

FCC RADIO TEST REPORT

FCC ID:2AQXG-RT02RS03

Product: Plug-in remote control socket

Trade Name :

KWH-SAVE

Model Name: RT02 Serial Model: RS03

Report No.: UNIA2018081601FR-01

Prepared for

NINGBO WATTSAVE ELECTRIC CO.LTD.

No.1 Building, No.69, Chenshan East Road, Beilun District, Ningbo, China.

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant's name:	NINGBO WATTSAVE ELECTRIC CO.LTD
-------------------	---------------------------------

No.1 Building, No.69, Chenshan East Road, Beilun

District, Ningbo, China.

Manufacture's Name.....: NINGBO WATTSAVE ELECTRIC CO.LTD.

No.1 Building, No.69, Chenshan East Road, Beilun

District, Ningbo, China.

Product description

Product name Plug-in remote control socket

Trade Mark:

KWH-SAVE

Model and/or type reference : RT02, RS03

FCC Rules and Regulations Part 15 Subpart C Section 15.231(a)

ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test Aug.14,2018

Date (s) of performance of tests Aug. 14, 2018 ~ Aug. 15, 2018

Date of Issue Aug.16, 2018

Test Result..... Pass

Prepared by:

Reviewer:

Sherwii Qian/Supervisor

Approved & Authorized Signer:

Liuze/Manager

Table of Contents	Page
1 . TEST SUMMARY	4
2 . GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 Carrier Frequency of Channels	6
2.3 Operation of EUT during testing	6
2.4 DESCRIPTION OF TEST SETUP	6
2.5 MEASUREMENT INSTRUMENTS LIST	7
3 . CONDUCTED EMISSIONS TEST	8
3.1 Conducted Power Line Emission Limit	8
3.2 Test Setup	8
3.3 Test Procedure	8
3.4 Test Result	8
4 RADIATED EMISSION TEST	9
4.1 Radiation Limit	9
4.2 Test Setup	9
4.3 Test Procedure	10
4.4 Test Result	10
5Transmit time	15
5.1 Test Setup	15
5.2 Test Procedure	15
5.3 Measurement Equipment Used	15
5.4 Applied procedures / Limit	15
5.5 Test Result	15
7 Field Strength of Fundamental& Field Strength of Unwanted Emissions	17
Test Result	19
6 OCCUPIED BANDWIDTH MEASUREMENT	20
6.1 Test Setup	20
6.2 Test Procedure	20
6.3 Measurement Equipment Used	20
6.4 Test Result	20
7 ANTENNA REQUIREMENT	21
8 PHOTOGRAPH OF TEST	22
8.1Radiated Emission	22

1. TEST SUMMARY

1.1TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST

CONDUCTED EMISSIONS TEST

RADIATED EMISSION TEST

FIELD STRENGTH OF FUNDAMENTAL

OCCUPIED BANDWIDTH MEASUREMENT

ANTENNA REQUIREMENT

TRANSMIT TIME

COMPLIANT

COMPLIANT

COMPLIANT

COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address :2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2. GENERAL INFORMATION

2.1GENERAL DESCRIPTION OF EUT

Equipment	Plug in-remote control socket
Trade Mark	KWH-SAE
Model Name	RT02
Serial No.	RS03
FCC ID	2AQXG-RT02RS03
Antenna Type	PCB Antenna
Antenna Gain	0dBi
Frequency Range	433.92MHz
Number of Channels	1CH
Modulation Type	ASK
Battery	DC1.5V*2 from Battery
PowerSource	DC1.5V*2 from Battery
Adapter Model	N/A

2.2 Carrier Frequency of Channels

	Channel List
Channel	Frequency (MHz)
00	433.92

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode with using new battery

Channel: 433.92MHz

Pre-test: Pre-test all the buttons (All on/All off, 1.On/ off, 2.On/ off...5.On/ off) on the EUT.

Final test: select "All on" button and record in this report.

2.4DESCRIPTION OF TEST SETUP

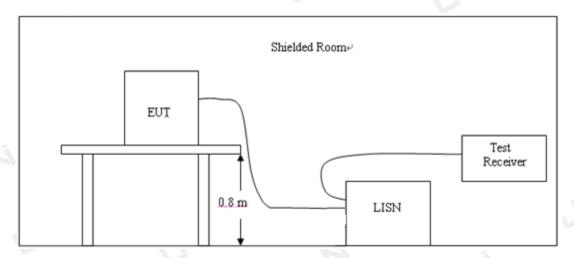
Operation of EUT during Radiation and Above1GHz Radiation testing:

EUT

2.5MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
		CONDUCTED	EMISSIONS TEST		1
1	AMN	Schwarzbeck	NNLK8121	8121370	2018.9.9
2	AMN	ETS	3810/2	00020199	2018.9.9
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2018.9.9
4	AAN	TESEQ	T8-Cat6	38888	2018.9.9
	17	RADIATED	EMISSION TEST		•
1	Horn Antenna	Sunol	DRH-118	A101415	2018.9.29
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2018.9.29
3	PREAMP	HP	8449B	3008A00160	2018.9.9
4	PREAMP	HP	8447D	2944A07999	2018.9.9
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2018.9.9
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2018.9.28
7	Signal Generator	Agilent	E4421B	MY4335105	2018.9.28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2018.9.28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2018.9.9
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2018.9.28
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2018.9.9
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2018.9.9
13	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2019.3.14
14	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2019.3.14
15	RF power divider	Anritsu	K241B	992289	2018.9.28
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2018.9.28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2018.9.8
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2018.9.8
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2018.9.8
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2019.1.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2018.11.02
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019.03.14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2018.10.24
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2019.05.10

3. CONDUCTED EMISSIONS TEST


3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

Fraguanay	Maximum RF Line Voltage(dBμV)					
Frequency	CLASS A		CLASS B			
(MHz)	Q.P.	Ave.	Q.P.	Ave.		
0.15~0.50	79	66	66~56*	56~46*		
0.50~5.00	73	60	56	46		
5.00~30.0	73	60	60	50		

^{*} Decreasing linearly with the logarithm of the frequency For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user'smanual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed onthe ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4,If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and wasgrounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUTusing a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has twomonitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

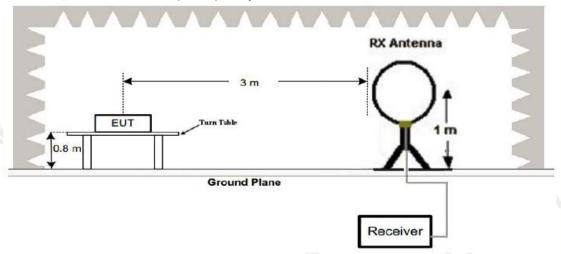
N/A

Remark:

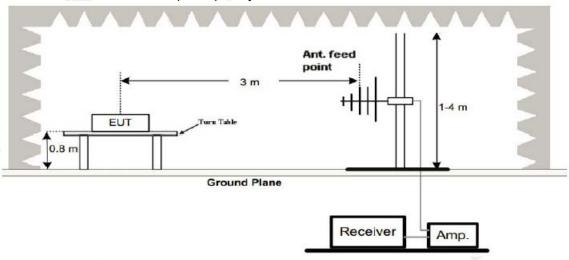
Because the EUT only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Measurements to demonstrate compliance with the conducted limits are not required for devices.

4 RADIATED EMISSION TEST

4.1 Radiation Limit

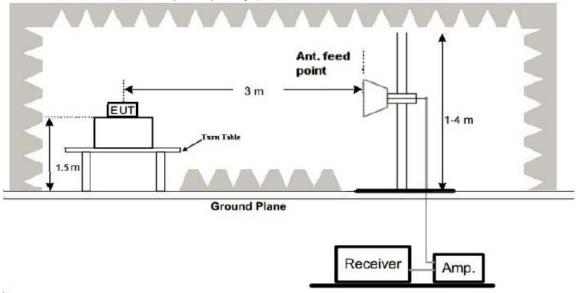

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of of a distance of 3 meters shall not exceed the following values:

Frequency	Distance	Radiated	Radiated
(MHz)	(Meters)	(dBµV/m)	(µV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiatedemissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz



Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4.3 Test Procedure

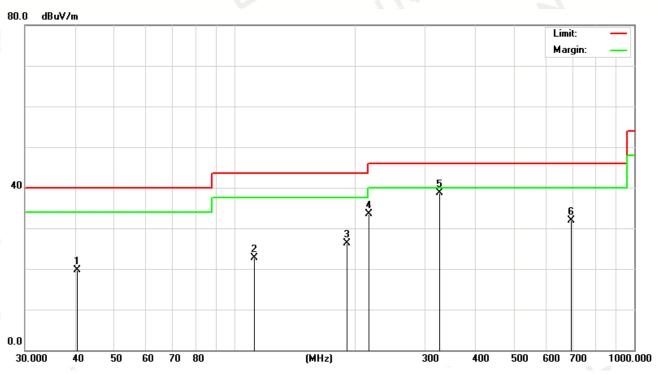
- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highestemissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna bothhorizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to5GHz per FCC PART 15.33(a).

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

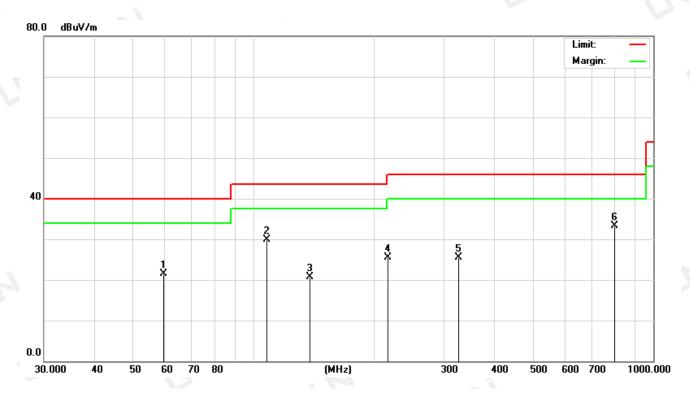
PASS


Remark

- 1. All modes of ASK were test at TX CH00 channel, only the worst result of GFSK High Channel was reported for below 1GHz test.
- 2. For above 1GHz test all modes of ASK were test at TX CH00channel, only the worst result of GFSK was reported.
- 3. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 4. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.

Below 1GHz Test Results:

Temperature:	22 ℃	Relative Humidity:	38%
Test Date:	Aug. 14, 2018	Pressure:	1010hPa
Test Voltage:	DC 3.0V from Battery	Polarization:	Horizontal
Test Mode:	TX CH00		



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
1		40.5591	30.30	-10.52	19.78	40.00	-20.22	QP
2		112.5243	34.49	-11.77	22.72	43.50	-20.78	QP
3		191.7450	41.15	-14.75	26.40	43.50	-17.10	QP
4		216.7828	49.74	-16.32	33.42	46.00	-12.58	QP
5	*	325.5957	47.48	-8.75	38.73	46.00	-7.27	QP
6		696.8567	31.64	0.24	31.88	46.00	-14.12	QP

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Temperature:	22℃	Relative Humidity:	38%
Test Date:	Aug. 14, 2018	Pressure:	1010hPa
Test Voltage:	DC 3.0V from Battery	Polarization:	Vertical
Test Mode:	TX CH00		, N

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
1		59.8588	32.39	-10.96	21.43	40.00	-18.57	QP
2		108.2667	42.99	-13.13	29.86	43.50	-13.64	QP
3		138.3873	35.47	-14.86	20.61	43.50	-22.89	QP
4		216.7828	38.95	-13.42	25.53	46.00	-20.47	QP
5		325.5957	34.19	-8.75	25.44	46.00	-20.56	QP
6	*	798.9796	29.91	3.44	33.35	46.00	-12.65	QP

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHzwas verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Antenna polarization: Horizontal:

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type	
433.9200	91.82	-6.61	85.21	100.82	-15.61	Peak	
867.8400	53.85	1.86	55.71	80.82	-25.11	Peak	

Frequency (MHz)	20log (Duty cycle) (dB)	Peak Level (dBμV)	Average Level (dB _µ V/m)	Limit (dBμV/m)	Margin (dB)	Detector Type
433.9200	-10.42	85.21	74.79	80.82	-6.03	AVG

Antenna polarization: Vertical:

Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type
433.9200	77.46	-6.61	70.85	100.82	-29.97	Peak
867.8400	45.72	1.86	47.58	80.82	-33.24	Peak

Frequency (MHz)	20log (Duty cycle) (dB)	Peak Level (dBμV)	Average Level (dB _µ V/m)	Limit (dBμV/m)	Margin (dB)	Detector Type
433.9200	-10.42	70.85	60.43	80.82	-20.39	AVG

Above 1 GHz Test Results (TX CH00 Mode):

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
1293.705	45.05	-10.35	34.70	74.00	-39.30	peak
1703.566	42.42	-9.62	32.80	74.00	-41.20	peak
2073.163	42.99	-8.47	34.52	74.00	-39.48	peak
2944.482	43.30	-2.06	41.24	74.00	-32.76	peak
4088.827	44.37	3.97	48.34	74.00	-25.66	peak
4771.994	44.40	5.06	49.46	74.00	-24.54	peak

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

					0.	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
1297.876	44.73	-10.33	34.40	74.00	-39.60	peak
1574.380	43.78	-9.88	33.90	74.00	-40.10	peak
2411.774	44.80	-5.60	39.20	74.00	-34.80	peak
3408.907	43.08	-0.88	42.20	74.00	-31.80	peak
4388.877	44.67	4.50	49.17	74.00	-24.83	peak
4810.550	44.42	5.07	49.49	74.00	-24.51	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 5 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detectorat frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7)All modes of operation were investigated and the worst-case emissions are reported.

5Transmit time

5.1 Test Setup

Same asRadiated Emission Measurement

5.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on ANSI C63.10 section 6.9.2: RBW=100KHz, VBW=300KHz, Sweep time=10s.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.

5.3 Measurement Equipment Used

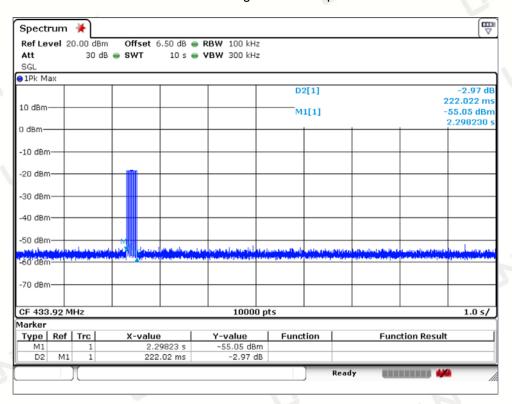
Same asRadiated Emission Measurement

5.4 Applied procedures / Limit

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

5.5 Test Result


PASS

Normal Modulation:

Item	Duration of each transmission (Td)	Limit .
Time	0.22202s	≤5 s

CH: 433.92MHz

7 Field Strength of Fundamental& Field Strength of Unwanted Emissions

the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency	Field Strength	of Fundamental	of Harmonics and Emissions		
MHz	μV/m @ 3m	dBµV/m @ 3m	μV/m @ 3m	dBμV/m @ 3m	
40.66 to 40.70	2250	67.00	225	47.00	
70 to 130	1250	61.9	125	41.9	
130 to 174	1250 to 3750	61.9 to 71.5	125 to 375	41.9 to 51.5	
174 to 260	3750	71.5	375	51.5	
260 to 470	3750 to 12500	71.5 to 81.94	375 to 1250	51.5 to 61.94	
Above 470	12500	81.94	1250	61.94	
Detector:	Peak for pre-scan				
LS.	QP for 30MHz to1000MHz:120kHz resolution bandwidth Peak for Above 1 GHz: 1 MHz resolution bandwidth				

^{**} linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 51.81818(F) – 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) -7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level

The fundamental frequency of the EUT is 433.92MHz

The limit for average or QP field strength dBuv/m for the fundamental emission= 80.82dBµV/m

No fundamental is allowed in the restricted bands.

The limit for average field strength dBuv/m for the spurious emission= 60.82dBuV/m (433.92MHz). Spurious in the restricted bands must be less than average field strength or 15.209, whichever limit permits a higher field strength.

And according 15.35(a) On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified. The specifications for the measuring instrument using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Interference (CISPR) of the International Electrotechnical Commission. As an alternative to CISPR quasi-peak measurements, the responsible party, at its option, may demonstrate compliance with the emission limits using measuring equipment employing a peak detector function, properly adjusted for such factors as pulse desensitization, as long as the same bandwidths as indicated for CISPR quasi-peak measurements are employed.

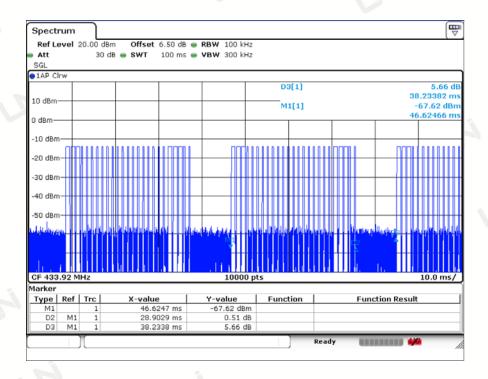
Note: For pulse modulated devices with a pulse-repetition frequency of 20 Hz or less and for which CISPR quasi-peak measurements are specified, compliance with the regulations shall be demonstrated using measuring

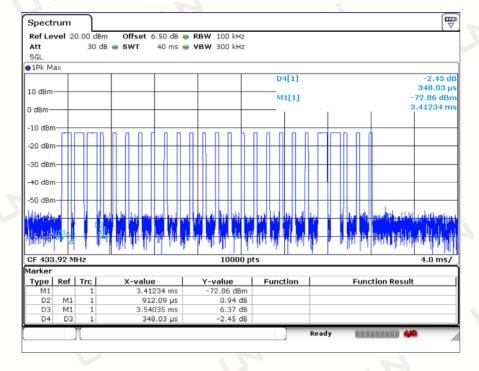
the same measurement bandwidths that are indicated for CISPR quasi-peak measurements.

Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor may be needed to determine the total peak emission level. The instruction manual or application note for the measurement instrument should be consulted for determining pulse desensitization factors, as necessary. The average correction factor is computed by analyzing the on time in 100ms over one complete pulse train. Analysis of the remote transmitter on time in one complete pulse train, therefore the average value of fundamental

Analysis of the remote transmitter on time in one complete pulse train, therefore the average value of fundamental frequency is: Average = Peak value + 20log (Duty cycle), where the duty factor is calculated from following formula:

The duty-cycle correction limit is 20dB since the peak level cannot exceed the average level by more than 20dB For 433.92 MHz:


20log (Duty cycle) =
$$20\log(T_{pulse}/38.2338)$$
 = $20\log(0.3013315)$ = -10.419dB


Here
$$T_{pulse}$$
 =0.91209*5+0.34803*20 (ms)=11.52105(ms)

Please refer to below plots for more details

PASS

6 OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Setup

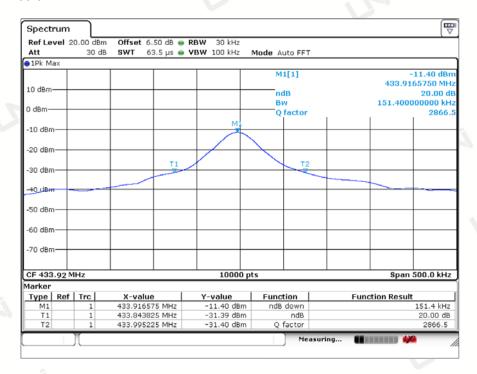
Same asRadiated Emission Measurement

6.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on ANSI C63.10 section 6.9.2: RBW=30KHz, VBW=100KHz, Span=500KHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.

6.3 Measurement Equipment Used

Same asRadiated Emission Measurement

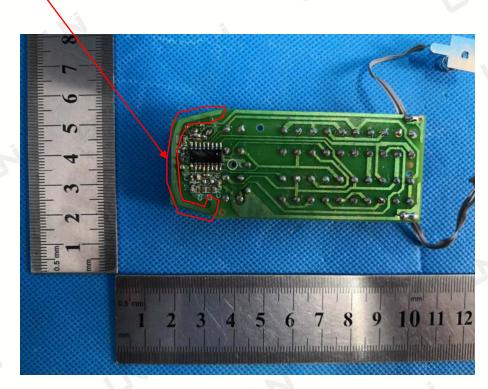

6.4 Test Result

PASS

Normal Modulation:

Frequency	20dB Bandwidth (MHz)	Limit (MHz)	Result
433.92 MHz	0.1514	1.084975	PASS

CH: 433.92MHz


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed toensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is 0dBi.

PCB ANTENNA

8.1Radiated Emission

End of Report