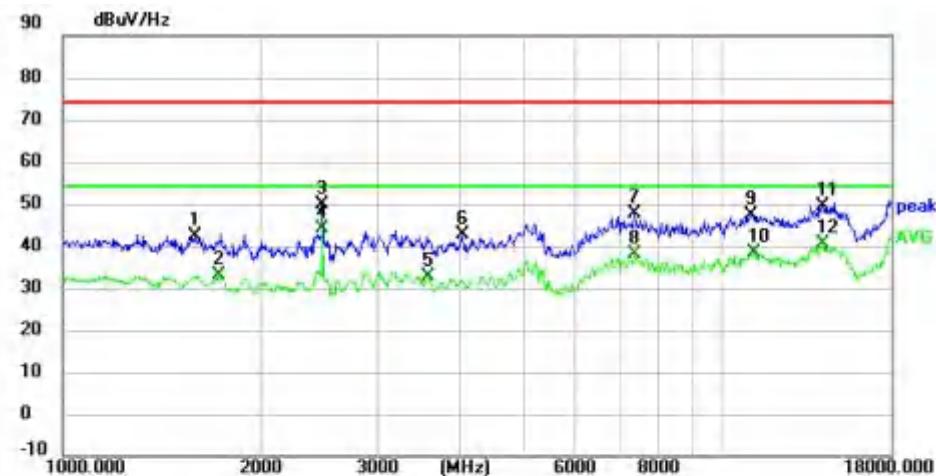
Mode2/ Polarization: Vertical / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1299.2000	34.50	-1.61	32.89	54.00	21.11	AVG
2	1316.2000	43.35	-1.62	41.73	74.00	32.27	peak
3	1785.4000	50.39	-0.27	50.12	74.00	23.88	peak
4 *	1785.4000	45.05	-0.27	44.78	54.00	9.22	AVG
5	3169.2000	28.76	6.45	35.21	54.00	18.79	AVG
6	3352.8000	37.08	6.44	43.52	74.00	30.48	peak
7	5479.5000	30.16	14.60	44.76	74.00	29.24	peak
8	5516.9000	21.88	14.86	36.74	54.00	17.26	AVG
9	6934.7000	21.79	20.86	42.65	54.00	11.35	AVG
10	6961.9000	29.74	21.03	50.77	74.00	23.23	peak
11	13909.8000	60.75	-10.95	49.80	74.00	24.20	peak
12	14234.5000	51.45	-10.55	40.90	54.00	13.10	AVG

Mode2/ Polarization: Horizontal / CH: M

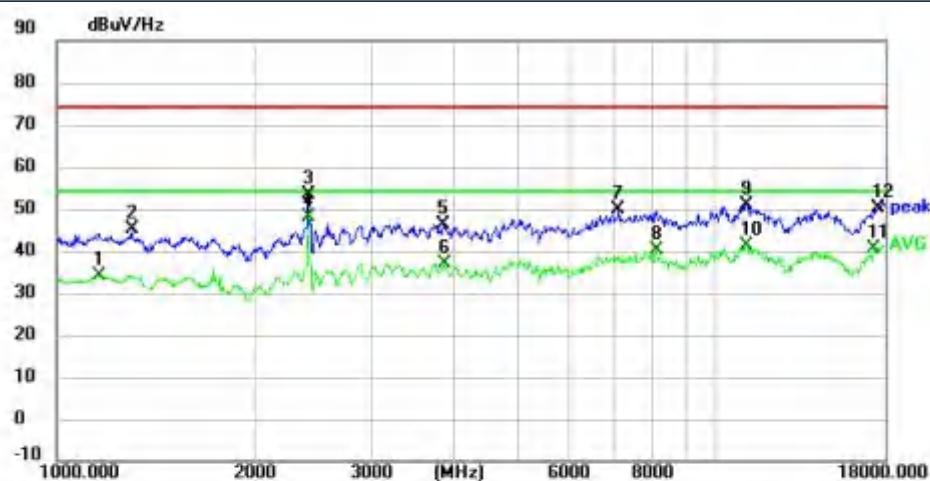

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2441.6000	47.74	2.39	50.13	74.00	23.87	peak
2	4197.7000	34.07	7.90	41.97	74.00	32.03	peak
3	6922.8000	24.90	20.76	45.66	74.00	28.34	peak
4	9843.4000	22.45	25.17	47.62	74.00	26.38	peak
5	14212.4000	61.25	-10.53	50.72	74.00	23.28	peak
6	1591.6000	42.86	-1.25	41.61	74.00	32.39	peak
7 *	2443.3000	45.58	2.39	47.97	54.00	6.03	AVG
8	4459.5000	25.10	8.95	34.05	54.00	19.95	AVG
9	7388.6000	15.16	22.12	37.28	54.00	16.72	AVG
10	10276.9000	12.54	25.99	38.53	54.00	15.47	AVG
11	14212.4000	52.51	-10.53	41.98	54.00	12.02	AVG
12	1591.6000	33.59	-1.25	32.34	54.00	21.66	AVG

Mode2 / Polarization: Vertical / CH: M

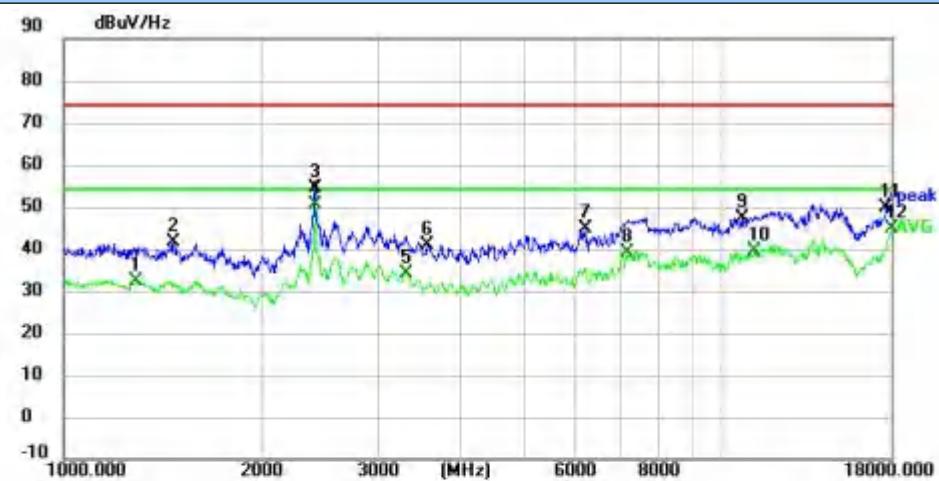

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1734.4000	41.11	-0.63	40.48	74.00	33.52	peak
2	2283.5000	30.20	2.10	32.30	54.00	21.70	Avg
3	2441.6000	47.12	2.39	49.51	74.00	24.49	peak
4 *	2441.6000	43.69	2.39	46.08	54.00	7.92	Avg
5	3036.6000	31.91	6.11	38.02	54.00	15.98	Avg
6	3196.4000	38.39	6.56	44.95	74.00	29.05	peak
7	6793.6000	27.07	20.12	47.19	74.00	26.81	peak
8	7806.8000	17.62	22.10	39.72	54.00	14.28	Avg
9	11142.2000	12.13	28.11	40.24	54.00	13.76	Avg
10	11271.4000	21.64	28.16	49.80	74.00	24.20	peak
11	14217.5000	61.33	-10.54	50.79	74.00	23.21	peak
12	14217.5000	51.91	-10.54	41.37	54.00	12.63	Avg

Mode2 / Polarization: Horizontal / CH: H

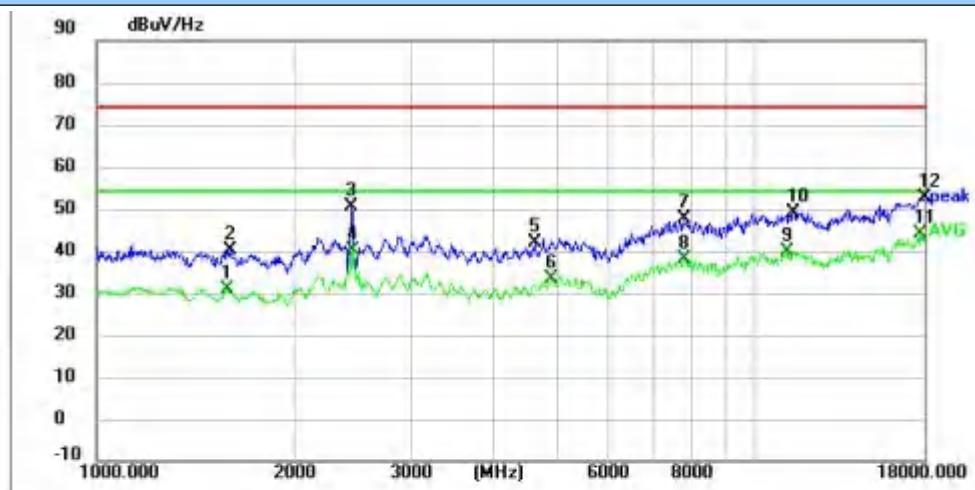
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1452.4200	42.07	-1.32	40.75	74.00	33.25	peak
2	1465.0815	33.01	-1.33	31.68	54.00	22.32	AVG
3	2480.5621	49.54	2.64	52.18	74.00	21.82	peak
4 *	2480.5621	44.65	2.64	47.29	54.00	6.71	AVG
5	4009.9036	25.11	7.30	32.41	54.00	21.59	AVG
6	4033.1743	34.56	7.30	41.86	74.00	32.14	peak
7	6633.9161	28.65	19.57	48.22	74.00	25.78	peak
8	7090.3905	19.20	21.54	40.74	54.00	13.26	AVG
9	8099.7290	18.82	22.81	41.63	54.00	12.37	AVG
10	9093.5119	25.99	23.18	49.17	74.00	24.83	peak
11	13793.4160	59.36	-11.17	48.19	74.00	25.81	peak
12	14198.3253	49.35	-10.52	38.83	54.00	15.17	AVG


Mode2 / Polarization: Vertical / CH: H

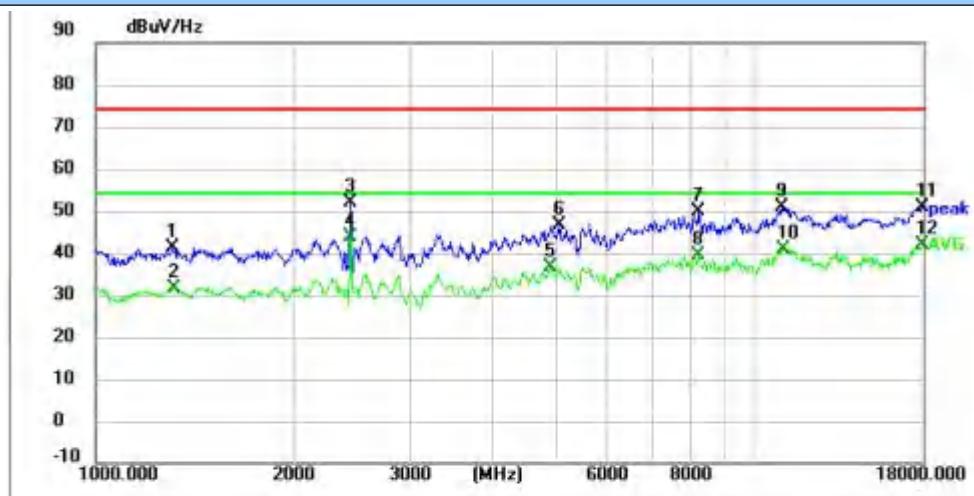
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1586.5000	43.63	-1.27	42.36	74.00	31.64	peak
2	1725.9000	33.76	-0.71	33.05	54.00	20.95	Avg
3	2482.4000	47.11	2.66	49.77	74.00	24.23	peak
4 *	2482.4000	41.44	2.66	44.10	54.00	9.90	Avg
5	3589.1000	26.24	6.34	32.58	54.00	21.42	Avg
6	4032.8000	35.34	7.30	42.64	74.00	31.36	peak
7	7363.1000	25.68	22.13	47.81	74.00	26.19	peak
8	7386.9000	15.78	22.12	37.90	54.00	16.10	Avg
9	11070.8000	19.42	28.06	47.48	74.00	26.52	peak
10	11150.7000	10.30	28.12	38.42	54.00	15.58	Avg
11	14171.6000	60.10	-10.58	49.52	74.00	24.48	peak
12	14224.3000	50.99	-10.54	40.45	54.00	13.55	Avg


Ant1:

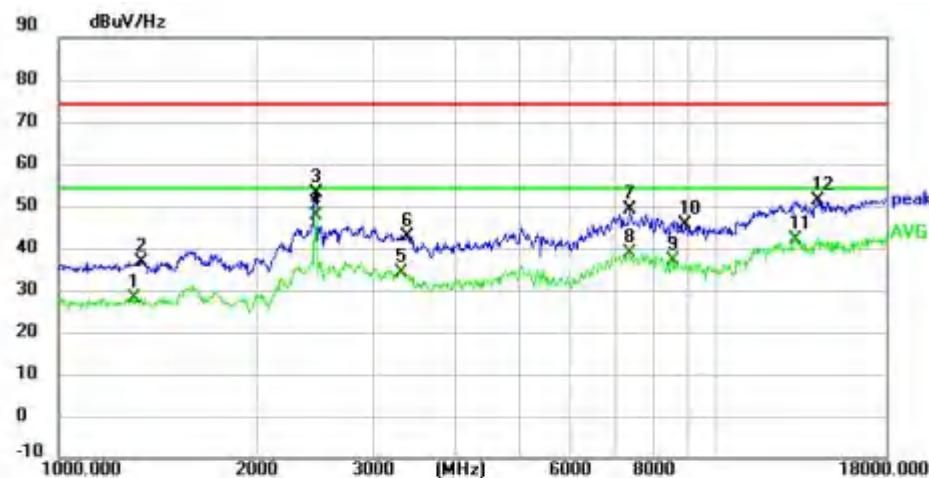
Mode1 / Polarization: Horizontal / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1159.8000	35.91	-1.67	34.24	54.00	-19.76	Avg
2	1304.3000	46.92	-1.61	45.31	74.00	-28.69	peak
3	2412.7000	50.91	2.38	53.29	74.00	-20.71	peak
4 *	2412.7000	45.59	2.38	47.97	54.00	-6.03	Avg
5	3859.4000	39.25	7.04	46.29	74.00	-27.71	peak
6	3869.6000	30.09	7.05	37.14	54.00	-16.86	Avg
7	7099.6000	28.07	21.58	49.65	74.00	-24.35	peak
8	8117.9000	17.45	22.67	40.12	54.00	-13.88	Avg
9	11137.1000	22.84	28.11	50.95	74.00	-23.05	peak
10	11137.1000	13.30	28.11	41.41	54.00	-12.59	Avg
11	17377.8000	52.48	-11.92	40.56	54.00	-13.44	Avg
12	17581.8000	61.23	-11.17	50.06	74.00	-23.94	peak

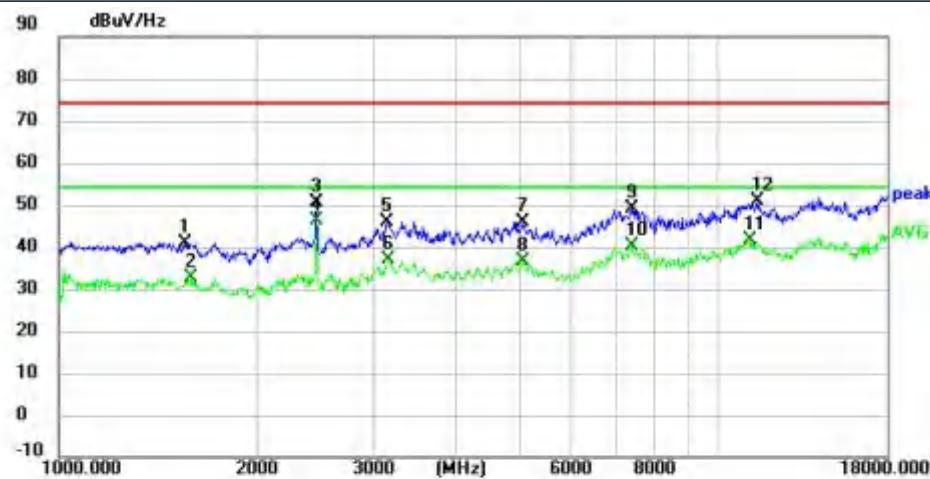
Mode1 / Polarization: Vertical / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1292.4000	33.80	-1.60	32.20	54.00	-21.80	AVG
2	1467.5000	43.09	-1.33	41.76	74.00	-32.24	peak
3	2412.7000	52.14	2.38	54.52	74.00	-19.48	peak
4 *	2412.7000	47.98	2.38	50.36	54.00	-3.64	AVG
5	3323.9000	27.65	6.43	34.08	54.00	-19.92	AVG
6	3575.5000	34.50	6.33	40.83	74.00	-33.17	peak
7	6195.2000	28.19	16.50	44.69	74.00	-29.31	peak
8	7179.5000	17.28	21.80	39.08	54.00	-14.92	AVG
9	10724.0000	20.56	26.91	47.47	74.00	-26.53	peak
10	11172.8000	11.35	28.15	39.50	54.00	-14.50	AVG
11	17692.3000	60.64	-10.64	50.00	74.00	-24.00	peak
12	18000.0000	53.72	-8.90	44.82	54.00	-9.18	AVG

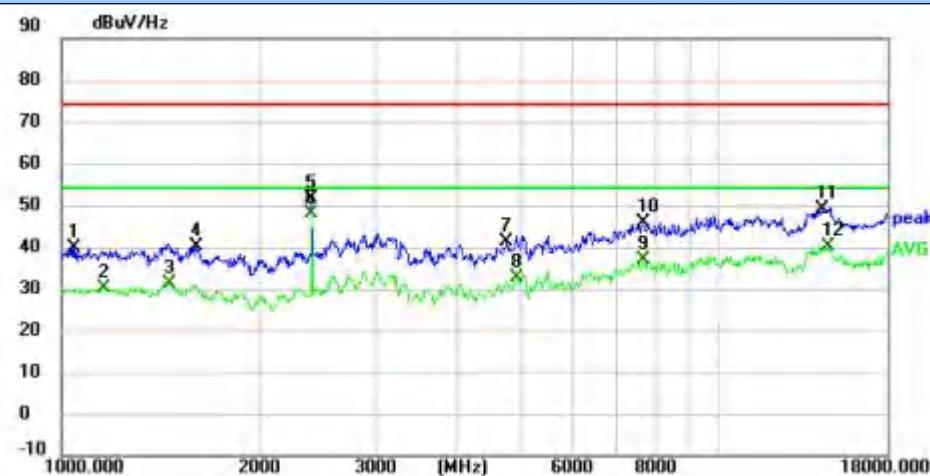
Mode1 / Polarization: Horizontal / CH: M


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1583.1000	32.04	-1.27	30.77	54.00	-23.23	AVG
2	1595.0000	41.42	-1.24	40.18	74.00	-33.82	peak
3	2439.9000	48.20	2.39	50.59	74.00	-23.41	peak
4	2443.3000	37.93	2.39	40.32	54.00	-13.68	AVG
5	4619.3000	32.37	9.56	41.93	74.00	-32.07	peak
6	4915.1000	22.02	11.51	33.53	54.00	-20.47	AVG
7	7806.8000	25.43	22.10	47.53	74.00	-26.47	peak
8	7806.8000	16.10	22.10	38.20	54.00	-15.80	AVG
9	11143.9000	11.55	28.11	39.66	54.00	-14.34	AVG
10	11429.5000	20.88	28.29	49.17	74.00	-24.83	peak
11 *	17838.5000	54.04	-9.77	44.27	54.00	-9.73	AVG
12	18000.0000	61.73	-8.90	52.83	74.00	-21.17	peak

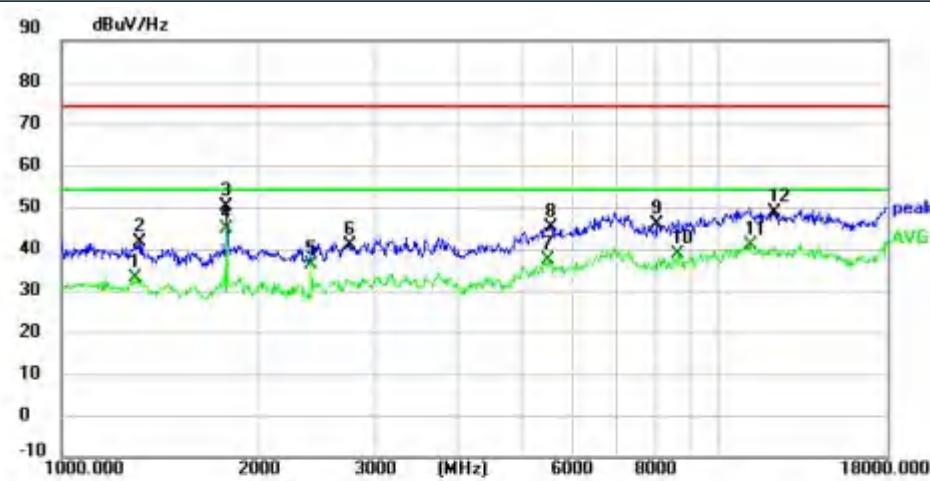
Mode1 / Polarization: Vertical / CH: M


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1309.4000	42.71	-1.62	41.09	74.00	-32.91	peak
2	1312.8000	33.36	-1.62	31.74	54.00	-22.26	AVG
3	2434.8000	49.65	2.39	52.04	74.00	-21.96	peak
4	2439.9000	41.45	2.39	43.84	54.00	-10.16	AVG
5	4903.2000	25.18	11.41	36.59	54.00	-17.41	AVG
6	5054.5000	33.42	13.03	46.45	74.00	-27.55	peak
7	8233.5000	26.99	22.76	49.75	74.00	-24.25	peak
8	8233.5000	16.55	22.76	39.31	54.00	-14.69	AVG
9	10999.4000	22.63	28.10	50.73	74.00	-23.27	peak
10	11106.5000	12.90	28.07	40.97	54.00	-13.03	AVG
11	17996.6000	59.86	-8.92	50.94	74.00	-23.06	peak
12	17996.6000	50.91	-8.92	41.99	54.00	-12.01	AVG

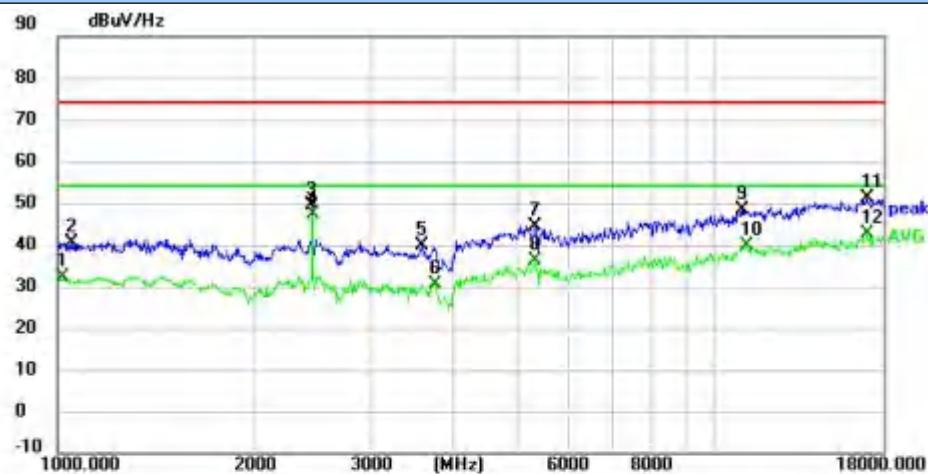
Mode1 / Polarization: Horizontal / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1306.0000	29.72	-1.61	28.11	54.00	-25.89	AVG
2	1340.0000	38.29	-1.64	36.65	74.00	-37.35	peak
3	2462.0000	50.62	2.49	53.11	74.00	-20.89	peak
4 *	2462.0000	45.25	2.49	47.74	54.00	-6.26	AVG
5	3318.8000	27.75	6.43	34.18	54.00	-19.82	AVG
6	3385.1000	36.17	6.45	42.62	74.00	-31.38	peak
7	7380.1000	26.82	22.12	48.94	74.00	-25.06	peak
8	7380.1000	16.66	22.12	38.78	54.00	-15.22	AVG
9	8549.7000	14.17	22.85	37.02	54.00	-16.98	AVG
10	8964.5000	22.59	22.78	45.37	74.00	-28.63	peak
11	13172.0000	53.88	-11.96	41.92	54.00	-12.08	AVG
12	14229.4000	61.87	-10.55	51.32	74.00	-22.68	peak

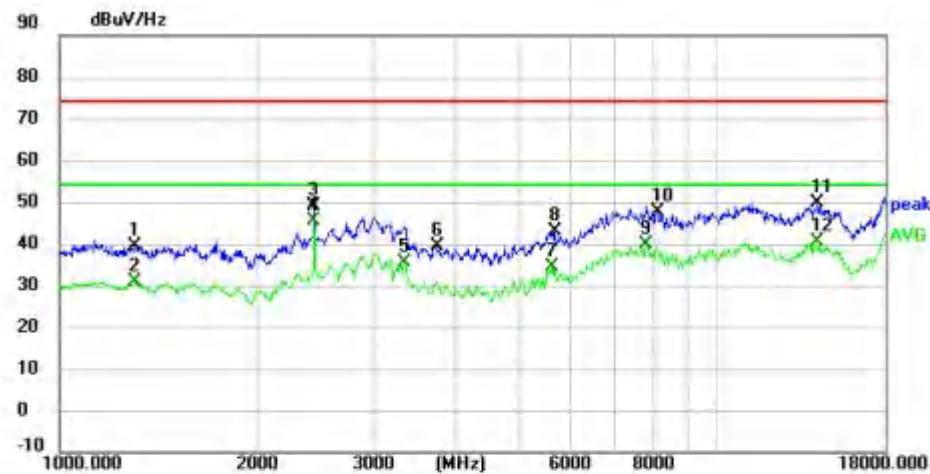
Mode1 / Polarization: Vertical / CH: H


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1552.5000	42.24	-1.39	40.85	74.00	-33.15	peak
2	1584.8000	33.86	-1.27	32.59	54.00	-21.41	AVG
3	2462.0000	48.11	2.49	50.60	74.00	-23.40	peak
4 *	2462.0000	43.84	2.49	46.33	54.00	-7.67	AVG
5	3145.4000	39.68	6.34	46.02	74.00	-27.98	peak
6	3167.5000	30.38	6.43	36.81	54.00	-17.19	AVG
7	5064.7000	32.78	13.03	45.81	74.00	-28.19	peak
8	5064.7000	23.40	13.03	36.43	54.00	-17.57	AVG
9	7400.5000	26.89	22.12	49.01	74.00	-24.99	peak
10	7400.5000	18.10	22.12	40.22	54.00	-13.78	AVG
11	11142.2000	13.35	28.11	41.46	54.00	-12.54	AVG
12	11444.8000	22.54	28.28	50.82	74.00	-23.18	peak

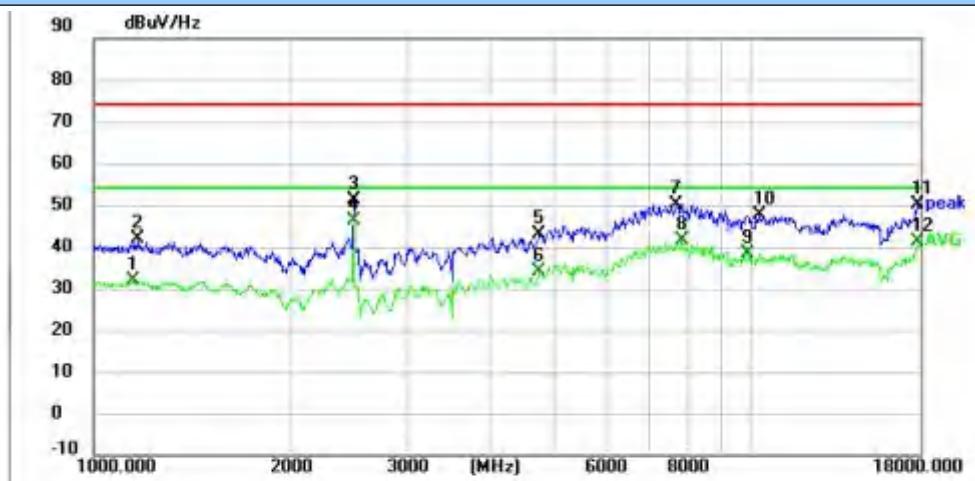
Mode2/ Polarization: Horizontal / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1049.3000	41.96	-2.03	39.93	74.00	-34.07	peak
2	1161.5000	31.92	-1.67	30.25	54.00	-23.75	AVG
3	1460.7000	32.71	-1.32	31.39	54.00	-22.61	AVG
4	1605.2000	41.43	-1.21	40.22	74.00	-33.78	peak
5	2404.2000	49.27	2.38	51.65	74.00	-22.35	peak
6 *	2404.2000	45.60	2.38	47.98	54.00	-6.02	AVG
7	4751.9000	31.16	10.00	41.16	74.00	-32.84	peak
8	4916.8000	21.23	11.53	32.76	54.00	-21.24	AVG
9	7672.5000	14.16	22.67	36.83	54.00	-17.17	AVG
10	7679.3000	23.23	22.66	45.89	74.00	-28.11	peak
11	14399.4000	59.52	-10.44	49.08	74.00	-24.92	peak
12	14662.9000	50.92	-10.63	40.29	54.00	-13.71	AVG

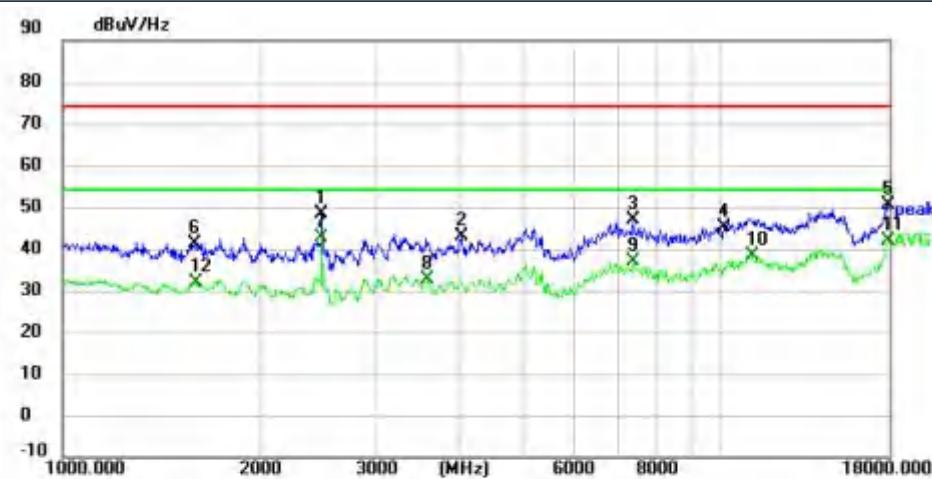
Mode2/ Polarization: Vertical / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1299.2000	34.50	-1.61	32.89	54.00	-21.11	AVG
2	1316.2000	43.35	-1.62	41.73	74.00	-32.27	peak
3	1785.4000	50.39	-0.27	50.12	74.00	-23.88	peak
4 *	1785.4000	45.05	-0.27	44.78	54.00	-9.22	AVG
5	2404.2000	33.79	2.38	36.17	54.00	-17.83	AVG
6	2752.7000	36.05	4.69	40.74	74.00	-33.26	peak
7	5516.9000	22.38	14.86	37.24	54.00	-16.76	AVG
8	5552.6000	30.49	14.86	45.35	74.00	-28.65	peak
9	8075.4000	22.97	22.81	45.78	74.00	-28.22	peak
10	8685.7000	15.95	22.67	38.62	54.00	-15.38	AVG
11	11152.4000	12.63	28.12	40.75	54.00	-13.25	AVG
12	12167.3000	21.05	27.82	48.87	74.00	-25.13	peak

Mode2/ Polarization: Horizontal / CH: M


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1022.1000	34.43	-2.02	32.41	54.00	-21.59	AVG
2	1056.1000	42.42	-2.00	40.42	74.00	-33.58	peak
3	2441.6000	47.24	2.39	49.63	74.00	-24.37	peak
4 *	2443.3000	45.08	2.39	47.47	54.00	-6.53	AVG
5	3590.8000	33.54	6.34	39.88	74.00	-34.12	peak
6	3760.8000	23.90	6.80	30.70	54.00	-23.30	AVG
7	5329.9000	30.86	13.65	44.51	74.00	-29.49	peak
8	5338.4000	22.53	13.61	36.14	54.00	-17.86	AVG
9	10994.3000	20.17	28.06	48.23	74.00	-25.77	peak
10	11149.0000	11.52	28.13	39.65	54.00	-14.35	AVG
11	17085.4000	63.29	-12.21	51.08	74.00	-22.92	peak
12	17085.4000	54.94	-12.21	42.73	54.00	-11.27	AVG

Mode2 / Polarization: Vertical / CH: M


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1304.3000	41.22	-1.61	39.61	74.00	-34.39	peak
2	1307.7000	32.38	-1.62	30.76	54.00	-23.24	AVG
3	2441.6000	46.62	2.39	49.01	74.00	-24.99	peak
4 *	2441.6000	43.19	2.39	45.58	54.00	-8.42	AVG
5	3349.4000	29.04	6.44	35.48	54.00	-18.52	AVG
6	3755.7000	32.67	6.80	39.47	74.00	-34.53	peak
7	5613.8000	19.77	14.77	34.54	54.00	-19.46	AVG
8	5675.0000	28.05	15.04	43.09	74.00	-30.91	peak
9	7806.8000	17.62	22.10	39.72	54.00	-14.28	AVG
10	8112.8000	24.89	22.71	47.60	74.00	-26.40	peak
11	14217.5000	60.33	-10.54	49.79	74.00	-24.21	peak
12	14217.5000	50.91	-10.54	40.37	54.00	-13.63	AVG

Mode2 / Polarization: Horizontal / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1148.9824	33.59	-1.70	31.89	54.00	-22.11	AVG
2	1169.1022	43.45	-1.64	41.81	74.00	-32.19	peak
3	2480.5621	48.54	2.64	51.18	74.00	-22.82	peak
4 *	2480.5621	43.65	2.64	46.29	54.00	-7.71	AVG
5	4756.2990	32.94	10.06	43.00	74.00	-31.00	peak
6	4756.2990	24.07	10.06	34.13	54.00	-19.87	AVG
7	7688.7010	27.67	22.66	50.33	74.00	-23.67	peak
8	7823.3388	19.35	22.22	41.57	54.00	-12.43	AVG
9	9832.3636	13.07	25.18	38.25	54.00	-15.75	AVG
10	10298.2255	21.79	26.01	47.80	74.00	-26.20	peak
11	17896.1431	59.55	-9.42	50.13	74.00	-23.87	peak
12	17896.1431	50.77	-9.42	41.35	54.00	-12.65	AVG

Mode2 / Polarization: Vertical / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2482.4000	45.61	2.66	48.27	74.00	-25.73	peak
2	4032.8000	35.84	7.30	43.14	74.00	-30.86	peak
3	7363.1000	24.68	22.13	46.81	74.00	-27.19	peak
4	10123.9000	19.73	25.59	45.32	74.00	-28.68	peak
5	17976.2000	59.63	-9.02	50.61	74.00	-23.39	peak
6	1586.5000	42.63	-1.27	41.36	74.00	-32.64	peak
7 *	2482.4000	39.94	2.66	42.60	54.00	-11.40	Avg
8	3589.1000	26.24	6.34	32.58	54.00	-21.42	Avg
9	7386.9000	14.78	22.12	36.90	54.00	-17.10	Avg
10	11150.7000	10.30	28.12	38.42	54.00	-15.58	Avg
11	17976.2000	50.83	-9.02	41.81	54.00	-12.19	Avg
12	1595.0000	33.27	-1.24	32.03	54.00	-21.97	Avg

Note:

- 1) Level= Reading + Factor; Factor =Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit – Level
- 3) Average measurement was not performed if peak level is lower than average limit (54dBuV/m) for above 1GHz.

6. TEST SETUP PHOTOS

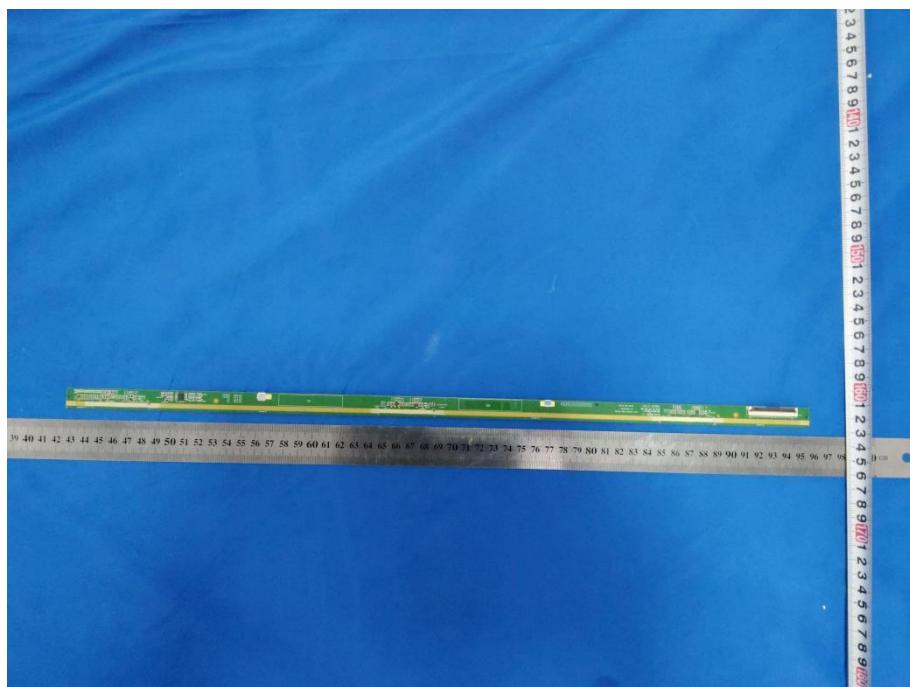
Conducted Emission at AC power line

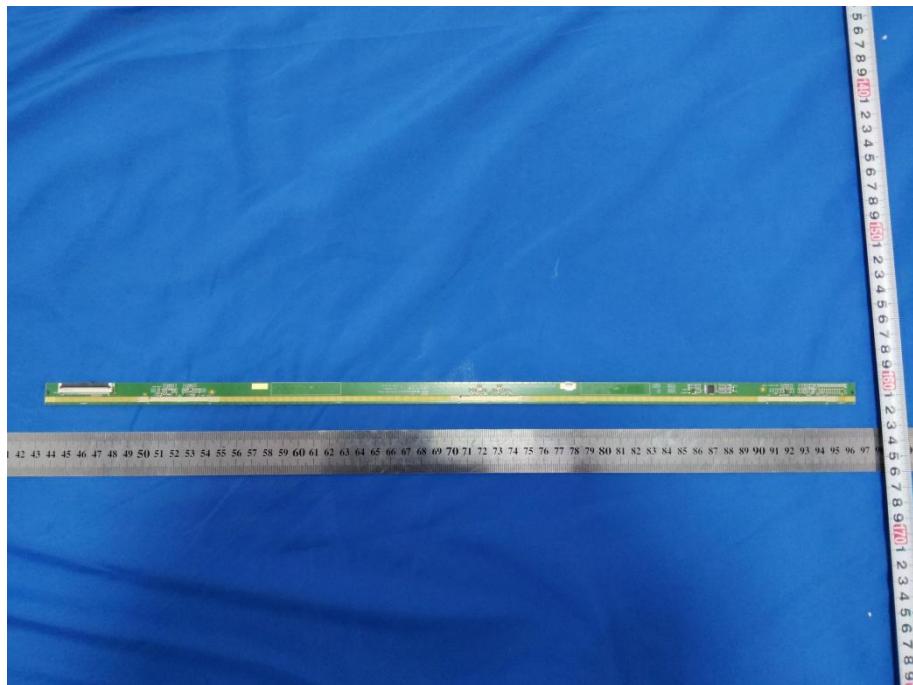
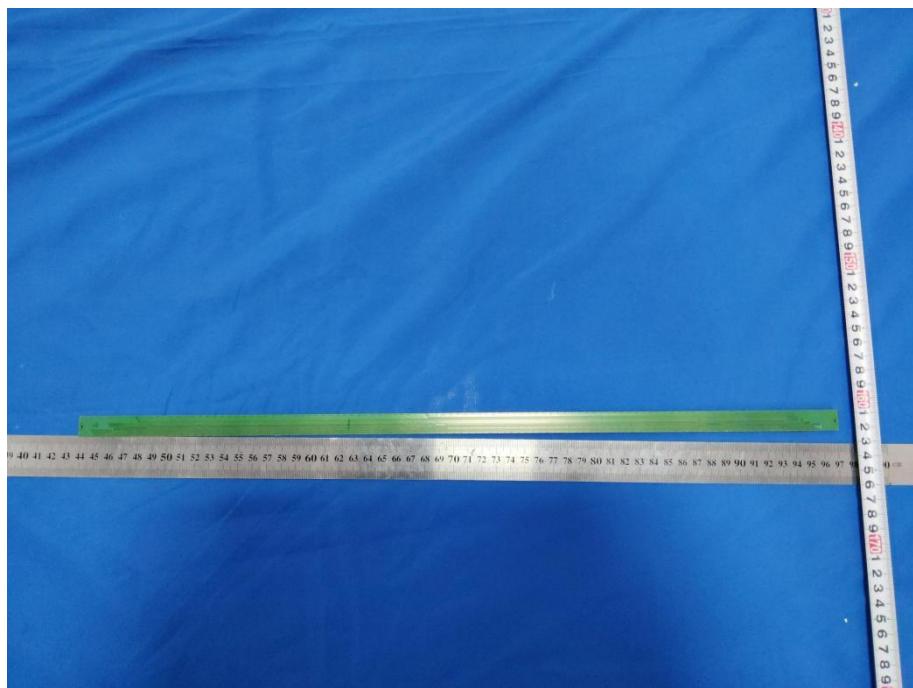
Radiated band edge emission
Radiated Spurious Emission (Above 1GHz)

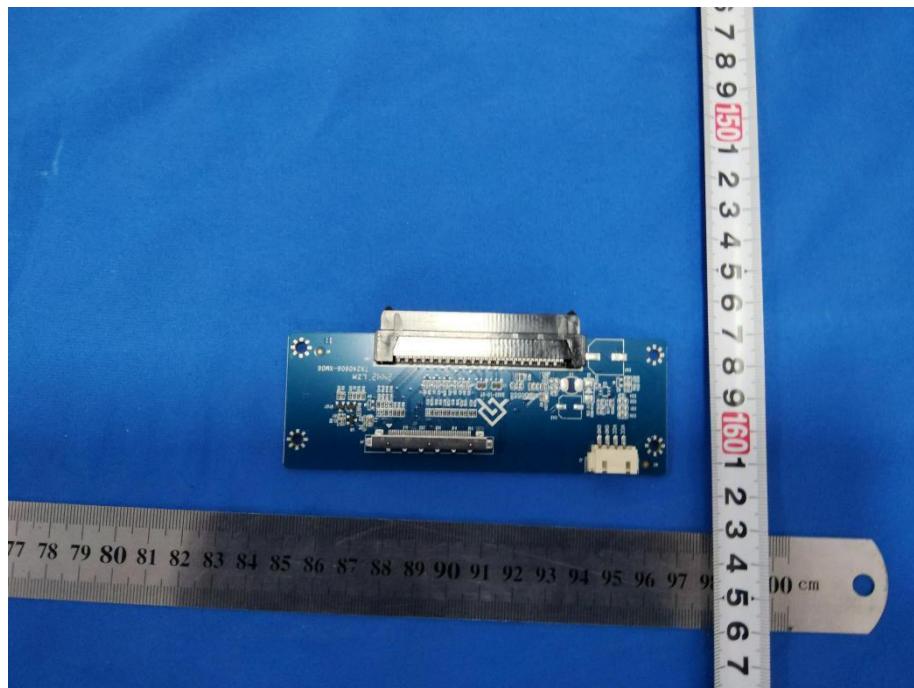
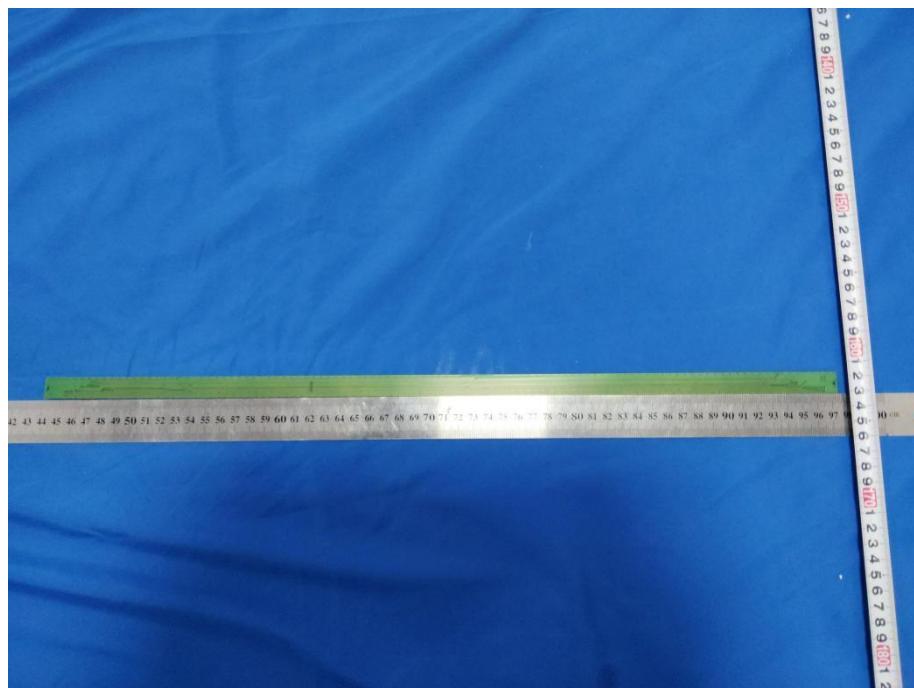
Radiated Spurious Emission (below 1GHz)

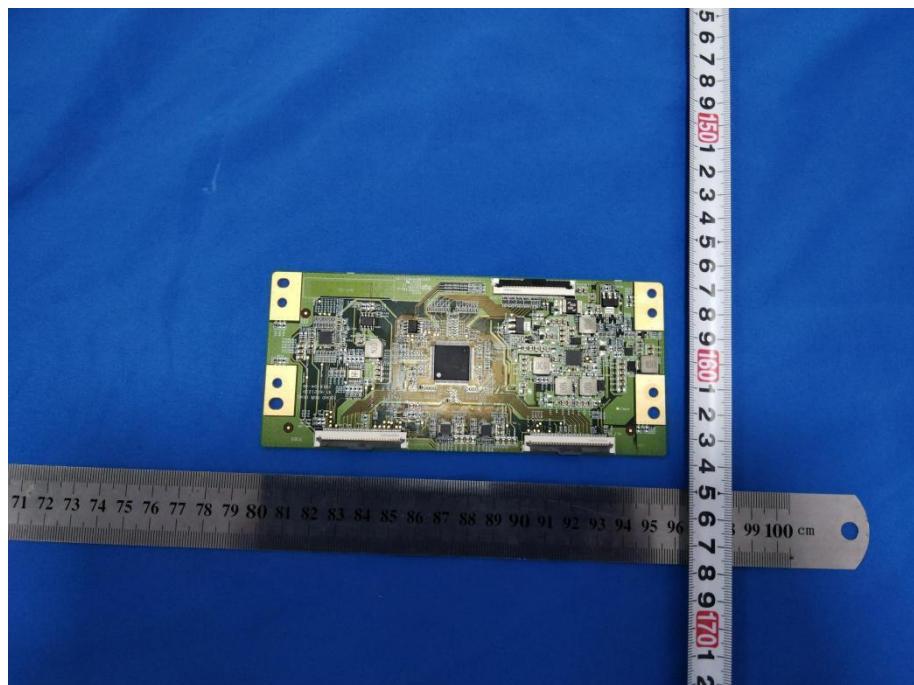
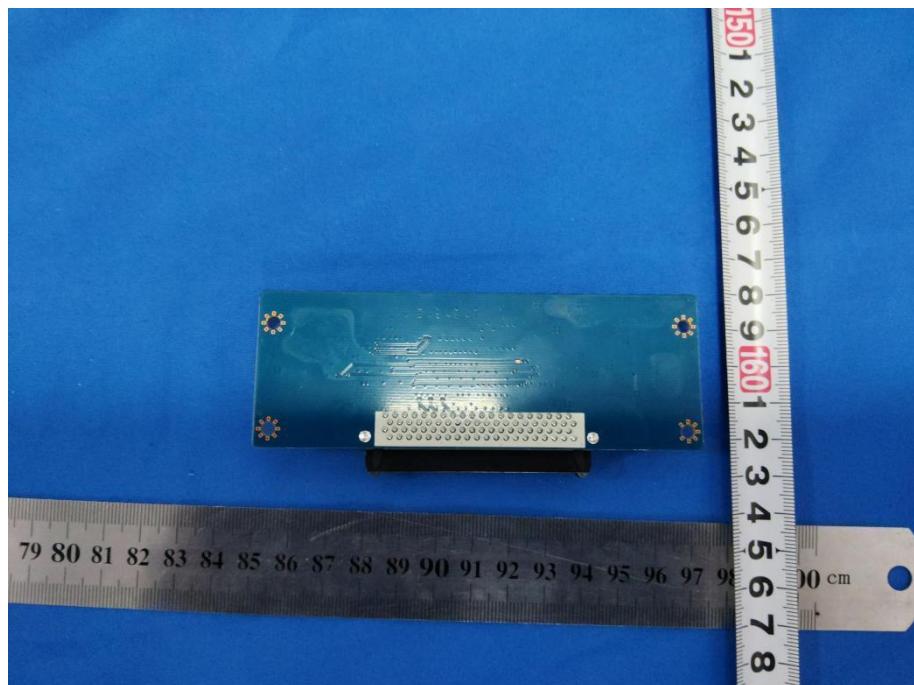
7. EXTERNAL AND INTERNAL PHOTOS

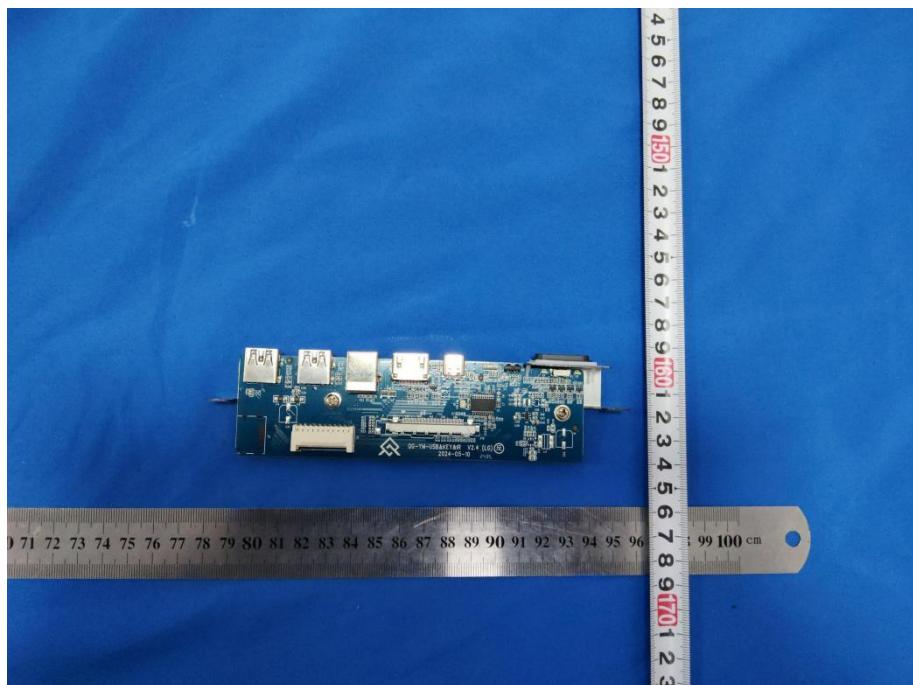
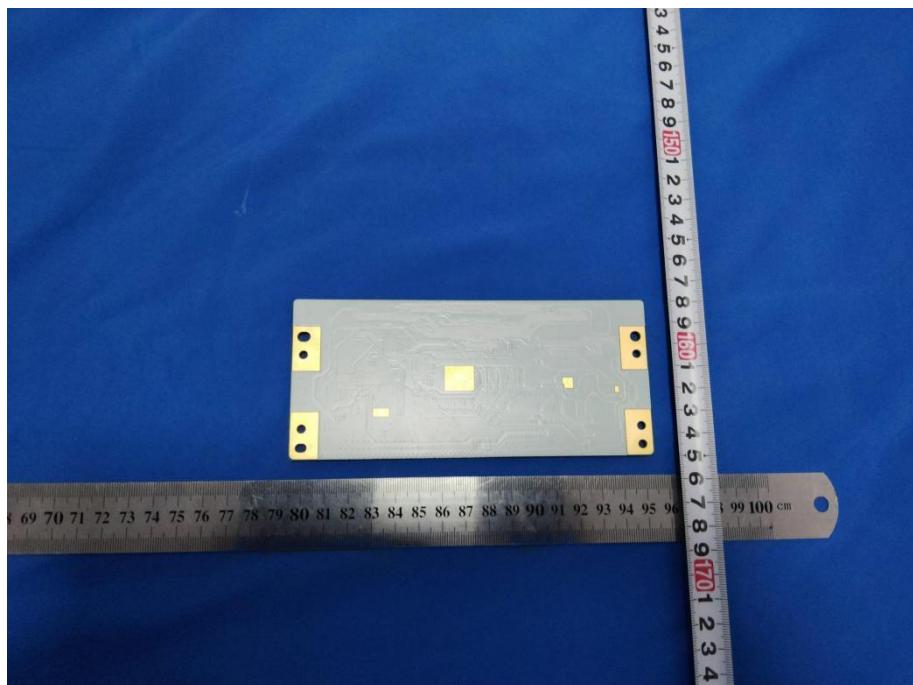
7.1. External Photos





7.2. Internal Photos

